

The C++ Standard Library

dyne-book 2

C++ Standard Library, The: A Tutorial and Reference

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book and Addison Wesley
Longman Inc., was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omissions.
No liability is assumed for incidental or consequential damages in connection with or arising out
of the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales. For more
information, please contact:

AWL Direct Sales
Addison Wesley Longman, Inc
One Jacob Way
Reading, Massachusetts 01867
(781) 944-3700

Visit AW on the Web: www.awl.com/cseng/

Library of Congress Cataloging-in-Publication Data
Josuttis, Nicolai M.
The C++ standard library: a tutorial and reference / Nicolai M. Josuttis.
p. cm.
Includes bibliographical references and index.
1. C++ (Computer program language) I. Title.
QA76.73.C153J69 1999
005.13'3--dc21 99-24977
CIP

Copyright © 1999 by Addison Wesley Longman, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher. Printed in the United States of America.
Published simultaneously in Canada.

1 2 3 4 5 6 7 8 9 -CRW- 0302010099

First printing, July 1999

The C++ Standard Library

dyne-book 3

Table of Contents

Preface
 Acknowledgments

1. About this Book
 1.1 Why this Book
 1.2 What You Should Know Before Reading this Book
 1.3 Style and Structure of the Book
 1.4 How to Read this Book
 1.5 State of the Art
 1.6 Example Code and Additional Information
 1.7 Feedback

2. Introduction to C++ and the Standard Library
 2.1 History
 2.2 New Language Features
 2.3 Complexity and the Big-O Notation

3. General Concepts
 3.1 Namespace std
 3.2 Header Files
 3.3 Error and Exception Handling
 3.4 Allocators

4. Utilities
 4.1 Pairs
 4.1.1 Convenience Function make_pair()
 4.1.2 Examples of Pair Usage
 4.2 Class auto_ptr
 4.3 Numeric Limits
 4.4 Auxiliary Functions
 4.5 Supplementary Comparison Operators
 4.6 Header Files <cstddef> and <cstdlib>

5. The Standard Template Library
 5.1 STL Components
 5.2 Containers
 5.3 Iterators
 5.4 Algorithms
 5.5 Iterator Adapters
 5.6 Manipulating Algorithms
 5.7 User-Defined Generic Functions
 5.8 Functions as Algorithm Arguments
 5.9 Function Objects
 5.10 Container Elements
 5.11 Errors and Exceptions Inside the STL
 5.12 Extending the STL

6. STL Containers
 6.1 Common Container Abilities and Operations
 6.2 Vectors
 6.3 Deques

The C++ Standard Library

dyne-book 4

 6.4 Lists
 6.5 Sets and Multisets
 6.6 Maps and Multimaps
 6.7 Other STL Containers
 6.8 Implementing Reference Semantics
 6.9 When to Use which Container
 6.10 Container Types and Members in Detail

7. STL Iterators
 7.1 Header Files for Iterators
 7.2 Iterator Categories
 7.3 Auxiliary Iterator Functions
 7.4 Iterator Adapters
 7.5 Iterator Traits

8. STL Function Objects
 8.1 The Concept of Function Objects
 8.2 Predefined Function Objects
 8.3 Supplementary Composing Function Objects

9. STL Algorithms
 9.1 Algorithm Header Files
 9.2 Algorithm Overview
 9.3 Auxiliary Functions
 9.4 The for_each() Algorithm
 9.5 Nonmodifying Algorithms
 9.6 Modifying Algorithms
 9.7 Removing Algorithms
 9.8 Mutating Algorithms
 9.9 Sorting Algorithms
 9.10 Sorted Range Algorithms
 9.11 Numeric Algorithms

10. Special Containers
 10.1 Stacks
 10.2 Queues
 10.3 Priority Queues
 10.4 Bitsets

11. Strings
 11.1 Motivation
 11.2 Description of the String Classes
 11.3 String Class in Detail

12. Numerics
 12.1 Complex Numbers
 12.2 Valarrays
 12.3 Global Numeric Functions

13. Input/Output Using Stream Classes
 13. Input/Output Using Stream Classes
 13.1 Common Background of I/O Streams
 13.2 Fundamental Stream Classes and Objects

The C++ Standard Library

dyne-book 5

 13.3 Standard Stream Operators << and >>
 13.4 State of Streams
 13.5 Standard Input/Output Functions
 13.6 Manipulators
 13.7 Formatting
 13.8 Internationalization
 13.9 File Access
 13.10 Connecting Input and Output Streams
 13.11 Stream Classes for Strings
 13.12 Input/Output Operators for User-Defined Types
 13.13 The Stream Buffer Classes
 13.14 Performance Issues

14. Internationalization
 14.1 Different Character Encodings
 14.2 The Concept of Locales
 14.3 Locales in Detail
 14.4 Facets in Detail

15. Allocators
 15.1 Using Allocators as an Application Programmer
 15.2 Using Allocators as a Library Programmer
 15.3 The Default Allocator
 15.4 A User-Defined Allocator
 15.5 Allocators in Detail
 15.6 Utilities for Uninitialized Memory in Detail

Internet Resources
 Where You Can Get the Standard
 Internet Addresses/URLs

Bibliography

The C++ Standard Library

dyne-book 6

Preface
In the beginning, I only planned to write a small German book (400 pages or so) about the C++
standard library. That was in 1993. Now, in 1999 you see the result — an English book with more
than 800 pages of facts, figures, and examples. My goal is to describe the C++ standard library
so that all (or almost all) your programming questions are answered before you think of the
question. Note, however, that this is not a complete description of all aspects of the C++ standard
library. Instead, I present the most important topics necessary for learning and programming in
C++ by using its standard library.

Each topic is described based on the general concepts; this discussion then leads to the specific
details needed to support every-day programming tasks. Specific code examples are provided to
help you understand the concepts and the details.

That's it — in a nutshell. I hope you get as much pleasure from reading this book as I did from
writing it. Enjoy!

The C++ Standard Library

dyne-book 7

Acknowledgments

This book presents ideas, concepts, solutions, and examples from many sources. In a way it
does not seem fair that my name is the only name on the cover. Thus, I'd like to thank all the
people and companies who helped and supported me during the past few years.

First, I'd like to thank Dietmar Kühl. Dietmar is an expert on C++, especially on input/output
streams and internationalization (he implemented an I/O stream library just for fun). He not only
translated major parts of this book from German to English, he also wrote sections of this book
using his expertise. In addition, he provided me with invaluable feedback over the years.

Second, I'd like to thank all the reviewers and everyone else who gave me their opinion. These
people endow the book with a quality it would never have had without their input. (Because the
list is extensive, please fogive me for any oversight.) The reviewers for the English version of this
book included Chuck Allison, Greg Comeau, James A. Crotinger, Gabriel Dos Reis, Alan Ezust,
Nathan Meyers, Werner Mossner, Todd Veldhuizen, Chichiang Wan, Judy Ward, and Thomas
Wikehult. The German reviewers included Ralf Boecker, Dirk Herrmann, Dietmar Kühl, Edda
Lörke, Herbert Scheubner, Dominik Strasser, and Martin Weitzel. Additional input was provided
by Matt Austern, Valentin Bonnard, Greg Colvin, Beman Dawes, Bill Gibbons, Lois Goldthwaite,
Andrew Koenig, Steve Rumbsby, Bjarne Stroustrup, and David Vandevoorde.

Special thanks to Dave Abrahams, Janet Cocker, Catherine Ohala, and Maureen Willard who
reviewed and edited the whole book very carefully. Their feedback was an incredible contribution
to the quality of this book.

A special thanks goes to my "personal living dictionary" — Herb Sutter — the author of the
famous "Guru of the Week" (a regular series of C++ programming problems that is published on
the comp.std.C++.moderated Internet newsgroup).

I'd also like to thank all the people and companies who gave me the opportunity to test my
examples on different platforms with different compilers. Many thanks to Steve Adamczyk, Mike
Anderson, and John Spicer from EDG for their great compiler and their support. It was a big help
during the standardization process and the writing of this book. Many thanks to P. J. Plauger and
Dinkumware, Ltd, for their early standard-conforming implementation of the C++ standard library.
Many thanks to Andreas Hommel and Metrowerks for an evaluative version of their Code Warrior
Programming Environment. Many thanks to all the developers of the free GNU and egcs
compilers. Many thanks to Microsoft for an evaluative version of Visual C++. Many thanks to
Roland Hartinger from Siemens Nixdorf Informations Systems AG for a test version of their C++
compiler. Many thanks to Topjects GmbH for an evaluative version of the ObjectSpace library
implementation.

Many thanks to everyone from Addison Wesley Longman who worked with me. Among others
this includes Janet Cocker, Mike Hendrickson, Debbie Lafferty, Marina Lang, Chanda Leary,
Catherine Ohala, Marty Rabinowitz, Susanne Spitzer, and Maureen Willard. It was fun.

In addition, I'd like to thank the people at BREDEX GmbH and all the people in the C++
community, particularly those involved with the standardization process, for their support and
patience (sometimes I ask really silly questions).

Last but not least, many thanks and kisses for my family: Ulli, Lucas, Anica, and Frederic. I
definitely did not have enough time for them due to the writing of this book.

Have fun and be human!

The C++ Standard Library

dyne-book 8

Chapter 1. About this Book
1.1 Why this Book

Soon after its introduction, C++ became a de facto standard in object-oriented programming. This
led to the goal of standardization. Only by having a standard, could programs be written that
would run on different platforms — from PCs to mainframes. Furthermore, a standard library
would enable programmers to use general components and a higher level of abstraction without
losing portability, rather than having to develop all code from scratch.

The standardization process was started in 1989 by an international ANSI/ISO committee. It
developed the standard based on Bjarne Stroustrup's books The C++ Programming Language
and The Annotated C++ Reference Manual. After the standard was completed in 1997, several
formal motions by different countries made it an international ISO and ANSI standard in 1998.
The standardization process included the development of a C++ standard library. The library
extends the core language to provide some general components. By using C++'s ability to
program new abstract and generic types, the library provides a set of common classes and
interfaces. This gives programmers a higher level of abstraction. The library provides the ability to
use

• String types
• Different data structures (such as dynamic arrays, linked lists, and binary trees)
• Different algorithms (such as different sorting algorithms)
• Numeric classes
• Input/output (I/O) classes
• Classes for internationalization support

All of these are supported by a fairly simple programming interface. These components are very
important for many programs. These days, data processing often means inputting, computing,
processing, and outputting large amounts of data, which are often strings.

The library is not self-explanatory. To use these components and to benefit from their power, you
need a good introduction that explains the concepts and the important details instead of simply
listing the classes and their functions. This book is written exactly for that purpose. First, it
introduces the library and all of its components from a conceptional point of view. Next, it
describes the details needed for practical programming. Examples are included to demonstrate
the exact usage of the components. Thus, this book is a detailed introduction to the C++ library
for both the beginner and the practical programmer. Armed with the data provided herein, you
should be able to take full advantage of the C++ standard library.

Caveat:
I don't promise that everything described is easy and self-explanatory. The library provides a lot
of flexibility, but flexibility for nontrivial purposes has a price. Beware that the library has traps and
pitfalls, which I point out when we encounter them and suggest ways of avoiding them.

1.2 What You Should Know Before Reading this Book

To get the most from this book you should already know C++. (The book describes the standard
components of C++, but not the language itself.) You should be familiar with the concepts of
classes, inheritance, templates, and exception handling. However, you don't have to know all of
the minor details about the language. The important details are described in the book (the minor

The C++ Standard Library

dyne-book 9

details about the language are more important for people who want to implement the library
rather than use it). Note that the language has changed during the standardization process, so
your knowledge might not be up to date. Section 2.2, provides a brief overview and introduction
of the latest language features that are important for using the library. You should read this
section if you are not sure whether you know all the new features of C++ (such as the keyword
typename and the concept of namespaces).

1.3 Style and Structure of the Book

The C++ standard library provides different components that are somewhat but not totally
independent of each other, so there is no easy way to describe each part without mentioning
others. I considered several different approaches for presenting the contents of this book. One
was on the order of the C++ standard. However, this is not the best way to explain the
components of the C++ standard library from scratch. Another was to start with an overview of all
components followed by chapters that provided more details. Alternatively, I could have sorted
the components, trying to find an order that had a minimum of cross-references to other sections.
My solution was to use a mixture of all three approaches. I start with a brief introduction of the
general concepts and the utilities that are used by the library. Then, I describe all the
components, each in one or more chapters. The first component is the standard template library
(STL). There is no doubt that the STL is the most powerful, most complex, and most exciting part
of the library. Its design influences other components heavily. Then I describe the more self-
explanatory components, such as special containers, strings, and numeric classes. The next
component discussed is one you probably know and use already: the IOStream library. It is
followed by a discussion of internationalization, which had some influence on the IOStream
library.

Each component description begins with the component's purpose, design, and some examples.
Next, a detailed description follows that begins with different ways to use the component, as well
as any traps and pitfalls associated with it. The description usually ends with a reference section,
in which you can find the exact signature and definition of a component's classes and its
functions.
The following is a description of the book's contents. The first four chapters introduce this book
and the C++ standard library in general:

• Chapter 1: About this Book

This chapter (which you are reading right now) introduces the book's subject and
describes its contents.

• Chapter 2: Introduction to C++ and the Standard Library

This chapter provides a brief overview of the history of the C++ standard library and the
context of its standardization. It also contains some general hints regarding the technical
background for this book and the library, such as new language features and the concept
of complexity.

• Chapter 3: General Concepts

This chapter describes the fundamental concepts of the library that you need to
understand to work with all the components. In particular, it introduces the namespace
std, the format of header files, and the general support of error and exception handling.

• Chapter 4: Utilities

The C++ Standard Library

dyne-book 10

This chapter describes several small utilities provided for the user of the library and for
the library itself. In particular, it describes auxiliary functions such as max(), min(),
and swap(), types pair and auto_ptr, as well as numeric_limits, which provide
more information about implementation-specific details of numeric data types.

Chapters 5 through 9 describe all aspects of the STL:

• Chapter 5: The Standard Template Library

This chapter presents a detailed introduction to the concept of the STL, which provides
container classes and algorithms that are used to process collections of data. It explains
step-by-step the concept, the problems, and the special programming techniques of the
STL, as well as the roles of its parts.

• Chapter 6: STL Containers

This chapter explains the concepts and describes the abilities of the STL's container
classes. First it describes the differences between vectors, deques, lists, sets, and maps,
then their common abilities, and all with typical examples. Lastly it lists and describes all
container functions in form of a handy reference.

• Chapter 7: STL Iterators

This chapter deals in detail with the STL's iterator classes. In particular, it explains the
different iterator categories, the auxiliary functions for iterators, and the iterator adapters,
such as stream iterators, reverse iterators, and insert iterators.

• Chapter 8: STL Function Objects

This chapter details the STL's function object classes.

• Chapter 9: STL Algorithms

This chapter lists and describes the STL's algorithms. After a brief introduction and
comparison of the algorithms, each algorithm is described in detail followed by one or
more example programs.

Chapters 10 through 12 describe "simple" individual standard classes:

• Chapter 10: Special Containers

This chapter describes the different special container classes of the C++ standard library.
It covers the container adapters for queues and stacks, as well as the class bitset,
which manages a bitfield with an arbitrary number of bits or flags.

• Chapter 11: Strings

This chapter describes the string types of the C++ standard library (yes, there are more
than one). The standard provides strings as kind of "self-explanatory" fundamental data
types with the ability to use different types of characters.

The C++ Standard Library

dyne-book 11

• Chapter 12: Numerics

This chapter describes the numeric components of the C++ standard library. In particular,
it covers types for complex numbers and classes for the processing of arrays of numeric
values (the latter may be used for matrices, vectors, and equations).

Chapters 13 and 14 deal with I/O and internationalization (two closely related subjects):

• Chapter 13: Input/Output Using Stream Classes

This chapter covers the I/O component of C++. This component is the standardized form
of the commonly known IOStream library. The chapter also describes details that may be
important to programmers but are typically not so well known. For example, it describes
the correct way to define and integrate special I/O channels, which are often
implemented incorrectly in practice.

• Chapter 14: Internationalization

This chapter covers the concepts and classes for the internationalization of programs. In
particular, it describes the handling of different character sets, as well as the use of
different formats for such values as floating-point numbers and dates.

The rest of the book contains:

• Chapter 15: Allocators

This chapter describes the concept of different memory models in the C++ standard
library.

• An appendix with
o Internet Resources
o Bibliography
o Index

1.4 How to Read this Book

This book is a mix of introductory user's guide and structured reference manual regarding the
C++ standard library. The individual components of the C++ standard library are independent of
each other, to some extent, so after reading Chapters 2 through 4 you could read the chapters
that discuss the individual components in any order. Bear in mind, that Chapter 5 through
Chapter 9 all describe the same component. To understand the other STL chapters, you should
start with the introduction to the STL in Chapter 5.

If you are a C++ programmer who wants to know, in general, the concepts and all parts of the
library, you could simply read the book from the beginning to the end. However, you should skip
the reference sections. To program with certain components of the C++ standard library, the best
way to find something is to use the index. I have tried to make the index very comprehensive to
save you time when you are looking for something.

In my experience, the best way to learn something new is to look at examples. Therefore, you'll
find a lot of examples throughout the book. They may be a few lines of code or complete
programs. In the latter case, you'll find the name of the file containing the program as the first

The C++ Standard Library

dyne-book 12

comment line. You can find the files on the Internet at my Web site at
http://www.josuttis.com/libbook/.

1.5 State of the Art

While I was writing this book, the C++ standard was completed. Please bear in mind that some
compilers might not yet confirm to it. This will most likely change in the near future. As a
consequence, you might discover that not all things covered in this book work as described on
your system, and you may have to change example programs to fit your specific environment. I
can compile almost all example programs with version 2.8 or higher of the EGCS compiler, which
is free for almost all platforms and available on the Internet (see http://egcs.cygnus.com/) and
on several software CDs.

1.6 Example Code and Additional Information

You can access all example programs and acquire more informations about this book and the
C++ standard library from my Web site at http://www.josuttis.com/libbook/. Also, you can
find a lot of additional information about this topic on the Internet. See Internet Resources
for details.

1.7 Feedback

I welcome your feedback (good and bad) on this book. I tried to prepare it carefully; however, I'm
human, and at some time I have to stop writing and tweaking. So, you may find some errors,
inconsistencies, or subjects that could be described better. Your feedback will give me the
chance to improve later editions. The best way to reach me is by Email:

 libbook@josuttis.com
You can also reach me by phone, fax, or "snail" mail:

Nicolai M. Josuttis

Berggarten 9

D-38108 Braunschweig

Germany

Phone: +49 5309 5747

Fax: +49 5309 5774

Many thanks.

The C++ Standard Library

dyne-book 13

Chapter 2. Introduction to C++ and the Standard
Library
2.1 History

The standardization of C++ was started in 1989 and finished at the end of 1997, although some
formal motions delayed the final publication until September 1998. The result was a reference
manual with approximately 750 pages, published by the International Standards Organization
(ISO). The standard has the title "Information Technology — Programming Languages — C++."
Its document number is ISO/IEC 14882-1998, and it is distributed by the national bodies of the
ISO, such as the ANSI in the United States.[1]

[1] At the time this book was written, you could get the C++ standard at the ANSI Electronics Standard Store
for $ 18.00 (US; see http://www.ansi.org/).

The standard was an important milestone for C++. Because it defines the exact contents and
behavior of C++, it makes it easier to teach C++, to use C++ in applications, and to port C++
programs to different platforms. It also gives users greater freedom of choice regarding different
C++ implementations. Its stability and portability help library providers and tool providers as well
as implementers. Thus, the standard helps C++ application developers build better applications
faster, and maintain them with less cost and effort.

Part of the standard is a standard library. This library provides core components for I/O, strings,
containers (data structures), algorithms (such as sort, search, and merge), support for numeric
computation, and (as could be expected from an international standard) support for
internationalization (such as different character sets).

You may wonder why the standardization process took almost 10 years, and if you know some
details about the standard you might wonder why after all this time it is still not perfect. Ten years,
in fact, was not enough time! Although, according to the history and the context of the
standardization process, a lot was accomplished. The result is usable in practice, but it is not
perfect (nothing ever is).

The standard is not the result of a company with a big budget and a lot of time. Standards
organizations pay nothing or almost nothing to the people who work on developing standards. So,
if a participant doesn't work for a company that has a special interest in the standard, the work is
done for fun. Thank goodness there were a lot of dedicated people who had the time and the
money to do just that.

The C++ standard was not developed from scratch. It was based on the language as described
by Bjarne Stroustrup, the creator of C++. The standard library, however, was not based on a book
or on an existing library. Instead, different, existing classes were integrated.[2] Thus, the result is
not very homogeneous. You will find different design principles for different components. A good
example is the difference between the string class and the STL, which is a framework for data
structures and algorithms:

[2] You may wonder why the standardization process did not design a new library from scratch.
The major purpose of standardization is not to invent or to develop something; it is to harmonize
an existing practice.

String classes are designed as a safe and convenient component. Thus, they provide an almost
self-explanatory interface and check for many errors in the interface.

The C++ Standard Library

dyne-book 14

The STL was designed to combine different data structures with different algorithms while
achieving the best performance. Thus, the STL is not very convenient and it is not required to
check for many logical errors. To benefit from the powerful framework and great performance of
the STL, you must know the concepts and apply them carefully.

Both of these components are part of the same library. They were harmonized a bit, but they still
follow their individual, fundamental design philosophies.

One component of the library existed as a de facto standard before standardization began: the
IOStream library. Developed in 1984, it was reimplemented and partially redesigned in 1989.
Because many programs were using it already, the general concept of the IOStream library was
not changed, thus keeping it backward compatible.

In general, the whole standard (language and library) is the result of a lot of discussions and
influence from hundreds of people all over the world. For example, the Japanese came up with
important support for internationalization. Of course, mistakes were made, minds were changed,
and people had different opinions. Then, in 1994, when people thought the standard was close to
being finished, the STL was incorporated, which changed the whole library radically. However, to
get finished, the thinking about major extensions was eventually stopped, regardless of how
useful the extension would be. Thus, hash tables are not part of the standard, although they
should be a part of the STL as a common data structure.

The current standard is not the end of the road. There will be fixes of bugs and inconsistencies,
and there likely will be a next version of the standard in five years or so. However for the next few
years, C++ programmers have a standard and the chance to write powerful code that is portable
to very different platforms.

2.2 New Language Features

The core language and the library of C++ were standardized in parallel. In this way, the library
could benefit from improvements in the language and the language could benefit from
experiences of library implementation. In fact, during the standardization process the library often
used special language features that were not yet available.

C++ is not the same language it was five years ago. If you didn't follow its evolution, you may be
surprised with the new language features used by the library. This section gives you a brief
overview of those new features. For details, refer to books on the language in question.

While I was writing this book (in 1998), not all compilers were able to provide all of the new
language features. I hope (and expect) that this will change very soon (most compiler vendors
were part of the standardization process). Thus, you may be restricted in your use of the library.
Portable implementations of the library typically consider whether features are present in the
environment they use (they usually have some test programs to check which language features
are present, and then set preprocessor directives according to the result of the check). I'll mention
any restrictions that are typical and important throughout the book by using footnotes.

The following subsections describe the most important new language features that are relevant
for the C++ standard library.

2.2.1 Templates

Almost all parts of the library are written as templates. Without template support, you can't use
the standard library. Moreover, the library needed new special template features, which I
introduce after a short overview of templates.

The C++ Standard Library

dyne-book 15

Templates are functions or classes that are written for one or more types not yet specified. When
you use a template, you pass the types as arguments, explicitly or implicitly. The following is a
typical example — a function that returns the maximum of two values:

 template <class T>
 inline const T& max (const T& a, const T& b)
 {
 // if a <b then use b else use a
 return a < b ? b : a;
 }
Here, the first line defines T as an arbitrary data type that is specified by the caller when the caller
calls the function. You can use any identifier as a parameter name, but using T is very common, if
not a de facto convention. The type is classified by class, although it does not have to be a
class. You can use any data type as long as it provides the operations that the template uses.[3]

[3] class was used here to avoid the introduction of a new keyword when templates were introduced.
However, now there is a new keyword, typename, that you can also use here (see page 11).

Following the same principle, you can "parameterize" classes on arbitrary types. This is useful for
container classes. You can implement the container operations for an arbitrary element type. The
C++ standard library provides many template container classes (for example, see Chapter 6 or
Chapter 10). It also uses template classes for many other reasons. For example, the string
classes are parameterized on the type of the characters and the properties of the character set
(see Chapter 11).

A template is not compiled once to generate code usable for any type; instead, it is compiled for
each type or combination of types for which it is used. This leads to an important problem in the
handling of templates in practice: You must have the implementation of a template function
available when you call it, so that you can compile the function for your specific type. Therefore,
the only portable way of using templates at the moment is to implement them in header files by
using inline functions.[4]

[4] To avoid the problem of templates having to be present in header files, the standard introduced a
template compilation model with the keyword export. However, I have not seen it implemented yet.

The full functionality of the C++ standard library requires not only the support of templates in
general, but also many new standardized template features, including those discussed in the
following paragraphs.

Nontype Template Parameters

In addition to type parameters, it is also possible to use nontype parameters. A nontype
parameter is then considered as part of the type. For example, for the standard class bitset<>
(class bitset<> is introduced in Section 10.4,) you can pass the number of bits as the
template argument. The following statements define two bitfields, one with 32 bits and one with
50 bits:

 bitset<32> fIags32; // bitset with 32 bits
 bitset<50> flags50; // bitset with 50 bits

These bitsets have different types because they use different template arguments. Thus, you
can't assign or compare them (except if a corresponding type conversion is provided).

Default Template Parameters

The C++ Standard Library

dyne-book 16

Templates classes may have default arguments. For example, the following declaration allows
one to declare objects of class MyClass with one or two template arguments[5] :

[5] Note that you have to put a space between the two ">" characters. ">>" would be parsed as shift
operator, which would result in a syntax error.

 template <class T, class container = vector<T> >
 class MyClass;
If you pass only one argument, the default parameter is used as second argument:

 MyClass<int> x1; // equivalent to: MyClass<int,vector<int> >
Note that default template arguments may be defined in terms of previous arguments.

Keyword typename

The keyword typename was introduced to specify that the identifier that follows is a type.
Consider the following example:

 template <class T>
 Class MyClass {
 typename T::SubType * ptr;
 ...
 };
Here, typename is used to clarify that SubType is a type of class T. Thus, ptr is a pointer to
the type T::SubType. Without typename, SubType would be considered a static member.
Thus

 T::SubType * ptr
would be a multiplication of value SubType of type T with ptr.
According to the qualification of SubType being a type, any type that is used in place of T must
provide an inner type SubType. For example, the use of type Q as a template argument

 MyClass<Q> x;
is possible only if type Q has an inner type definition such as the following:

 class Q {
 typedef int SubType;
 ...
 };
In this case, the ptr member of MyClass<Q> would be a pointer to type int. However, the
subtype could also be an abstract data type (such as a class):

 class Q {
 class SubType;
 ...
 };
Note that typename is always necessary to qualify an identifier of a template as being a type,
even if an interpretation that is not a type would make no sense. Thus, the general rule in C++ is
that any identifier of a template is considered to be a value, except it is qualified by typename.

Apart from this, typename can also be used instead of class in a template declaration:

 template <typename T> class MyClass;

The C++ Standard Library

dyne-book 17

Member Templates

Member functions of classes may be templates. However, member templates may not be virtual,
nor may they have default parameters. For example:

 class MyClass {
 ...
 template <class T>
 void f(T);
 };
Here, MyClass::f declares a set of member functions for parameters of any type. You can pass
any argument as long as its type provides all operations used by f().

This feature is often used to support automatic type conversions for members in template
classes. For example, in the following definition the argument x of assign() must have exactly
the same type as the object it is called for:

 template <class T>
 class MyClass {
 private:
 T value;
 public:
 void assign(const MyClass<T>& x) {
 // x must have same type as *this
 value = x.value;
 }
 ...
 };
It would be an error to use different template types for the objects of the assign() operation
even if an automatic type conversion from one type to the other is provided:

 void f()
 {
 MyClass<double> d;
 MyClass<int> i;

 d.assign(d); //OK
 d.assign(i); //ERROR: i is MyClass<int>
 // but MyClass<double> is required
 }
By providing a different template type for the member function, you relax the rule of exact match.
The member template function argument may have any template type, then as long as the types
are assignable:

 template <class T>
 class MyClass<T> {
 private:
 T value;
 public
 template <class X> // member template
 void assign(const MyClass<X>& x) {// allows different template
types
 value = x.getValue();
 }
 T getValue() const {

The C++ Standard Library

dyne-book 18

 return value;
 }
 ...
 };

 void f()
 {
 MyClass<double> d;
 MyClass<int> i;

 d.assign(d); // OK
 d.assign(i); // OK (int is assignable to double)
 }
Note that the argument x of assign() now differs from the type of *this. Thus, you can't
access private and protected members of MyClass<> directly. Instead, you have to use
something like getValue() in this example.

A special form of a member template is a template constructor. Template constructors are usually
provided to enable implicit type conversions when objects are copied. Note that a template
constructor does not hide the implicit copy constructor. If the type matches exactly, the implicit
copy constructor is generated and called. For example:

 template <class T>
 class MyClass<T> {
 public:
 //copy constructor with implicit type conversion
 //- does not hide implicit copy constructor
 template <class U>
 MyClass(const MyClass<U>& x);
 ...
 };

 void f()
 {
 MyClass<double> xd;
 ...
 MyClass<double> xd2(xd); // calls built-in copy constructor
 MyClass<int> xi (xd); // calls template constructor
 ...
 }
Here, the type of xd2 is the same as the type of xd, so it is initialized via the built-in copy
constructor. The type of xi differs from the type of xd, so it is initialized by using the template
constructor. Thus, if you write a template constructor, don't forget to provide a copy constructor, if
the default copy constructor does not fit your needs. See Section 4.1, for another example of
member templates.

Nested Template Classes

Nested classes may also be templates:

 template <class T>
 class MyClass {
 ...

The C++ Standard Library

dyne-book 19

 template <class T2>
 class NestedClass;
 ...
 };

2.2.2 Explicit Initialization for Fundamental Types

If you use the syntax of an explicit constructor call without arguments, fundamental types are
initialized with zero:

 int i1; // undefined value
 int i2 = int(); // initialized with zero
This feature is provided to enable you to write template code that ensures that values of any type
have a certain default value. For example, in the following function the initialization guarantees
that x is initialized with zero for fundamental types:

 template <class T>
 void f()
 {
 T x = T();
 ...
 }

2.2.3 Exception Handling

The C++ standard library uses exception handling. Using this feature, you can handle exceptions
without "polluting" your function interfaces: arguments and return values. If you encounter an
unexpected situation, you can stop the usual data processing by "throwing an exception":

 class Error;

 void f()
 {
 ...
 if (excetion-condition) {
 throw Error(); // create object of class Error and throw it
as exception
 }
 ...
 }
The throw statement starts a process called stack unwinding; that is, any block or function is left
as if there was a return statement. However, the program does not jump anywhere. For all local
objects that are declared in the blocks that the program leaves due to the exception their
destructors are called. Stack unwinding continues until main() is left, which ends the program,
or until a catch clause "catches" and handles the exception:

 int main()
 {
 try {
 ...
 f();
 ...
 }
 catch (const Error&) {

The C++ Standard Library

dyne-book 20

 ... //handle exception
 }
 ...
 }
Here, any exception of type Error in the try block is handled in the catch clause.[6]

[6] Exceptions end a call of the function, where you find the exception, with the ability to pass an object as
argument back to the caller. However, this is not a function call back in the opposite direction (from the
bottom where the problem was found to the top where the problem is solved or handled). You can't process
the exception and continue from where you found the exception. In this regard, exception handling is
completely different from signal handling.

Exception objects are ordinary objects that are described in ordinary classes or ordinary
fundamental types. Thus, you can use ints, strings, or template classes that are part of a class
hierarchy. Usually you design (a hierarchy of) special error classes. You can use their state to
pass any information you want from the point of error detection to the point of error handling.

Note that the concept is called exception handling not error handling. The two are not necessarily
the same. For example, in many circumstances bad user input is not an exception; it typically
happens. So it is often a good idea to handle wrong user input locally using the usual error-
handling techniques.

You can specify which set of exceptions a function might throw by writing an exception
specification:

 void f() throw(bad_alloc); //f() may only throw bad_alloc exceptions
You can specify that a function not throw an exception by declaring an empty set of exceptions:

 void f() throw(); //f() does not throw
A violation of an exception specification causes special behavior to occur. See the description of
the exception class bad_exception on page 26 for details.

The C++ standard library provides some general features for exception handling, such as the
standard exception classes and class auto_ptr (see Section 3.3, and Section 4.2, for
details).

2.2.4 Namespaces

As more and more software is written as libraries, modules, or components, the combination of
these different parts might result in a name clash. Namespaces solve this problem.

A namespace groups different identifiers in a named scope. By defining all identifiers in a
namespace, the name of the namespace is the only global identifier that might conflict with other
global symbols. Similar to the handling of classes, you have to qualify a symbol in a namespace
by preceding the identifier with the name of the namespace, separated by the operator :: as
follows:

 //defining identifiers in namespace josuttis
 namespace josuttis {
 class File;
 void myGlobalFunc();
 ...
 }
 ...

The C++ Standard Library

dyne-book 21

 //using a namespace identifier
 josuttis::File obj;
 ...
 josuttis::myGlobalFunc();
Unlike classes, namespaces are open for definitions and extensions in different modules. Thus
you can use namespaces to define modules, libraries, or components even by using multiple
files. A namespace defines logical modules instead of physical modules (in UML and other
modeling notations, a module is also called a package).

You don't have to qualify the namespace for functions if one or more argument types are defined
in the namespace of the function. This rule is called Koenig lookup. For example:

 //defining identifiers in namespace josuttis
 namespace josuttis {
 class File;
 void myGlobalFunc(const File&);
 ...
 }
 ...

 josuttis::File obj;
 ...
 myGlobalFunc(obj); //OK, lookup finds josuttis::myGlobalFunc()
By using a using declaration, you can avoid the (remaining) tedious, repeated qualification of the
namespace scope. For example, the declaration

 using josuttis::File;
makes File a local synonym in the current scope that stands for josuttis::File.

A using directive makes all names of a namespace available, because they would have been
declared outside their namespace. However, the usual name conflicts may arise. For example,
the directive

 using namespace josuttis;
makes File and myGlobalFunc() global in the current scope. The compiler will report an
ambiguity if there also exists an identifier File or myGlobalFunc() in the global scope and the
user uses the name without qualification.

Note that you should never use a using directive when the context is not clear (such as in header
files, modules, or libraries). The directive might change the scope of identifiers of a namespace,
so you might get different behavior than the one expected because you included or used your
code in another module. In fact, using directives in header files is really bad design.

The C++ standard library defines all identifiers in namespace std. See Section 3.1, for details.

2.2.5 Type bool

To provide better support for Boolean values, type bool was introduced. Using bool increases
readability and allows you to overload behavior for Boolean values. The literals true and false
were introduced as Boolean values. Automatic type conversions to and from integral values are
provided. The value 0 is equivalent to false. Any other value is equivalent to true.

2.2.6 Keyword explicit

The C++ Standard Library

dyne-book 22

By using the keyword explicit, you can prohibit a single argument constructor from defining
an automatic type conversion. A typical example of the need for this feature is in a collection
class in which you can pass the initial size as constructor argument. For example, you could
declare a constructor that has an argument for the initial size of a stack:

 class Stack {
 explicit Stack(int size); // create stack with initial size
 ...
 };
Here, the use of explicit is rather important. Without explicit this constructor would define
an automatic type conversion from int to Stack. If this happens, you could assign an int to a
Stack:

 Stack s;
 ...
 s = 40;// Oops, creates a new Stack for 40 elements and assigns it to
s
The automatic type conversion would convert the 40 to a stack with 40 elements and then assign
it to s. This is probably not what was intended. By declaring the int constructor as explicit,
such an assignment results in an error at compile time.

Note that explicit also rules out the initialization with type conversion by using the assignment
syntax:

 Stack s1(40); // OK
 Stack s2 = 40; // ERROR
This is because there is a minor difference between

 X x;
 Y y(x); // explicit conversion
and

 X x;
 Y y = x; // implicit conversion
The former creates a new object of type Y by using an explicit conversion from type X, whereas
the latter creates a new object of type Y by using an implicit conversion.

2.2.7 New Operators for Type Conversion

To enable you to clarify the meaning of an explicit type conversion for one argument, the
following four new operators were introduced:

1. static_cast

This operator converts a value logically. It can be considered a creation of a temporary
object that is initialized by the value that gets converted. The conversion is allowed only if
a type conversion is defined (either as a built-in conversion rule or via a defined
conversion operation). For example:

 float x;
 ...
 cout << static_cast<int>(x); // print x as int
 ...

The C++ Standard Library

dyne-book 23

 f(static_cast<string>("hello")); // call f() for string
instead of char*

2. dynamic_cast

This operator enables you to downcast a polymorphic type to its real static type. This is
the only cast that is checked at runtime. Thus, you could also use it to check the type of a
polymorphic value. For example:

 class Car; // abstract base class (has at least one
virtual function)

 class Cabriolet : public Car {
 ...
 };

 class Limousine : public Car {
 ...
 };

 void f(Car* cp)
 {
 Cabriolet* p = dynamic_cast<Cabriolet*>(cp);
 if (p == NULL) {
 //p did not refer to an object of type Cabriolet
 ...
 }
 }

In this example, f() contains a special behavior for objects that have the real static type
Cabriolet. When the argument is a reference and the type conversion fails,
dynamic_cast throws a bad_cast exception (bad_cast is described on page 26).
Note that from a design point of view, it it always better to avoid such type-dependent
statements when you program with polymorphic types.

3. const_cast

This operator adds or removes the constness of a type. In addition, you can remove a
volatile qualification. Any other change of the type is not allowed.

4. reinterpret_cast

The behavior of this operator is implementation defined. It may be but is not required to
reinterpret bits. Using this cast is usually not portable.

These operators replace the old cast techniques that use parentheses. They have the advantage
of clarifying the intention of the conversion. The old casts with parentheses could be used for any
of these type conversions except for dynamic_cast, so when they were used you could not
formulate the exact reason for the conversion. The new operators enable the compiler to receive
more information regarding the reason for the conversion and to report an error if the conversion
does more than it should.

The C++ Standard Library

dyne-book 24

Note that these operators are provided for only one argument. Consider the
following example:

 static_cast<Fraction>(15,100) // Oops, creates Fraction(l00)
This example does not do what you might expect. Instead of initializing a temporary fraction with
numerator 15 and denominator 100, it initializes a temporary fraction only with the single value
100. The comma is not an argument separator here. Instead, it is the comma operator that
combines two expressions into one expression and yields the second. The correct way to
"convert" values 15 and 100 into a fraction is still

 Fraction(15,100) // fine, creates Fraction(15,100)

2.2.8 Initialization of Constant Static Members

It is now possible to initialize integral constant static members inside the class structure. This is
useful when the constant is used in the class structure after the initialization. For example:

 class MyClass {
 static const int num = 100;
 int elems[num];
 ...
 };
Note that you still have to to define space for a constant static member that is initialized within a
class definition:

 const int MyClass::num; // no initialization here

2.2.9 Definition of main()

I'd also like to clarify an important, often misunderstood, aspect of the core language — namely,
the only correct and portable versions of main(). According to the C++ standard, only two
definitions of main() are portable:

 int main()
 {
 ...
 }
and

 int main (int argc, char* argv[])
 {
 ...
 }
where argv (the array of command-line arguments) might also be defined as char**. Note that
the return type int is required because the implicit int is deprecated.

You may, but are not required to, end main() with a return statement. Unlike C, C++ defines
an implicit

 return 0;
at the end of main(). This means that every program that leaves main() without a return
statement is successful (any value other than 0 represents a kind of failure). Because of this, my
examples in this book have no return statement at the end of main(). Note that some

The C++ Standard Library

dyne-book 25

compilers might print a warning message regarding this or even handle it as error. Well, that's life
before the standard.

2.3 Complexity and the Big-O Notation

For certain parts of the C++ standard library (especially for the STL), the performance of
algorithms and member functions was considered carefully. Thus, the standard requires a certain
"complexity" of them. Computer scientists use a specialized notation to compare the relative
complexity of an algorithm. Using this measure, one can categorize quickly the relative runtime of
an algorithm as well as perform qualitative comparisons between algorithms. This measure is
called Big-O notation.

The Big-O notation expresses the runtime of an algorithm as a function of a given input of size n.
For example, if the runtime grows linearly with the number of elements (doubling the input
doubles the runtime) the complexity is O(n). If the runtime is independent of the input, the
complexity is O(1). Table 2.1 lists typical values of complexity and their Big-O notation.

It is important to observe that the Big-O notation hides factors with smaller exponents (such as
constant factors). In particular, it doesn't matter how long an algorithm takes. Any two linear
algorithms are considered equally acceptable by this measure. There even may be some
situations in which the constant is so huge in a linear algorithm that even an exponential
algorithm with a small constant would be preferable in practice. This is a valid criticism of the Big-
O notation. Just be aware that it is only a rule of thumb; the algorithm with optimal complexity is
not necessarily the best one.

Table 2.1. Typical Values of Complexity
Type Notation Meaning

Constant O(1) The runtime is independent of the number of elements.
Logarithmic O(log(n)) The runtime grows logarithmically with respect to the number of

elements.
Linear O(n) The runtime grows linearly (with the same factor) as the number of

elements grows.
n-log-n O(n *

log(n))
The runtime grows as a product of linear and logarithmic complexity.

Quadratic O(n2) The runtime grows quadratically with respect to the number of elements.

Table 2.2 lists all the categories of complexity with a certain number of elements to give you a
feel of how fast the runtime grows with respect to the number of elements. As you can see, with a
small number of elements the runtimes don't differ much. Here, constant factors that are hidden
by the Big-O notation may have a big influence. However, the more elements you have, the
bigger the differences in the runtimes, so constant factors become meaningless. Remember to
"think big" when you consider complexity.

Table 2.2. Runtime with Respect to the Complexity and the Number of Elements
Complexity No.of Elements

Type Notation 1 2 5 10 50 100 1000
Constant O(1) 1 1 1 1 1 1 1
Logarithmic O(log(n)) 1 2 3 4 6 7 10
Linear O(n) 1 2 5 10 50 100 1,000
n-log-n O(n * log(n)) 1 4 15 40 300 700 10,000
Quadratic O(n2) 1 4 25 100 2,500 10,000 1,000,000

The C++ Standard Library

dyne-book 26

Some complexity definitions in the C++ reference manual are specified as amortized. This means
that the operations in the long term behave as described. However, a single operation may take
longer than specified. For example, if you append elements to a dynamic array, the runtime
depends on whether the array has enough memory for one more element. If there is enough
memory, the complexity is constant because inserting a new last element always takes the same
time. However, if there is not enough memory, the complexity is linear. This is because,
depending on the actual number of elements, you have to allocate new memory and copy all
elements. Reallocations are rather rare, so any sufficiently long sequence of that operation
behaves as if each operation has constant complexity. Thus, the complexity of the insertion is
"amortized" constant time.

The C++ Standard Library

dyne-book 27

Chapter 3. General Concepts
This chapter describes the fundamental concepts of the C++ standard library that you need to
work with all or most components:

• The namespace std
• The names and formats of header files
• The general concept of error and exception handling
• A brief introduction to allocators

3.1 Namespace std

If you use different modules and/or libraries, you always have the potential for name clashes. This
is because modules and libraries might use the same identifier for different things. This problem
was solved by the introduction of namespaces into C++ (see Section 2.2.4, for an introduction
to the concept of namespaces). A namespace is a certain scope for identifiers. Unlike a class, it is
open for extensions that might occur at any source. Thus, you could use a namespace to define
components that are distributed over several physical modules. A typical example of such a
component is the C++ standard library, so it follows that it uses a namespace. In fact, all
identifiers of the C++ standard library are defined in a namespace called std.

According to the concept of namespaces, you have three options when using an identifier of the
C++ standard library:

1. You can qualify the identifier directly. For example, you can write std::ostream instead
of ostream. A complete statement might look like this:

 std::cout << std::hex << 3.4 << std::endl;

2. You can use a using declaration (see page 17). For example, the following code fragment
introduces the local ability to skip std:: for cout and endl.

 using std::cout;
 using std::endl;

Thus the example in option 1 could be written like this:

 cout << std::hex << 3.4 << endl;

3. You can use a using directive. (see page 17). This is the easiest option. By using a using
directive for namespace std, all identifiers of the namespace std are available as if
they had been declared globally. Thus, the statement

 using namespace std;

The C++ Standard Library

dyne-book 28

allows you to write

 cout << hex << 3.4 << endl;

Note that in complex code this might lead to accidental name clashes or, worse, to
different behavior due to some obscure overloading rules. You should never use a using
directive when the context is not clear (such as in header files, modules, or libraries).

The examples in this book are quite small, so for my own convenience, I usually use the last
option throughout this book in complete example programs.

3.2 Header Files

The use of namespace std for all identifiers of the C++ standard library was introduced during
the standardization process. This change is not backward compatible to old header files, in which
identifiers of the C++ standard library are declared in the global scope. In addition, some
interfaces of classes changed during the standardization process (however, the goal was to stay
backward compatible if possible). So, a new style for the names of standard header files was
introduced. This allows vendors to stay backward compatible by providing the old header files.

The definition of new names for the standard header files was a good opportunity to standardize
the extensions of header files. Previously, several extensions for header files were used; for
example, .h, .hpp, and .hxx. However, the new standard extension for header files might be
a surprise: Standard headers no longer have extensions. Hence, include statements for
standard header files look like this:

 #include <iostream>
 #include <string>

This also applies to header files assumed from the C standard. C header files now have the new
prefix c instead of the old extension .h:

 #include <cstdlib> //was: <stdlib.h>
 #include <cstring> //was: <string.h>

Inside these header files, all identifiers are declared in namespace std.

One advantage of this naming scheme is that you can distinguish the old string header for char*
C functions from the new string header for the standard C++ class string:

 #include <string> //C++ class string
 #include <cstring> //char* functions from C

Note that the new naming scheme of header files does not necessarily mean that the file names
of standard header files have no extensions from the point of view of the operating system. How
include statements for standard header files are handled is implementation defined. C++
systems might add an extension or even use built-in declarations without reading a file. However,
in practice, most systems simply include the header from a file that has exactly the same name
that is used in the include statement. So, in most systems, C++ standard header files simply
have no extension. Note that this requirement for no extension applies only to standard header

The C++ Standard Library

dyne-book 29

files. In general, it is still a good idea to use a certain extension for your own header files to help
identify them in a file system.

To maintain compatibility with C, the "old" standard C header files are still available. So if
necessary you can still use, for example,

 #include <stdlib.h>

In this case, the identifiers are declared in both the global scope and in namespace std. In fact,
these headers behave as if they declare all identifiers in namespace std followed by an explicit
using declaration (see page 17).

For the C++ header files in the "old" format, such as <iostream.h>, there is no specification in
the standard (this changed more than once during the standardization process). Hence, they are
not supported. In practice, most vendors will probably provide them to enable backward
compatibility. Note that there were more changes in the headers than just the introduction of
namespace std. So in general you should either use the old names of header files or switch to
the new standardized names.

3.3 Error and Exception Handling

The C++ standard library is heterogeneous. It contains software from very different sources that
have different styles of design and implementation. Error and exception handling is a typical
example of these differences. Parts of the library, such as string classes, support detailed error
handling. They check for every possible problem that might occur and throw an exception if there
is an error. Other parts, such as the STL (the standard template library) and valarrays, prefer
speed over safety, so they rarely check for logical errors and throw exceptions only if runtime
errors occur.

3.3.1 Standard Exception Classes

All exceptions thrown from the language or the library are derived from the base class
exception. This class is the root of several standard exception classes that form a hierarchy,
as shown in Figure 3.1. These standard exception classes can be divided into three groups:

Figure 3.1.. Hierarchy of Standard Exceptions

The C++ Standard Library

dyne-book 30

1. Exceptions for language support
2. Exceptions for the C++ standard library
3. Exceptions for errors outside the scope of a program

Exception Classes for Language Support

Exceptions for language support are used by language features. So in a way they are part of the
core language rather than the library. These exceptions are thrown when the following operations
fail.

• An exception of class bad_alloc is thrown whenever the global operator new fails
(except when the nothrow version of new is used). This is probably the most important
exception because it might occur at any time in any nontrivial program.

• An exception of class bad_cast is thrown by the dynamic_cast operator if a type
conversion on a reference fails at runtime. The dynamic_cast operator is described on
page 19.

• An exception of class bad_typeid is thrown by the typeid operator for runtime type
identification. If the argument to typeid is zero or the null pointer, this exception gets
thrown.

• An exception of class bad_exception is used to handle unexpected exceptions. It does
this by using the function unexpected(). unexpected() is called if a function throws
an exception that is not listed in an exception specification (exception specifications are
introduced on page 16). For example:

 class El;
 class E2;
 void f() throw(E1) //throws only exceptions of type E1
 {
 ...
 throw El(); //throws exception of type El

The C++ Standard Library

dyne-book 31

 ...
 throw E2();//calls unexpected(), which calls terminate()
 }

The throw of an exception of type E2 in f() violates the exception specification. In this
case, the global function unexpected() gets called, which usually calls terminate()
to terminate the program. However, if class bad_exception is part of the exception
specification, then unexpected() usually rethrows an exception of this type:

 class El;
 class E2;

 void f() throw(E1, std::bad_exception)
 //throws exception of type El or
 //bad_exception for any other exception type
 {
 ...
 throw El(); //throws exception of type El
 ...
 throw E2(); //calls unexpected(), which throws bad_exception
 }

Thus, if an exception specification includes the class bad_exception, then any exception
not part of the specification may be replaced by bad_exception within the function
unexpected().[1]

[1] You can modify the exact behavior of unexpected(). However, a function never throws
exceptions other than those stated in its exception specification (if any).

Exception Classes for the Standard Library

Exception classes for the C++ standard library are usually derived from class logic_error.
Logic errors are errors that, at least in theory, could be avoided by the program; for example, by
performing additional tests of function arguments. Examples of such errors are a violation of
logical preconditions or a class invariant. The C++ standard library provides the following classes
for logic errors:

• An exception of class invalid_argument is used to report invalid arguments, such as
when a bitset (array of bits) is initialized with a char other than '0' or '1'.

• An exception of class length_error is used to report an attempt to do something that
exceeds a maximum allowable size, such as appending too many characters to a string.

• An exception of class out_of_range is used to report that an argument value is not in
the expected range, such as when a wrong index is used in an array-like collection or
string.

• An exception of class domain_error is used to report a domain error.

In addition, for the I/O part of the library, a special exception class called ios_base::failure
is provided. It may be thrown when a stream changes its state due to an error or end-of-file. The
exact behavior of this exception class is described in Section 13.4.4.

Exception Classes for Errors Outside the Scope of a Program

The C++ Standard Library

dyne-book 32

Exceptions derived from runtime_error are provided to report events that are beyond the
scope of a program and are not easily avoidable. The C++ standard library provides the following
classes for runtime errors:

• An exception of class range_error is used to report a range error in internal
computations.

• An exception of class overflow_error is used to report an arithmetic overflow.
• An exception of class underflow_error is used to report an arithmetic underflow.

Exceptions Thrown by the Standard Library

The C++ standard library itself can produce exceptions of classes range_error,
out_of_range, and invalid_argument. However, because language features as well as
user code are used by the library, their functions might throw any exception indirectly. In
particular, bad_alloc exceptions can be thrown whenever storage is allocated.

Any implementation of the standard library might offer additional exception classes (either as
siblings or as derived classes). However, the use of these nonstandard classes makes code non-
portable because you could not use another implementation of the standard library without
breaking your code. So, you should always use only the standard exception classes.

Header Files for Exception Classes

The base class exception and class bad_exception are defined in <exception>. Class
bad_alloc is defined in <new>. Classes bad_cast and bad_typeid are defined in
<typeinfo>. Class ios_base::failure is defined in <ios>. All other classes are defined
in <stdexcept>.

3.3.2 Members of Exception Classes

To handle an exception in a catch clause, you may use the exception interface. The interface of
all standard exceptions classes contains only one member that can be used to get additional
information besides the type itself: the member function what(), which returns a null-terminated
byte string:

 namespace std {
 class exception {
 public:
 virtual const char* what() const throw();
 ...
 };
 }

The content of the string is implementation defined. It most likely (but not necessarily) determines
the level of help and detail of such information. Note that the string might be a null-terminated
multibyte string that is suitable to convert and display as wstring (wstrings are introduced in
Section 2, page 480). The C-string, returned by what(), is valid until the exception object from
which it is obtained gets destroyed.[2]

[2] The specification of the lifetime of the return value of what() is not specified in the original standard.
However, this is the proposed resolution to fix this problem.

The C++ Standard Library

dyne-book 33

The remaining members of the standard exception classes create, copy, assign, and destroy
exception objects. Note that besides what() there is no additional member for any of the
standard exception classes that describes the kind of exception. For example, there is no
portable way to find out the context of an exception or the faulty index of a range error. Thus, a
portable evaluation of an exception could only print the message returned from what():

 try {
 ...
 }
 catch (const exception& error) {
 //print implementation-defined error message
 cerr << error.what() << endl;
 ...
 }

The only other possible evaluation might be an interpretation of the exact type of the exception.
For example, due to a bad_alloc exception, a program might try to get more memory.

3.3.3 Throwing Standard Exceptions

You can throw standard exceptions inside your own library or program. All standard exception
classes that enable you to do this have only one parameter to create the exception: a string
(class string is described in Chapter 11) that will become the description returned by
what(). For example, the class logic_error is defined as follows:

 namespace std {
 class logic_error : public exception {
 public:
 explicit logic_error (const string& whatString);
 };
 }

The set of standard exceptions that provide this ability contains class logic_error and its
derived classes, class runtime_error and its derived classes, as well as class
ios_base::failure. Thus, you can't throw exceptions of the base class exception and any
exception class that is provided for language support.

To throw a standard exception, you simply create a string that describes the exception and use it
to initialize the thrown exception object:

 string s;
 ...
 throw out_of_range(s);

Implicit conversions from char* to string exist, so you can also use a string literal directly:
 throw out_of_range("out_of_range exception (somewhere, somehow)");

3.3.4 Deriving Standard Exception Classes

Another possibility for using the standard exception classes in your code is to define a special
exception class derived directly or indirectly from class exception. To do this, you must ensure
that the what() mechanism works.

The C++ Standard Library

dyne-book 34

The member function what() is virtual. So, one way to provide what() is to write your own
implementation of what():
 namespace MyLib {
 /* user-defined exception class
 * derived from a standard class for exceptions
 */
 class MyProblem : public std::exception {
 public:
 ...
 MyProblem(...) { //special constructor
 }
 virtual const char* what() const throw() {
 //what() function
 ...
 }
 };
 ...

 void f() {
 ...
 //create an exception object and throw it
 throw MyProblem(...);
 ...
 }
 }

Another way to provide the what() function is to derive your exception class from one of the
classes that have a string constructor for the what() argument:

 namespace MyLib {
 /* user-defined exception class
 * - derived from a standard class for exceptions
 * that has a constructor for the what() argument
 */
 class MyRangeProblem : public std::out_of_range {
 public:
 MyRangeProblem (const string& whatString)
 : out_of_range(whatString) {
 }
 };
 ...

 void f() {
 ...
 //create an exception object by using a string constructor
and throw it
 throw MyRangeProblem("here is my special range problem");
 ...
 }
 }

For examples that are part of a complete program, see class Stack on page 441 and class
Queue on page 450.

The C++ Standard Library

dyne-book 35

3.4 Allocators

The C++ standard library uses in several places special objects to handle the allocation and deal-
location of memory. Such objects are called allocators. An allocator represents a special memory
model. It is used as abstraction to translate the need to use memory into a raw call for memory.
The use of different allocator objects at the same time allows you to use different memory models
in a program.

Allocators originally were introduced as part of the STL to handle the nasty problem of different
pointer types on PCs (such as near, far, and huge pointers). They now serve as a base for
technical solutions that use certain memory models, such as shared memory, garbage collection,
and object-oriented databases, without changing the interfaces. However, this use is relatively
new and not yet widely adopted (this will probably change).

The C++ standard library defines a default allocator as follows:

 namespace std {
 template <class T>
 class allocator;
 }

The default allocator is used as the default value everywhere an allocator can be used as an
argument. It does the usual calls for memory allocation and deallocation; that is, it calls the new
and delete operators. However, when or how often these operators are called is unspecified.
Thus, an implementation of the default allocator might, for example, cache the allocated memory
internally.

The default allocator is used in most programs. However, sometimes other libraries provide
allocators to fit certain needs. In such cases you simply must pass them as arguments. Only
occasionally does it make sense to program allocators. In practice, typically the default allocator
is used. So the discussion of allocators is deferred until Chapter 15, which covers in detail not
only allocators, but also their interfaces.

The C++ Standard Library

dyne-book 36

Chapter 4. Utilities
This chapter describes the general utilities of the C++ standard library. These utilities are:

• Small, simple classes and functions that perform often-needed tasks
• Several general types
• Some important C functions
• Numeric limits[1]

[1] One could argue that numeric limits should be part of Chapter 12, which covers numerics,
but these numeric limits are used in some other parts of the library, so I decided to describe them
here.

Most, but not all, of these utilities are described in clause 20, "General Utilities," of the C++
Standard, and their definitions can be found in the <utility> header. The rest are described
along with more major components of the library either because they are used primarily with that
particular component or due to historical reasons. For example, some general auxiliary functions
are defined as part of the <algorithm> header, although they are not algorithms in the sense of
the STL (which is described in Chapter 5).

Several of these utilities are also used within the C++ standard library. In particular, the type
pair is used whenever two values need to be treated as single unit (for example, if a function
has to return two values).

4.1 Pairs

The class pair is provided to treat two values as a single unit. It is used in several places within
the C++ standard library. In particular, the container classes map and multimap use pairs to
manage their elements, which are key/value pairs (See Section 6.6). Another example of the
usage of pairs is functions that return two values.

The structure pair is defined in <utility> as follows:

 namespace std {
 template <class T1, class T2>
 struct pair {
 //type names for the values
 typedef T1 first_type;
 typedef T2 second_type;

 //member
 T1 first;
 T2 second;

 /* default constructor
 * - T1 () and T2 () force initialization for built-in types
 */
 pair()
 : first(T1()), second(T2()) {
 }

The C++ Standard Library

dyne-book 37

 //constructor for two values
 pair(const T1& a, const T2& b)
 : first(a), second(b) {
 }

 //copy constructor with implicit conversions
 template<class U, class V>
 pair(const pair<U,V>& p)
 : first(p.first), second(p.second) {
 }
 };

 //comparisons
 template <class T1, class T2>
 bool operator== (const pair<T1,T2>&, const pair<T1,T2>&);
 template <class T1, class T2>
 bool operator< (const pair<T1,T2>&, const pair<T1,T2>&);
 ... //similar: !=, <=, >, >=
 //convenience function to create a pair
 template <class T1, class T2>
 pair<T1,T2> make_pair (const T1&, const T2&);
 }

Note that the type is declared as struct instead of class so that all members are public. Thus,
for any value pair, direct access to the individual values is possible.

The default constructor creates a value pair with values that are initialized by the default
constructor of their type. Because of language rules, an explicit call of a default constructor also
initializes fundamental data types such as int. Thus, the declaration

 std::pair<int,float> p; //initialize p. first and p.second with
zero

initializes the values of p by using int() and float(), which yield zero in both cases. See
page 14 for a description of the rules for explicit initialization for fundamental types.

The template version of a copy constructor provided here is used when implicit type conversions
are necessary. If an object of type pair gets copied, the normal implicitly generated default copy
constructor is called.[2] For example:

[2] A template constructor does not hide the implicitly generated default constructor. See page 13 doe more
details about this topic.

 void f(std::pair<int,const char*>);
 void g(std::pair<const int.std::string>);
 ...
 void foo {
 std::pair<int,const char*> p(42,"hello");
 f(p); //OK: calls built-in default copy constructor
 g(p); //OK: calls template constructor
 }

The C++ Standard Library

dyne-book 38

Pair Comparisons

For the comparison of two pairs, the C++ standard library provides the usual comparison
operators. Two value pairs are equal if both values are equal:

 namespace std {
 template <class T1, class T2>
 bool operator== (const pair<T1,T2>& x, const pair<T1,T2>& y) {
 return x.first == y.first && x.second == y.second;
 }
 }

In a comparison of pairs, the first value has higher priority. Thus, if the first values of two pairs
differ, the result of their comparison is used as the result of the comparison of the whole pairs. If
the first values are equal, the comparison of the second values yields the result:

 namespace std {
 template <class T1, class T2>
 bool operator< (const pair<T1,T2>& x, const pair<T1,T2>& y) {
 return x.first < y.first ||
 (!(y.first < x.first) && x.second < y.second);
 }
 }

The other comparison operators are defined accordingly.

4.1.1 Convenience Function make_pair()

The make_pair() template function enables you to create a value pair without writing the types
explicitly[3] :

[3] Using make_pair() should cost no runtime. The compiler should always optimize any implied overhead.

 namespace std {
 //create value pair only by providing the values
 template <class T1, class T2>
 pair<Tl,T2> make_pair (const T1& x, const T2& y) {
 return pair<T1,T2>(x, y);
 }
 }

For example, by using make_pair() you can write

 std::make_pair(42, '@')

instead of

 std::pair<int,char>(42,'@')

The C++ Standard Library

dyne-book 39

In particular, the make_pair() function makes it convenient to pass two values of a pair directly
to a function that requires a pair as its argument. Consider the following example:

 void f(std::pair<int,const char*>);
 void g(std::pair<const int,std::string>);
 ...
 void foo {
 f(std::make_pair(42,"hello")); //pass two values as pair
 g(std::make_pair(42,"hello")); //pass two values as pair
 // with type conversions
 }

As the example shows, make_pair() makes it rather easy to pass two values as one pair
argument. It works even when the types do not match exactly because the template constructor
provides implicit type conversion. When you program by using maps or multimaps, you often
need this ability (see page 203).

Note that an expression that has the explicit type description has an advantage because the
resulting type of the pair is clearly defined. For example, the expression

 std::pair<int,float>(42,7.77)

does not yield the same as

 std::make_pair(42,7.77)

The latter creates a pair that has double as the type for the second value (unqualified floating
literals have type double). The exact type may be important when overloaded functions or
templates are used. These functions or templates might, for example, provide versions for both
float and double to improve efficiency.

4.1.2 Examples of Pair Usage

The C++ standard library uses pairs a lot. For example, the map and multimap containers use
pair as a type to manage their elements, which are key/value pairs. See Section 6.6, for a
general description of maps and multimaps, and in particular page 91 for an example that shows
the usage of type pair. Objects of type pair are also used inside the C++ standard library in
functions that return two values (see page 183 for an example).

4.2 Class auto_ptr

This section covers the auto_ptr type. The auto_ptr type is provided by the C++ standard
library as a kind of a smart pointer that helps to avoid resource leaks when exceptions are
thrown. Note that I wrote "a kind of a smart pointer." There are several useful smart pointer types.
This class is smart with respect to only one certain kind of problem. For other kinds of problems,
type auto_ptr does not help. So, be careful and read the following subsections.

4.2.1 Motivation of Class auto_ptr

Functions often operate in the following way[4] :

The C++ Standard Library

dyne-book 40

[4] This motivation of class auto_ptr is based, with permission, partly on Scott Meyers' book More Effective
C++. The general technique was originally presented by Bjarne Stroustrup as the "resource allocation is
initialization" in his books The C++ Programming Language, 2nd edition and The Design and Evolution of
C++. auto_ptr was added to the standard specifically to support this technique.

1. Acquire some resources.
2. Perform some operations.
3. Free the acquired resources.

If the resources acquired on entry are bound to local objects, they get freed automatically on
function exit because the destructors of those local objects are called. But if resources are
acquired explicitly and are not bound to any object, they must be freed explicitly. Resources are
typically managed explicitly when pointers are used.

A typical examples of using pointers in this way is the use of new and delete to create and
destroy an object:

 void f()
 {
 ClassA* ptr = new ClassA; //create an object explicitly
 ... //perform some operations
 delete ptr; //clean up (destroy the object explicitly)
 }

This function is a source of trouble. One obvious problem is that the deletion of the object might
be forgotten (especially if you have return statements inside the function). There also is a not-
so-obvious danger that an exception might occur. Such an exception would exit the function
immediately without calling the delete statement at the end of the function. The result would be
a memory leak or, more generally, a resource leak. Avoiding such a resource leak usually
requires that a function catches all exceptions. For example:

 void f()
 {
 ClassA* ptr = new ClassA; //create an object explicitly

 try {
 ... //perform some operations
 }
 catch (...) { //for any exception
 delete ptr; //-clean up
 throw; //-rethrow the exception
 }

 delete ptr; //clean up on normal end
 }

To handle the deletion of this object properly in the event of an exception, the code gets more
complicated and redundant. If a second object is handled in this way, or if more than one catch
clause is used, the problem gets worse. This is bad programming style and should be avoided
because it is complex and error prone.

A kind of smart pointer can help here. The smart pointer can free the data to which it points
whenever the pointer itself gets destroyed. Furthermore, because the pointer is a local variable, it

The C++ Standard Library

dyne-book 41

gets destroyed automatically when the function is exited regardless of whether the exit is normal
or is due to an exception. The class auto_ptr was designed to be such a kind of smart pointer.

An auto_ptr is a pointer that serves as owner of the object to which it refers (if any). As a result,
an object gets destroyed automatically when its auto_ptr gets destroyed. A requirement of an
auto_ptr is that its object has only one owner.

Here is the previous example rewritten to use an auto_ptr:

 //header file for auto_ptr
 #include <memory>

 void f()
 {
 //create and initialize an auto_ptr
 std::auto_ptr<ClassA> ptr(new ClassA);

 ... //perform some operations
 }

The delete statement and the catch clause are no longer necessary. An auto_ptr has much
the same interface as an ordinary pointer; that is, operator * dereferences the object to which it
points, whereas operator -> provides access to a member if the object is a class or a structure.
However, any pointer arithmetic (such as ++) is not defined (this might be an advantage, because
pointer arithmetic is a source of trouble).

Note that class auto_ptr<> does not allow you to initialize an object with an ordinary pointer by
using the assignment syntax. Thus, you must initialize the auto_ptr directly by using its value[5]
:

[5] There is a minor difference between

 X x;
 Y y(x); //explicit conversion

and

 X x;
 Y y = x; //implicit conversion

The former creates a new object of type Y by using an explicit conversion from type X, whereas the latter
creates a new object of type Y by using an implicit conversion.

 std::auto_ptr<ClassA> ptr1(new ClassA); //OK
 std::auto_ptr<ClassA> ptr2 = new ClassA; //ERROR

4.2.2 Transfer of Ownership by auto_ptr

An auto_ptr provides the semantics of strict ownership. This means that because an
auto_ptr deletes the object to which it points, the object should not be "owned" by any other
objects. Two or more auto_ptrs must not own the same object at the same time. Unfortunately,

The C++ Standard Library

dyne-book 42

it might happen that two auto_ptrs own the same object (for example, if you initialize two
auto_ptrs with the same object). Making sure this doesn't happen is up to the programmer.

This leads to the question of how the copy constructor and the assignment operator of
auto_ptrs operate. The usual behavior of these operations would be to copy the data of one
auto_ptr to the other. However, this behavior would result in the situation, in which two
auto_ptrs own the same object. The solution is simple, but it has important consequences: The
copy constructor and assignment operator of auto_ptrs "transfer ownership" of the objects to
which they refer.

Consider, for example, the following use of the copy constructor:

 //initialize an auto_ptr with a new object
 std::auto_ptr<ClassA> ptr1(new ClassA);

 //copy the auto_ptr
 //- transfers ownership from ptr1 to ptr2
 std::auto_ptr<ClassA> ptr2(ptr1);

After the first statement, ptr1 owns the object that was created with the new operator. The
second statement transfers ownership from ptr1 to ptr2. So after the second statement, ptr2
owns the object created with new, and ptr1 no longer owns the object. The object created by
new ClassA gets deleted exactly once — when ptr2 gets destroyed.

The assignment operator behaves similarly:

 //initialize an auto_ptr with a new object
 std::auto_ptr<ClassA> ptr1(new ClassA);
 std::auto_ptr<ClassA> ptr2; //create another auto_ptr

 ptr2 = ptr1; //assign the auto_ptr
 //- transfers ownership from ptr1 to ptr2

Here, the assignment transfers ownership from ptr1 to ptr2. As a result, ptr2 owns the object
that was previously owned by ptr1.

If ptr2 owned an object before an assignment, delete is called for that object:

 //initialize an auto_ptr with a new object
 std::auto_ptr<ClassA> ptr1(new ClassA);
 //initialize another auto_ptr with a new object
 std::auto_ptr<ClassA> ptr2(new ClassA);

 ptr2 = ptr1; //assign the auto_ptr
 //- delete object owned by ptr2
 //- transfers ownership from ptr1 to ptr2

Note that a transfer of ownership means that the value is not simply copied. In all cases of
ownership transfer, the previous owner (ptr1 in the previous examples) loses its ownership. As a
consequence the previous owner has the null pointer as its value after the transfer. This is a
significant violation of the general behavior of initializations and assignments in programming
languages. Here, the copy constructor modifies the object that is used to initialize the new object,
and the assignment operator modifies the right-hand side of the assignment. It is up to the
programmer to ensure that an auto_ptr that lost ownership and got the null pointer as value is
no longer dereferenced.

The C++ Standard Library

dyne-book 43

To assign a new value to an auto_ptr, this new value must be an auto_ptr. You can't
assign an ordinary pointer:

 std::auto_ptr<ClassA> ptr; //create an
auto_ptr

 ptr = new ClassA; //ERROR
 ptr = std::auto_ptr<ClassA>(new ClassA); //OK, delete old
object
 // and own new

Source and Sink

The transfer of ownership implies a special use for auto_ptrs; that is, functions can use them to
transfer ownership to other functions. This can occur in two different ways:

1. A function can behave as a sink of data. This happens if an auto_ptr is passed as an
argument to the function by value. In this case, the parameter of the called function gets
ownership of the auto_ptr. Thus, if the function does not transfer it again, the object
gets deleted on function exit:

 void sink(std::auto_ptr<ClassA>); //sink() gets ownership

2. A function can behave as a source of data. When an auto_ptr is returned, ownership of
the returned value gets transferred to the calling function. The following example shows
this technique:

 std::auto_ptr<ClassA> f()
 {
 std:: auto_ptr<ClassA> ptr(new ClassA);
 //ptr owns the new object
 ...
 return ptr; //transfer ownership to calling function
 }

 void g()
 {
 std::auto_ptr<ClassA> p;

 for (int i=0; i<10; ++i) {
 p = f(); //p gets ownership of the returned object
 //(previously returned object of f() gets deleted)
 ...
 }
 } //last-owned object of p gets deleted

Each time f() is called, it creates an object with new and returns the object, along with
its ownership, to the caller. The assignment of the return value to p transfers ownership
to p. In the second and additional passes through the loop, the assignment to p deletes
the object that p owned previously. Leaving g(), and thus destroying p, results in the
destruction of the last object owned by p. In any case, no resource leak is possible. Even
if an exception is thrown, any auto_ptr that owns data ensures that this data is deleted.

The C++ Standard Library

dyne-book 44

Caveat

The semantics of auto_ptr always include ownership, so don't use auto_ptrs in a parameter
list or as a return value if you don't mean to transfer ownership. Consider, for example, the
following naive implementation of a function that prints the object to which an auto_ptr refers.
Using it would be a disaster.

 //this is a bad example
 template <class T>
 void bad_print(std::auto_ptr<T> p)
 //p gets ownership of passed argument
 {
 //does p own an object ?
 if (p.get() == NULL) {
 std::cout << "NULL";
 }
 else {
 std::cout << *p;
 }
 } //Oops, exiting deletes the object to which p refers

Whenever an auto_ptr is passed to this implementation of bad_print(), the objects it owns
(if any) are deleted. This is because the ownership of the auto_ptr that is passed as an
argument is passed to the parameter p, and p deletes the object it owns on function exit. This is
probably not the programmer's intention and would result in fatal runtime errors:

 std::auto_ptr<int> p(new int);
 *p = 42; //change value to which p refers
 bad_print (p); //Oops, deletes the memory to which p refers
 *p = 18; //RUNTIME ERROR

You might think about passing auto_ptrs by reference instead. However, passing auto_ptrs
by reference confuses the concept of ownership. A function that gets an auto_ptr by reference
might or might not transfer ownership. Allowing an auto_ptr to pass by reference is very bad
design and you should always avoid it.

According to the concept of auto_ptrs, it is possible to transfer ownership into a function by
using a constant reference. This is very dangerous because people usually expect that an object
won't get modified when you pass it as a constant reference. Fortunately, there was a late design
decision that made auto_ptrs less dangerous. By some tricky implementation techniques,
transfer of ownership is not possible with constant references. In fact, you can't change the
ownership of any constant auto_ptr:

 const std::auto_ptr<int> p(new int);
 *p = 42; //change value to which p refers
 bad_print(p); //COMPILE-TIME ERROR
 *p = 18; //OK

This solution makes auto_ptrs safer than they were before. Many interfaces use constant
references to get values that they copy internally. In fact, all container classes (see Chapter 6 or
Chapter 10 for examples) of the C++ standard library behave this way, which might look like the
following:

The C++ Standard Library

dyne-book 45

 template <class T>
 void container::insert (const T& value)
 {
 ...
 X = value; //assign or copy value internally
 ...
 }

If such an assignment was possible for auto_ptrs, the assignment would transfer ownership
into the container. However, because of the actual design of auto_ptrs, this call results in an
error at compile time:

 container<std::auto_ptr<int> > c;
 const std::auto_ptr<int> p(new int);
 ...
 c.insert(p); //ERROR
 ...

All in all, constant auto_ptrs reduce the danger of an unintended transfer of ownership.
Whenever an object is passed via an auto_ptr, you can use a constant auto_ptr to signal
the end of the chain.

The const does not mean that you can't change the value of the object the auto_ptr owns (if
any). You can't change the ownership of a constant auto_ptr; however, you can change the
value of the object to which it refers. For example:

 std::auto_ptr<int> f()
 {
 const std::auto_ptr<int> p(new int);
 //no ownership transfer possible
 std::auto_ptr<int> q(new int); //ownership transfer possible

 *p = 42; //OK, change value to which p refers
 bad.print(p); //COMPILE-TIME ERROR
 *p = *q; //OK, change value to which p refers
 p = q; //COMPILE-TIME ERROR
 return p; //COMPILE-TIME ERROR
 }

Whenever the const auto_ptr is passed or returned as an argument, any attempt to assign a
new object results in a compile-time error. With respect to the constness, a const auto_ptr
behaves like a constant pointer (T* const p) and not like a pointer that refers to a constant
(const T* p); although the syntax looks the other way around.

4.2.3 auto_ptrs as Members

By using auto_ptrs within a class you can also avoid resource leaks. If you use an auto_ptr
instead of an ordinary pointer, you no longer need a destructor because the object gets deleted
with the deletion of the member. In addition, an auto_ptr helps to avoid resource leaks that are
caused by exceptions that are thrown during the initialization of an object. Note that destructors
are called only if any construction is completed. So, if an exception occurs inside a constructor,

The C++ Standard Library

dyne-book 46

destructors are only called for objects that have been fully constructed. This might result in a
resource leak if, for example, the first new was successful but the second was not. For example:

 class ClassB {
 private:
 ClassA* ptr1; //pointer members
 ClassA* ptr2;
 public:
 //constructor that initializes the pointers
 //- will cause resource leak if second new throws
 ClassB (ClassA val1, ClassA val2)
 : ptr1(new ClassA(val1)), ptr2(new ClassA(val2)) {
 }

 //copy constructor
 //- might cause resource leak if second new throws
 ClassB (const ClassB& x)
 : ptr1(new ClassA(*x.ptr1)), ptr2(new ClassA(*x.ptr2)) {
 }

 //assignment operator
 const ClassB& operator= (const ClassB& x) {
 *ptr1 = *x.ptr1;
 *ptr2 = *x.ptr2;
 return *this;
 }

 ~ClassB () {
 delete ptr1;
 delete ptr2;
 }
 ...
 };

To avoid such a possible resource leak, you can simply use auto_ptrs:

 class ClassB {
 private:
 const std::auto_ptr<ClassA> ptr1; //auto_ptr members
 const std::auto_ptr<ClassA> ptr2;
 public:
 //constructor that initializes the auto_ptrs
 //- no resource leak possible
 ClassB (ClassA val1, ClassA val2)
 : ptr1 (new ClassA(val1)), ptr2(new ClassA(val2)) {
 }

 //copy constructor
 //- no resource leak possible
 ClassB (const ClassB& x)
 : ptr1(new ClassA(*x.ptr1), ptr2(new ClassA(*x.ptr2)) {
 }

The C++ Standard Library

dyne-book 47

 //assignment operator
 const ClassB& operator= (const ClassB& x) {
 *ptr1 = *x.ptr1;
 *ptr2 = *x.ptr2;
 return *this;
 }

 //no destructor necessary
 //(default destructor lets ptr1 and ptr2 delete their objects)
 ...
 };

Note, however, that although you can skip the destructor, you still have to program the copy
constructor and the assignment operator. By default, both would try to transfer ownership, which
is probably not the intention. In addition, and as mentioned on page 42, to avoid an unintended
transfer of ownership you should also use constant auto_ptrs here if the auto_ptr should
refer to the same object throughout its lifetime.

4.2.4 Misusing auto_ptrs

auto_ptrs satisfy a certain need; namely, to avoid resource leaks when exception handling is
used. Unfortunately, the exact behavior of auto_ptrs changed in the past and no other kind of
smart pointers are provided in the C++ standard library, so people tend to misuse auto_ptrs.
Here are some hints to help you use them correctly:

1. auto_ptrs cannot share ownership.

An auto_ptr must not refer to an object that is owned by another auto_ptr (or other
object). Otherwise, if the first pointer deletes the object, the other pointer suddenly refers
to a destroyed object, and any further read or write access may result in disaster.

2. auto_ptrs are not provided for arrays.

An auto_ptr is not allowed to refer to arrays. This is because an auto_ptr calls
delete instead of delete [] for the object it owns. Note that there is no equivalent
class in the C++ standard library that has the auto_ptr semantics for arrays. Instead,
the library provides several container classes to handle collections of data (see Chapter
5).

3. auto_ptrs are not "universal smart pointers."

An auto_ptr is not designed to solve other problems for which smart pointers might be
useful. In particular, they are not pointers for reference counting. (Pointers for reference
counting ensure that an object gets deleted only if the last of several smart pointers that
refer to that object gets destroyed.)

4. auto_ptrs don't meet the requirements for container elements.

The C++ Standard Library

dyne-book 48

An auto_ptr does not meet one of the most fundamental requirements for elements of
standard containers. That is, after a copy or an assignment of an auto_ptr, source and
sink are not equivalent. In fact, when an auto_ptr is assigned or copied, the source
auto_ptr gets modified because it transfers its value rather than copying it. So you
should not use an auto_ptr as an element of a standard container. Fortunately, the
design of the language and library prevents this misuse from compiling in a standard-
conforming environment.

Unfortunately, sometimes the misuse of an auto_ptr works. Regarding this, using nonconstant
auto_ptrs is no safer than using ordinary pointers. You might call it luck if the misuse doesn't
result in a crash, but in fact you are unlucky because you don't realize that you made a mistake.

See Section 5.10.2, for a discussion and Section 6.8, for an implementation of a smart pointer
for reference counting. This pointer is useful when sharing elements in different containers.

4.2.5 auto_ptr Examples

The first example shows how auto_ptrs behave regarding the transfer of ownership:

 //util/autoptr1.cpp

 #include <iostream>
 #include <memory>
 using namespace std;

 /* define output operator for auto_ptr
 * - print object value or NULL
 */
 template <class T>
 ostream& operator<< (ostream& strm, const auto_ptr<T>& p)
 {
 //does p own an object ?
 if (p.get() == NULL) {
 strm << "NULL"; //NO: print NULL
 }
 else {
 strm << *p; //YES: print the object
 }
 return strm;
 }

 int main()
 {
 auto_ptr<int> p(new int(42));
 auto_ptr<int> q;

 cout << "after initialization:" << endl;
 cout << " p: " << p << endl;
 cout << " q: " << q << endl;

 q = p;

The C++ Standard Library

dyne-book 49

 cout << "after assigning auto pointers:" << endl;
 cout << " p: " << p << endl;
 cout << " q: " << q << endl;

 *q += 13; //change value of the object q owns
 p = q;
 cout << "after change and reassignment:" << endl;
 cout << " p: " << p << endl;
 cout << " q: " << q << endl;
 }

The output of the program is as follows:

 after initialization:
 p: 42
 q: NULL
 after assigning auto pointers:
 p: NULL
 q: 42
 after change and reassignment:
 p: 55
 q: NULL

Note that the second parameter of the output operator function is a constant reference. So it uses
auto.ptrs without any transfer of ownership.

As mentioned on page 40, bear in mind that you can't initialize an auto_ptr by using the
assignment syntax or assign an ordinary pointer:

 std::auto_ptr<int> p(new int(42)); //OK
 std::auto_ptr<int> p = new int(42); //ERROR

 p = std::auto_ptr<int>(new int(42)); //OK
 p = new int(42); //ERROR

This is because the constructor to create an auto_ptr from an ordinary pointer is declared as
explicit (see Section 2.2.6, for an introduction of explicit).

The following example shows how constant auto_ptrs behave:

 //util/autoptr2.cpp

 #include <iostream>
 #include <memory>
 using namespace std;

 /* define output operator for auto_ptr
 * - print object value or NULL
 */
 template <class T>

The C++ Standard Library

dyne-book 50

 ostream& operator<< (ostream& strm, const auto_ptr<T>& p)
 {
 //does p own an object ?
 if (p.get() == NULL) {
 strm << "NULL"; //NO: print NULL
 }
 else {
 strm << *p; //YES: print the object
 }
 return strm;
 }

 int main()
 {
 const auto_ptr<int> p(new int(42));
 const auto_ptr<int> q(new int(0));
 const auto_ptr<int> r;
 cout << "after initialization:" << endl;
 cout << " p: " << p << endl;
 cout << " q: " << q << endl;
 cout << " r: " << r << endl;

 *q = *p;
 // *r = *p; //ERROR: undefined behavior
 *p = -77;
 cout << "after assigning values:" << endl;
 cout << " p: " << p << endl;
 cout << " q: " << q << endl;
 cout << " r: " << r << endl;

 // q = p; //ERROR at compile time
 // r = p; //ERROR at compile time
 }

Here, the output of the program is as follows:

 after initialization:
 p: 42
 q: 0
 r: NULL
 after assigning values:
 p: -77
 q: 42
 r: NULL

This example defines an output operator for auto_ptrs. To do this, it passes an auto_ptr as a
constant reference. According to the discussion on page 43, you should usually not pass an
auto_ptr in any form. This function is an exception to this rule.

Note that the assignment

The C++ Standard Library

dyne-book 51

 *r = *p;

is an error. It dereferences an auto_ptr that refers to no object. According to the standard, this
results in undefined behavior; for example, a crash. As you can see, you can manipulate the
objects to which constant auto_ptrs refer, but you can't change which objects they own. Even if
r was nonconstant, the last statement would not be possible because it would change the
constant p.

4.2.6 Class auto_ptr in Detail

Class auto_ptr is declared in <memory>:

 #include <memory>

It provides auto_ptr as a template class for any types in namespace std. The following is the
exact declaration of the class auto_ptr:[6]

[6] This is a slightly improved version that fixes some minor problems of the version in the C++ standard
(auto_ptr_ref is global now and there is an assignment operator from auto_ptr_ref to auto_ptr;
see page 55).

 namespace std {
 //auxiliary type to enable copies and assignments
 template <class Y> struct auto_ptr_ref {};

 template<class T>
 class auto_ptr {
 public:
 //type names for the value
 typedef T element_type;

 //constructor
 explicit auto_ptr(T* ptr = 0) throw();

 //copy constructors (with implicit conversion)
 //- note: nonconstant parameter
 auto_ptr(auto_ptr&) throw();
 template<class U> auto_ptr(auto_ptr<U>&) throw();

 //assignments (with implicit conversion)
 //- note: nonconstant parameter
 auto_ptr& operator= (auto_ptr&) throw();
 template<class U>
 auto_ptr& operator= (auto_ptr<U>&) throw();

 //destructor
 ~auto_ptr() throw();

The C++ Standard Library

dyne-book 52

 //value access
 T* get() const throw();
 T& operator*() const throw();
 T* operator->() const throw();

 //release ownership
 T* release() throw();

 //reset value
 void reset(T* ptr = 0) throw();

 //special conversions to enable copies and assignments
 public:
 auto_ptr(auto_ptr_ref<T>) throw();
 auto_ptr& operator= (auto_ptr_ref<T> rhs) throw();
 template<class U> operator auto_ptr_ref<U>() throw();
 template<class U> operator auto_ptr<U>() throw();
 };
 }

The individual members are described in detail in the following sections, in which auto_ptr is an
abbreviation for auto_ptr<T>. A complete sample implementation of class auto_ptr is
located on page 56.

Type Definitions

auto_ptr:: element_type

• The type of the object that the auto_ptr owns.

Constructors, Assignments, and Destructors

auto_ptr::auto_ptr () throw()

• The default constructor.
• Creates an auto_ptr that does not own an object.
• Initializes the value of the auto_ptr with zero.

explicit auto_ptr::auto_ptr (T* ptr) throw()

• Creates an auto_ptr that owns and points to the object to which ptr refers.
• After the call, *this is the owner of the object to which ptr refers. There must be no

other owner.
• If ptr is not the null pointer, it must be a value returned by new because the destructor of

the auto_ptr calls delete automatically for the object it owns.
• It is not correct to pass the return value of a new array that was created by new[]. (For

arrays, the STL container classes, which are introduced in Section 5.2, should be used.)

The C++ Standard Library

dyne-book 53

auto_ptr::auto_ptr (auto_ptr& ap) throw()
template<class U> auto_ptr::auto_ptr (auto_ptr<U>& ap) throw()

• The copy constructor (for nonconstant values).
• Creates an auto_ptr that adopts the ownership of the object ap owned on entry. The

ownership of an object to which ap referred on entry (if any) is transferred to *this.
• After the operation, ap no longer owns an object. Its value becomes the null pointer.

Thus, in contrast to the usual implementation of a copy constructor, the source object
gets modified.

• Note that this function is overloaded with a member template (see page 11 for an
introduction to member templates). This enables automatic type conversions from the
type of ap to the type of the created auto_ptr; for example, to convert an auto_ptr to
an object of a derived class into an auto_ptr to an object of a base class.

• See Section 4.2.2, for a discussion of the transfer of ownership.

auto_ptr& auto_ptr::operator = (auto_ptr& ap) throw()
template<class U> auto_ptr& auto_ptr::operator = (auto_ptr<U>& ap) throw()

• The assignment operator (for nonconstant values).
• Deletes the object it owns on entry (if any) and adopts the ownership of the object that ap

owned on entry. Thus, the ownership of an object to which ap referred on entry (if any) is
transferred to *this.

• After the operation, ap no longer owns an object. Its value becomes the null pointer.
Thus, in contrast to the usual implementation of an assignment operator, the source
object gets modified.

• The object to which the auto_ptr on the left-hand side of the assignment (*this)
refers is deleted by calling delete for it.

• Note that this function is overloaded with a member template (see page 11 for an
introduction to member templates). This enables automatic type conversions from the
type of ap to the type of *this; for example, to convert an auto_ptr to an object of a
derived class into an auto_ptr to an object of a base class.

• See Section 4.2.2, for a discussion about the transfer of ownership.

auto_ptr::~auto_ptr () throw()

• The destructor.
• If the auto_ptr owns an object on entry, it calls delete for it.

Value Access

T* auto_ptr::get () const throw()

• Returns the address of the object that the auto_ptr owns (if any).
• Returns the null pointer if the auto_ptr does not own an object.
• This call does not change the ownership. Thus, on exit the auto_ptr still owns the

object that it owned on entry (if any).

T& auto_ptr::operator * () const throw()

• The dereferencing operator.
• Returns the object that the auto_ptr owns.

The C++ Standard Library

dyne-book 54

• If the auto_ptr does not own an object, the call results in undefined behavior (which
may result in a crash).

T* auto_ptr::operator-> () const throw()

• The operator for member access.
• Returns a member of the object that the auto_ptr owns.
• If the auto_ptr does not own an object, the call results in undefined behavior (which

may result in a crash).

Value Manipulation

T* auto_ptr::release () throw()

• Releases the ownership of the object that the auto_ptr owns.
• Returns the address of the object that the auto_ptr owned on entry (if any).
• Returns the null pointer if the auto_ptr does not own an object on entry.

void auto_ptr::reset (T* ptr = 0) throw()

• Reinitializes the auto_ptr with ptr.
• deletes the object that the auto_ptr owns on entry (if any).
• After the call, *this is the owner of the object to which ptr refers. There should be no

other owner.
• If ptr is not the null pointer it should be a value returned by new because the destructor of

the auto_ptr automatically calls delete for the object it owns.
• Note that it is not correct to pass the return value of a new array that was creates by new

[]. (For arrays, the STL container classes, which are introduced in Section 5.2, should
be used.)

Conversions

The rest of the class auto.ptr (auxiliary type auto_ptr_ref and functions using it) consists of
rather tricky conversions that enable you to use copy and assignment operations for nonconstant
auto_ptrs but not for constant auto_ptrs (see page 44 for details). The following is a quick
explanation.[7] We have the following two requirements:

[7] Thanks to Bill Gibbons for pointing this out.

1. It should be possible to pass auto_ptrs to and from functions as rvalues.[8] Because
auto_ptr is a class, this must be done using a constructor.

[8] The names rvalue and lvalue come originally from the assignment expression expr1 = expr2,
in which the left operand expr1 must be a (modifiable) 1value. However, an 1value is perhaps
better considered as representing an object locator value. Thus, it is an expression that
designates an object by name or address (pointer or reference). Lvalues need not be modifiable.
For example, the name of a constant object is a nonmodifiable 1value. All expressions that are
not 1values are rvalues. In particular, temporary objects created explicitly (T()) or as the result of
a function call are rvalues.

2. When an auto_ptr is copied, it is important that the source pointer gives up ownership.
This requires that the copy modifies the source auto_ptr.

The C++ Standard Library

dyne-book 55

An ordinary copy constructor can copy an rvalue, but to do so it must declare its parameter as a
reference to a const object. To use an ordinary constructor to copy an auto_ptr we would
have to declare the data member containing the real pointer mutable so that it could be modified
in the copy constructor. But this would allow you to write code that copies auto_ptr objects that
were actually declared const, transferring their ownership in contradiction to their constant
status.

The alternative is to find a mechanism to enable an rvalue to be converted to an lvalue. A simple
operator conversion function to reference type does not work because an operator conversion
function is never called to convert an object to its own type (remember that the reference attribute
is not part of the type). Thus, the auto_ptr_ref class was introduced to provide this convert-to-
lvalue mechanism. The mechanism relies on a slight difference between the overloading and
template argument deduction rules. This difference is too subtle to be of use as a general
programming tool, but it is sufficient to enable the auto_ptr class to work correctly.

Don't be surprised if your compiler doesn't support the distinction between nonconstant and
constant auto_ptrs yet. And be aware that if your compiler does not yet implement this
distinction, your auto_ptr interface is more dangerous. In this case, it is rather easy to transfer
ownership by accident.

Sample Implementation of Class auto_ptr

The following code contains a sample implementation of a standard-conforming auto_ptr
class[9] :

[9] Thanks to Greg Colvin for this implementation of auto.ptr. Note that it does not conform exactly to the
standard. It turned out that the specification in the standard is still not correct regarding the special
conversions encountered using auto_ptr_ref. The version presented in this book, hopefully, fixes all the
problems. However, at the writing of this book, there was still ongoing discussion.

 // util/autoptr.hpp

 /* class auto_ptr
 *- improved standard conforming implementation
 */
 namespace std {
 //auxiliary type to enable copies and assignments (now global)
 template<class Y>
 struct auto_ptr_ref {
 Y* yp;
 auto_ptr_ref (Y* rhs)
 : yp(rhs) {
 }
 };

 template<class T>
 class auto_ptr {
 private:
 T* ap; //refers to the actual owned object (if any)
 public:
 typedef T element_type;

The C++ Standard Library

dyne-book 56

 //constructor
 explicit auto_ptr (T* ptr = 0) throw()
 : ap(ptr) {
 }

 //copy constructors (with implicit conversion)
 //- note: nonconstant parameter
 auto_ptr (auto_ptr& rhs) throw()
 : ap (rhs. release()) {
 }
 template<class Y>
 auto_ptr (auto_ptr<Y>& rhs) throw()
 : ap(rhs.release()) {
 }

 //assignments (with implicit conversion)
 //- note: nonconstant parameter
 auto_ptr& operator= (auto_ptr& rhs) throw() {
 reset(rhs.release());
 return *this;
 }
 template<class Y>
 auto_ptr& operator= (auto_ptr<Y>& rhs) throw() {
 reset(rhs.release());
 return *this;
 }

 //destructor
 ~auto_ptr() throw() {
 delete ap;
 }

 //value access
 T* get() const throw() {
 return ap;
 }
 T& operator*() const throw() {
 return *ap;
 }
 T* operator->() const throw() {
 return ap;
 }

 //release ownership
 T* release() throw() {
 T* tmp(ap);
 ap = 0;
 return tmp;
 }

 //reset value

The C++ Standard Library

dyne-book 57

 void reset (T* ptr=0) throw(){
 if (ap != ptr) {
 delete ap;
 ap = ptr;
 }
 }

 /* special conversions with auxiliary type to enable copies
and assignments
 */
 auto_ptr(auto_ptr_ref<T> rhs) throw()
 : ap(rhs.yp) {
 }
 auto_ptr& operator= (auto_ptr_ref<T> rhs) throw() { //new
 reset(r.yp);
 return *this;
 }
 template<class Y>
 operator auto_ptr_ref<Y>() throw() {
 return auto_ptr_ref<Y>(release());
 }
 template<class Y>
 operator auto_ptr<Y>() throw() {
 return auto_ptr<Y>(release());
 }
 };
 }

4.3 Numeric Limits

Numeric types in general have platform-dependent limits. The C++ standard library provides
these limits in the template numeric_limits. These numeric limits replace and supplement the
ordinary preprocessor constants of C. These constants are still available for integer types in
<climits> and <limits.h>, and for floating-point types in <cfloat> and <float.h>. The
new concept of numeric limits has two advantages: First, it offers more type safety. Second, it
enables a programmer to write templates that evaluate these limits.

The numeric limits are discussed in the rest of this section. Note, however, that it is always better
to write platform-independent code by using the minimum guaranteed precision of the types.
These minimum values are provided in Table 4.1.

Table 4.1. Minimum Size of Built-in Types
Type Minimum Size

char 1 byte (8 bits)
short int 2 bytes
int 2 bytes
long int 4 bytes
float 4 bytes
double 8 bytes
long double 8 bytes

The C++ Standard Library

dyne-book 58

Class numeric_limits<>

Usually you use templates to implement something once for any type. However, you can also use
templates to provide a common interface that is implemented for each type, where it is useful.
You can do this by providing specialization of a general template. numeric_limits is a typical
example of this technique, which works as follows:

• A general template provides the default numeric values for any type:

 namespace std {
 /* general numeric limits as default for any type
 */
 template <class T>
 class numeric_limits {
 public:
 //no specialization for numeric limits exist
 static const bool is_specialized = false;

 ... //other members that are meaningless for the general
numeric limits
 };

 }

This general template of the numeric limits says simply that there are no numeric limits
available for type T. This is done by setting the member is_specialized to false.

• Specializations of the template define the numeric limits for each numeric type as follows:

 namespace std {
 /* numeric limits for int
 * - implementation defined
 */
 template<> class numeric_limits<int> {
 public:
 //yes, a specialization for numeric limits of int does
exist
 static const bool is_specialized = true;

 static T min() throw() {
 return -2147483648;
 }
 static T max() throw() {
 return 2147483647;
 }
 static const int digits = 31;
 ...
 };
 }

The C++ Standard Library

dyne-book 59

Here, is_specialized is set to true, and all other members have the values of the
numeric limits for the particular type.

The general numeric_limits template and its standard specializations are provided in the
header file <limits>. The specializations are provided for any fundamental type that can
represent numeric values: bool, char, signed char, unsigned char, wchar_t,
short, unsigned short, int, unsigned int, long, unsigned long, float,
double, and long double. They can be supplemented easily for user-defined numeric types.

Table 4.2 and Table 4.3 list all members of the class numeric_limits<> and their meanings.
Applicable corresponding C constants for these members are given in the right column of the
tables (they are defined in <climits>, <limits.h>, <cfloat>, and <float.h>).

Table 4.2. Members of Class numeric_limits<>, Part 1
Member Meaning C Constants

is_specialized Type has specialization for numeric limits
is_signed Type is signed
is_integer Type is integer
is_exact Calculations produce no rounding errors

(true for all integer types)

is_bounded The set of values representable is finite
(true for all built-in types)

is_modulo Adding two positive numbers may wrap to a
lesser result

is_iec559 Conforms to standards IEC 559 and IEEE
754

min() Minimum finite value (minimum normalized
value for floating-point types with
denormalization; meaningful if is
.bounded || !is_signed)

INT_MIN,FLT_MIN,
CHAR_MIN,...

max() Maximum finite value (meaningful if
is_bounded)

INT_MAX,FLT_MAX,...

Character,Integer: number of nonsigned bits
(binary digits)

CHAR_BIT digits

Floating point: number of radix digits (see
below) in the mantissa

FLT_MANT_DIG,...

digits10 Number of decimal digits (meaningful if
is_bounded)

FLT.DIG,...

radix Integer: base of the representation (almost
always two)

 Floating point: base of the exponent
representation

FLT_RADIX

min_exponent Minimum negative integer exponent for base
radix

FLT_MIN_EXP,...

max_exponent Maximum positive integer exponent for base
radix

FLT_MAX_EXP,...

min_exponent10 Minimum negative integer exponent for base
10

FLT_MIN_10_EXP,...

The C++ Standard Library

dyne-book 60

max_exponent10 Maximum positive integer exponent for base
10

FLT_MAX_10_EXP,...

epsilon() Difference of one and least value greater
than one

FLT_EPSILON,...

round_style Rounding style (see page 63)
round_error() Measure of the maximum rounding error

(according to standard ISO/IEC 10967-1)

has_infinity Type has representation for positive infinity
infinity() Representation of positive infinity if available
has_quiet_NaN Type has representation for nonsignaling

"Not a Number"

quiet_NaN() Representation of quiet "Not a Number" if
available

has_signaling_NaN Type has representation for signaling "Not a
Number"

signaling_NaN() Representation of signaling "Not a Number"
if available

The following is a possible full specialization of the numeric limits for type float, which is
platform dependent. It also shows the exact signatures of the members:

 namespace std {
 class numeric_limits<float> {
 public:
 //yes, a specialization for numeric limits of float does exist
 static const bool is_specialized = true;

 inline static float min() throw() {
 return 1.17549435E-38F;
 }
 inline static float max() throw() {
 return 3.40282347E+38F;
 }

 static const int digits = 24;
 static const int digits10 = 6;

Table 4.3. Members of Class numeric_limits<>,Part 2
Member Meaning C

Constants
has_denorm Whether type allows denormalized values (variable numbers of

exponent bits, see page 63)

has_denorm_loss Loss of accuracy is detected as a denormalization loss rather
than as an inexact result

denorm_min() Minimum positive denormalized value
traps Trapping is implemented
tinyness_before Tinyness is detected before rounding

The C++ Standard Library

dyne-book 61

 static const bool is_signed = true;
 static const bool is_integer = false;
 static const bool is_exact = false;
 static const bool is_bounded = true;
 static const bool is_modulo = false;
 static const bool is_iec559 = true;

 static const int radix = 2;

 inline static float epsilon() throw() {
 return 1.19209290E-07F;
 }

 static const float_round_style round_style
 = round_to_nearest;
 inline static float round_error() throw() {
 return 0.5F;
 }

 static const int min_exponent = -125;
 static const int max_exponent = +128;
 static const int min_exponentl0 = -37;
 static const int max_exponent10 = 38;

 static const bool has_infinity = true;
 inline static float infinity() throw() { return ...; }
 static const bool has_quiet_NaN = true;
 inline static float quiet_NaN() throw() { return ...; }
 static const bool has_signaling_NaN = true;
 inline static float signaling_NaN() throw() { return ...; }
 static const float_denorm_style has_denorm = denorm_absent;
 static const bool has_denorm_loss = false;
 inline static float denorm_rain() throw() { return min(); }

 static const bool traps = true;
 static const bool tinyness_before = true;
 };
 }

Note that all nonfunction members are constant and static so that their values can be determined
at compile time. For members that are denned by functions, the value might not be defined
clearly at compile time on some implementations. For example, the same object code may run on
different processors and may have different values for floating values.

The values of round_style are shown in Table 4.4. The values of has_denorm are shown in
Table 4.5. Unfortunately, the member has_denorm is not called denorm_style. This
happened because during the standardization process there was a late change from a Boolean to
an enumerative value. However, you can use the has_denorm member as a Boolean value

The C++ Standard Library

dyne-book 62

because the standard guarantees that denorm_absent is 0, which is equivalent to false,
whereas denorm_present is 1 and denorm_indeterminate is -1, both of which are
equivalent to true. Thus, you can consider has_denorm a Boolean indication of whether the
type may allow denormalized values.

Table 4.5. Denormalization Style of numeric_limits<>
Denorm Style Meaning

denorm_absent The type does not allow denormalized values
denorm_present The type does allow denormalized values to the nearest

representable value
denorm_indeterminate Indeterminable

Example of Using numeric_limits<>

The following example shows possible uses of some numeric limits, such as the maximum values
for certain types and determining whether char is signed.

 // util/limits1.cpp

 #include <iostream>
 #include <limits>
 #include <string>
 using namespace std;

 int main()
 {
 //use textual representation for bool
 cout << boolalpha;

 //print maximum of integral types
 cout << "max(short): " << numeric_limits<short>::max() << endl;
 cout << "max(int): " << numeric_limits<int>::max() << endl;
 cout << "max(long): " << numeric_limits<long>::max() << endl;
 cout << endl;

 //print maximum of floating-point types
 cout << "max(float): "
 << numeric_limits<float>::max() << endl;
 cout << "max(double): "
 << numeric_limits<double>::max() << endl;

Table 4.4. Round Style of numeric_limits<>
Round Style Meaning

round_toward_zero Rounds toward zero
round_to_nearest Rounds to the nearest representable value
round_toward_infinity Rounds toward positive infinity
round_toward_neg_infinity Rounds toward negative infinity
round_ indeterminate Indeterminable

The C++ Standard Library

dyne-book 63

 cout << "max(long double): "
 << numeric_limits<long double>::max() << endl;
 cout << endl;

 //print whether char is signed
 cout << "is_signed(char): "
 << numeric_limits<char>::is_signed << endl;
 cout << endl;

 //print whether numeric limits for type string exist
 cout << "is_specialized(string): "
 << numeric_limits<string>::is_specialized << endl;
 }

The output of this program is platform dependent. Here is a possible output of the program:

 max(short): 32767
 max(int): 2147483647
 max(long): 2147483647

 max(float): 3.40282e+38
 max(double): 1.79769e+308
 max(long double): 1.79769e+308

 is_signed(char): false

 is_specialized(string): false

The last line shows that there are no numeric limits defined for the type string. This makes
sense because strings are not numeric values. However, this example shows that you can query
for any arbitrary type whether or not it has numeric limits defined.

4.4 Auxiliary Functions

The algorithm library (header file <algorithm>) includes three auxiliary functions, one each for
the selection of the minimum and maximum of two values and one for the swapping of two
values.

4.4.1 Processing the Minimum and Maximum

The functions to process the minimum and the maximum of two values are defined in
<algorithm> as follows:

 namespace std {
 template <class T>
 inline const T& min (const T& a, const T& b) {
 return b < a ? b : a;
 }

The C++ Standard Library

dyne-book 64

 template <class T>
 inline const T& max (const T& a, const T& b) {
 return a < b ? b : a;
 }
 }

If both values are equal, generally the first element gets returned. However, it is not good
programming style to rely on this.

Both functions are also provided with the comparison criterion as an additional argument:

 namespace std {
 template <class T, class Compare>
 inline const T& min (const T& a, const T& b, Compare comp) {
 return comp(b,a) ? b : a;
 }

 template <class T, class Compare>
 inline const T& max (const T& a, const T& b, Compare comp) {
 return comp(a,b) ? b : a;
 }
 }

The comparison argument might be a function or a function object that compares both arguments
and returns whether the first is less than the second in some particular order (function objects are
introduced in Section 5.9).

The following example shows how to use the maximum function by passing a special comparison
function as an argument:

 // util/minmax1.cpp

 #include <algorithm>
 using namespace std;

 /* function that compares two pointers by comparing the values to
which they point
 */
 bool int_ptr_less (int* a, int* b)
 {
 return *a < *b;
 }

 int main()
 {
 int x = 17;
 int y = 42;
 int* px = &x;
 int* py = &y;

The C++ Standard Library

dyne-book 65

 int* pmax;

 //call max() with special comparison function
 pmax = max (px, py, int_ptr_less);
 ...
 }

Note that the definition of min() and max() require that both types match. Thus, you can't call
them for objects of different types:

 inti;
 long l;
 ...
 l = std::max(i,l) ; //ERROR: argument types don't match

However, you could qualify explicitly the type of your arguments (and thus the return type):

 l = std::max<long>(i,l) ; //OK

4.4.2 Swapping Two Values

The function swap() is provided to swap the values of two objects. The general implementation
of swap() is defined in <algorithm> as follows:

 namespace std {
 template<class T>
 inline void swap(T& a, T& b) {
 T tmp(a);
 a = b;
 b = trap;
 }
 }

By using this function you can have two arbitrary variables x and y swap their values by calling

 std::swap(x,y);

Of course, this call is possible only if the copy constructions and assignments inside the swap()
function are possible.

The big advantage of using swap() is that it enables to provide special implementations for more
complex types by using template specialization or function overloading. These special
implementations might save time by swapping internal members rather than by assigning the
objects. This is the case, for example, for all standard containers (Section 6.1.2) and strings
(Section 11.2.8). For example, a swap() implementation for a simple container that has only
an array and the number of elements as members could look like this:

 class MyContainer {

The C++ Standard Library

dyne-book 66

 private:
 int* elems; //dynamic array of elements
 int numElems; //number of elements
 public:
 ...
 //implementation of swap()
 void swap(MyContainer& x) {
 std::swap(elems,x.elems);
 std::swap(numElems,x.numElems);
 }
 ...
 };

 //overloaded global swap() for this type
 inline void swap (MyContainer& c1, MyContainer& c2)
 {
 c1. swap (c2); //calls implementation of swap()
 }

So, calling swap() instead of swapping the values directly might result in substantial
performance improvements. You should always offer a specialization of swap() for your own
types if doing so has performance advantages.

4.5 Supplementary Comparison Operators

Four template functions define the comparison operators ! =, >, <=, and >= by calling the
operators == and <. These functions are defined in <utility> as follows:

 namespace std {
 namespace rel_ops {
 template <class T>
 inline bool operator!= (const T& x, const T& y) {
 return !(x == y);

 bool operator== (const X& x) const;
 bool operator< (const X& x) const;
 ...
 };

 void foo()
 {
 using namespace std::rel_ops; //make !=, >, etc., available
 X x1, x2;
 ...

 if (x1 != x2) {
 ...
 }
 ...

The C++ Standard Library

dyne-book 67

 if (x1 > x2) {
 ...
 }
 ...
 }

Note that these operators are defined in a subnamespace of std, called rel_ops. The reason
that they are in a separate namespace is so that users who define their own relational operators
in the global namespace won't clash even if they made all identifiers of namespace std global by
using a general using directive:

 using namespace std; //operators are not in global scope

On the other hand, users who want to get their hands on them explicitly can implement the
following without having to rely on lookup rules to find them implicitly:

 using namespace std::rel_ops ; //operators are in global scope

Some implementations define the previous templates by using two different argument types:

 namespace std {
 template <class T1, class T2>
 inline bool operator!=(const T1& x, const T2& y) {
 return !(x == y);
 }
 ...
 }

The advantage of such an implementation is that the types of the operands may differ (provided
the types are comparable). But, note that this kind of implementation is not provided by the C++
standard library. Thus, taking advantage of it makes code nonportable.

4.6 Header Files <cstddef> and <cstdlib>

Two header files compatible with C are often used in C++ programs: <cstddef> and
<cstdlib>. They are the new versions of the C header files <stddef.h> and <stdlib.h>,
and they define some common constants, macros, types, and functions.

4.6.1 Definitions in <cstddef>

Table 4.6 shows the definitions of the <cstddef> header file. NULL is often used to indicate
that a pointer points to nothing. It is simply the value 0 (either as an int or as a long). Note that
in C, NULL often is defined as (void*)0. This is incorrect in C++ because there the type of
NULL must be an integer type. Otherwise, you could not assign NULL to a pointer. This is
because in C++ there is no automatic conversion from void* to any other type.[10] Note that
NULL is also defined in the header files <cstdio>, <cstdlib>, <cstring>, <ctime>,
<cwchar>, and <clocale>.

The C++ Standard Library

dyne-book 68

[10] Due to the mess with the type of NULL, several people and style guides recommend not using NULL in
C++. Instead, 0 or a special user-defined constant such as NIL might work better. However, I use it, so you
will find it in my examples in this book.

Table 4.6. Definitions in <cstddef>
Identifier Meaning

NULL Pointer value for "not defined" or "no value"
size_t Unsigned type for size units (such as number of elements)
ptrdiff_t Signed type for differences of pointer
offsetof() Offset of a member in a structure or union

4.6.2 Definitions in <cstdlib>

Table 4.7 shows the most important definitions of the <cstdlib> header file. The two constants
EXIT_SUCCESS and EXIT_FAILURE are defined as arguments for exit(). They can also be
used as a return value in main().

The functions that are registered by atexit() are called at normal program termination in
reverse order of their registration. It doesn't matter whether the program exits due to a call of
exit() or the end of main(). No arguments are passed.

Table 4.7. Definitions in <cstdlib>
Definition Meaning

exit (int status) Exit program (cleans up static objects)
EXIT.SUCCESS Indicates a normal end of the program
EXIT.FAILURE Indicates an abnormal end of the program
abort() Abort program (might force a crash on some systems)
atexit (void (*function)()) Call function on exit

The exit() and abort() functions are provided to terminate a program in any function without
going back to main():

• exit() destroys all static objects, flushes all buffers, closes all I/O channels, and
terminates the program (including calling atexit() functions). If functions passed to
atexit() throw exceptions, terminate() is called.

• abort() terminates a program immediately with no clean up.

None of these functions destroys local objects because no stack unwinding occurs. To ensure
that the destructors of all local objects are called, you should use exceptions or the ordinary
return mechanism to return to and exit main().

The C++ Standard Library

dyne-book 69

Chapter 5. The Standard Template Library
The heart of the C++ standard library, the part that influenced its overall architecture, is the
standard template library (STL). The STL is a generic library that provides solutions to managing
collections of data with modern and efficient algorithms. It allows programmers to benefit from
innovations in the area of data structures and algorithms without needing to learn how they work.

From the programmer's point of view, the STL provides a bunch of collection classes that meet
different needs, together with several algorithms that operate on them. All components of the STL
are templates, so they can be used for arbitrary element types. But the STL does even more: It
provides a framework for supplying other collection classes or algorithms for which existing
collection classes and algorithms work. All in all, the STL gives C++ a new level of abstraction.
Forget programming dynamic arrays, linked lists, and binary trees; forget programming different
search algorithms. To use the appropriate kind of collection, you simply define the appropriate
container and call the member functions and algorithms to process the data.

The STL's flexibility, however, has a price, chief of which is that it is not self-explanatory.
Therefore, the subject of the STL fills several chapters in this book. This chapter introduces the
general concept of the STL and explains the programming techniques needed to use it. The first
examples show how to use the STL and what to consider while doing so. Chapters 6 through 9
discuss the components of the STL (containers, iterators, function objects, and algorithms) in
detail and present several more examples.

5.1 STL Components

The STL is based on the cooperation of different well-structured components, key of which are
containers, iterators, and algorithms:

• Containers are used to manage collections of objects of a certain kind. Every kind of
container has its own advantages and disadvantages, so having different container types
reflects different requirements for collections in programs. The containers may be
implemented as arrays or as linked lists, or they may have a special key for every
element.

• Iterators are used to step through the elements of collections of objects. These
collections may be containers or subsets of containers. The major advantage of iterators
is that they offer a small but common interface for any arbitrary container type. For
example, one operation of this interface lets the iterator step to the next element in the
collection. This is done independently of the internal structure of the collection.
Regardless of whether the collection is an array or a tree, it works. This is because every
container class provides its own iterator type that simply "does the right thing" because it
knows the internal structure of its container.

The interface for iterators is almost the same as for ordinary pointers. To increment an
iterator you call operator ++. To access the value of an iterator you use operator *. So,
you might consider an iterator a kind of a smart pointer that translates the call "go to the
next element" into whatever is appropriate.

• Algorithms are used to process the elements of collections. For example, they can
search, sort, modify, or simply use the elements for different purposes. Algorithms use
iterators. Thus, an algorithm has to be written only once to work with arbitrary containers
because the iterator interface for iterators is common for all container types.

The C++ Standard Library

dyne-book 70

To give algorithms more flexibility you can supply certain auxiliary functions called by the
algorithms. Thus, you can use a general algorithm to suit your needs even if that need is
very special or complex. For example, you can provide your own search criterion or a
special operation to combine elements.

The concept of the STL is based on a separation of data and operations. The data is managed by
container classes, and the operations are defined by configurable algorithms. Iterators are the
glue between these two components. They let any algorithm interact with any container (Figure
5.1).

Figure 5.1. STL Components

In a way, the STL concept contradicts the original idea of object-oriented programming: The STL
separates data and algorithms rather than combining them. However, the reason for doing so is
very important. In principle, you can combine every kind of container with every kind of algorithm,
so the result is a very flexible but still rather small framework.

One fundamental aspect of the STL is that all components work with arbitrary types. As the name
"standard template library" indicates, all components are templates for any type (provided the
type is able to perform the required operations). Thus the STL is a good example of the concept
of generic programming. Containers and algorithms are generic for arbitrary types and classes
respectively.

The STL provides even more generic components. By using certain adapters and function objects
(or functors) you can supplement, constrain, or configure the algorithms and the interfaces for
special needs. However, I'm jumping the gun. First, I want to explain the concept step-by-step by
using examples. This is probably the best way to understand and become familiar with the STL.

5.2 Containers

Container classes, or containers for short, manage a collection of elements. To meet different
needs, the STL provides different kinds of containers, as shown in Figure 5.2.

The C++ Standard Library

dyne-book 71

Figure 5.2. STL Container Types

There are two general kinds of containers:

1. Sequence containers are ordered collections in which every element has a certain
position. This position depends on the time and place of the insertion, but it is
independent of the value of the element. For example, if you put six elements into a
collection by appending each element at the end of the actual collection, these elements
are in the exact order in which you put them. The STL contains three predefined
sequence container classes: vector, deque, and list.

2. Associative containers are sorted collections in which the actual position of an element
depends on its value due to a certain sorting criterion. If you put six elements into a
collection, their order depends only on their value. The order of insertion doesn't matter.
The STL contains four predefined associative container classes: set, multiset,
map, and multimap.

An associative container can be considered a special kind of sequence container because sorted
collections are ordered according to a sorting criterion. You might expect this especially if you
have used other libraries of collection classes like those in Smalltalk or the NIHCL,[1] in which
sorted collections are derived from ordered collections. However, note that the STL collection
types are completely distinct from each other. They have different implementations that are not
derived from each other.

[1] The National Institute of Health's Class Library was one of the first class libraries in C++.

The automatic sorting of elements in associative containers does not mean that those containers
are especially designed for sorting elements. You can also sort the elements of a sequence
container. The key advantage of automatic sorting is better performance when you search
elements. In particular, you can always use a binary search, which results in logarithmic
complexity rather than linear complexity. For example, this means that for a search in a collection
of 1,000 elements you need, on average, only 10 instead of 500 comparisons (see Section 2.3).
Thus, automatic sorting is only a (useful) "side effect" of the implementation of an associative
container, designed to enable better performance.

The following subsections discuss the different container classes in detail. Among other aspects,
they describe how containers are typically implemented. Strictly speaking, the particular
implementation of any container is not defined inside the C++ standard library. However, the
behavior and complexity specified by the standard do not leave much room for variation. So, in
practice, the implementations differ only in minor details. Chapter 6 covers the exact behavior of

The C++ Standard Library

dyne-book 72

the container classes. It describes their common and individual abilities, and member functions in
detail.

5.2.1 Sequence Containers

The following sequence containers are predefined in the STL:

• Vectors
• Deques
• Lists

In addition you can use strings and ordinary arrays as a (kind of) sequence container.

Vectors

A vector manages its elements in a dynamic array. It enables random access, which means you
can access each element directly with the corresponding index. Appending and removing
elements at the end of the array is very fast.[2] However, inserting an element in the middle or at
the beginning of the array takes time because all the following elements have to be moved to
make room for it while maintaining the order.

[2] Strictly speaking, appending elements is amortized very fast. An individual append may be slow, when a
vector has to reallocate new memory and to copy existing elements into the new memory. However,
because such reallocations are rather rare, the operation is very fast in the long term. See page 22 for a
discussion of complexity.

The following example defines a vector for integer values, inserts six elements, and prints the
elements of the vector:

 // stl/vector1.cpp

 #include <iostream>
 #include <vector>
 using namespace std;

 int main()
 {
 vector<int> coll; //vector container for integer elements

 // append elements with values 1 to 6
 for (int i=1; i<=6; ++i) {
 coll.push_back(i);
 }

 //print all elements followed by a space
 for (int i=0; i<coll.size(); ++i) {
 cout << coll[i] << ' ';
 }
 cout << endl;
 }

With

 #include <vector>

The C++ Standard Library

dyne-book 73

the header file for vectors is included.
The declaration

 vector<int> coll;

creates a vector for elements of type int. The vector is not initialized by any value, so the
default constructor creates it as an empty collection.

The push_back() function appends an element to the container:

 coll.push_back(i);

This member function is provided for all sequence containers.

The size() member function returns the number of elements of a container:

 for (int i=0; i<coll.size(); ++i) {
 ...
 }

This function is provided for any container class.

By using the subscript operator [], you can access a single element of a vector:

 cout << coll[i] << ' ';

Here the elements are written to the standard output, so the output of the whole program is as
follows:

 1 2 3 4 5 6

Deques

The term deque (it rhymes with "check" [3]) is an abbreviation for "double-ended queue." It is a
dynamic array that is implemented so that it can grow in both directions. Thus, inserting elements
at the end and at the beginning is fast. However, inserting elements in the middle takes time
because elements must be moved.

[3] It is only a mere accident that "deque" also sounds like "hack" :-).

The following example declares a deque for floating-point values, inserts elements from 1.1 to 6.6
at the front of the container, and prints all elements of the deque:

 // stl/deque1.cpp

 #include <iostream>
 #include <deque>
 using namespace std;

 int main()
 {
 deque<float> coll; //deque container for floating-point elements

The C++ Standard Library

dyne-book 74

 //insert elements from 1.1 to 6.6 each at the front
 for (int i=1; i<=6; ++i) {
 coll.push_front(i*1. 1); //insert at the front
 }

 //print all elements followed by a space
 for (int i=0; i<coll.size(); ++i) {
 cout << coll[i] << ' ';
 }
 cout << endl;
 }

In this example, with

 #include <deque>

the header file for deques is included.
The declaration

 deque<float> coll;

creates an empty collection of floating-point values.
The push_front() function is used to insert elements:

 coll.push_front(i*1.1);

push_front() inserts an element at the front of the collection. Note that this kind of insertion
results in a reverse order of the elements because each element gets inserted in front of the
previous inserted elements. Thus, the output of the program is as follows:

 6.6 5.5 4.4 3.3 2.2 1.1

You could also insert elements in a deque by using the push_back() member function. The
push_front() function, however, is not provided for vectors because it would have a bad
runtime for vectors (if you insert an element at the front of a vector, all elements have to be
moved). Usually, the STL containers provide only those special member functions that in general
have "good" timing ("good" timing normally means constant or logarithmic complexity). This
prevents a programmer from calling a function that might cause bad performance.

Lists

A list is implemented as a doubly linked list of elements. This means each element in a list has
its own segment of memory and refers to its predecessor and its successor. Lists do not provide
random access. For example, to access the tenth element, you must navigate the first nine
elements by following the chain of their links. However, a step to the next or previous element is
possible in constant time. Thus, the general access to an arbitrary element takes linear time (the
average distance is proportional to the number of elements). This is a lot worse than the
amortized constant time provided by vectors and deques.

The advantage of a list is that the insertion or removal of an element is fast at any position. Only
the links must be changed. This implies that moving an element in the middle of a list is very fast
compared with moving an element in a vector or a deque.

The C++ Standard Library

dyne-book 75

The following example creates an empty list of characters, inserts all characters from 'a' to
'z', and prints all elements by using a loop that actually prints and removes the first element of
the collection:

 // stl/list1.cpp

 #include <iostream>
 #include <list>
 using namespace std;
 int main()
 {
 list<char> coll; //list container for character elements

 // append elements from 'a' to 'z'
 for (char c='a'; c<= ' z '; ++c) {
 coll.push_back(c);
 }

 /* print all elements
 * - while there are elements
 * - print and remove the first element
 */
 while (! coll.empty()) {
 cout << coll.front() << ' ';
 coll.pop_front();
 }
 cout << endl;
 }

As usual, the header file for lists, <list>, is used to define a collection of type list for
character values:

 list<char> coll;

The empty() member function returns whether the container has no elements. The loop
continues as long as it returns true (that is, the container contains elements):

 while (! coll.empty()) {
 ...
 }

Inside the loop, the front() member function returns the actual first element:

 cout << coll.front() << ' ';

The pop_front() function removes the first element:

 coll.pop_front();

Note that pop_front() does not return the element it removed. Thus, you can't combine the
previous two statements into one.

The C++ Standard Library

dyne-book 76

The output of the program depends on the actual character set. For the ASCII character set, it is
as follows [4] :

[4] For other character sets the output may contain characters that aren't letters or it may even be empty (if
'z' is not greater than 'a').

 a b c d e f g h i j k l m n o p q r s t u v w x y z

Of course it is very strange to "print" the elements of a list by a loop that outputs and removes the
actual first element. Usually, you would iterate over all elements. However, direct element access
by using operator [] is not provided for lists. This is because lists don't provide random access,
and thus using operator [] would cause bad performance. There is another way to loop over the
elements and print them by using iterators. After their introduction I will give an example (if you
can't wait, go to page 84).

Strings

You can also use strings as STL containers. By strings I mean objects of the C++ string classes
(basic_string<>, string, and wstring), which are introduced in Chapter 11). Strings
are similar to vectors except that their elements are characters. Section 11.2.13, provides
details.

Ordinary Arrays

Another kind of container is a type of the core C and C++ language rather than a class: an
ordinary array that has static or dynamic size. However, ordinary arrays are not STL containers
because they don't provide member functions such as size() and empty(). Nevertheless, the
STL's design allows you to call algorithms for these ordinary arrays. This is especially useful
when you process static arrays of values as an initializer list.

The usage of ordinary arrays is nothing new. What is new is using algorithms for them. This is
explained in Section 6.7.2.

Note that in C++ it is no longer necessary to program dynamic arrays directly. Vectors provide all
properties of dynamic arrays with a safer and more convenient interface. See Section 6.2.3, for
details.

5.2.2 Associative Containers

Associative containers sort their elements automatically according to a certain ordering criterion.
This criterion takes the form of a function that compares either the value or a special key that is
defined for the value. By default, the containers compare the elements or the keys with operator
<. However, you can supply your own comparison function to define another ordering criterion.

Associative containers are typically implemented as binary trees. Thus, every element (every
node) has one parent and two children. All ancestors to the left have lesser values; all ancestors
to the right have greater values. The associative containers differ in the kind of elements they
support and how they handle duplicates.

The following associative containers are predefined in the STL. Because you need iterators to
access their elements, I do not provide examples until page 87, where I discuss iterators.

The C++ Standard Library

dyne-book 77

• Sets

A set is a collection in which elements are sorted according to their own values. Each
element may occur only once, thus duplicates are not allowed.

• Multisets

A multiset is the same as a set except that duplicates are allowed. Thus, a multiset
may contain multiple elements that have the same value.

• Maps

A map contains elements that are key/value pairs. Each element has a key that is the
basis for the sorting criterion and a value. Each key may occur only once, thus duplicate
keys are not allowed. A map can also be used as an associative array, which is an array
that has an arbitrary index type (see page 91 for details).

• Multimaps

A multimap is the same as a map except that duplicates are allowed. Thus, a multimap
may contain multiple elements that have the same key. A multimap can also be used as
dictionary. See page 209 for an example.

All of these associative container classes have an optional template argument for the sorting
criterion. The default sorting criterion is the operator <. The sorting criterion is also used as
the test for equality; that is, two elements are equal if neither is less than the other.

You can consider a set as a special kind of map, in which the value is identical to the key. In fact,
all of these associative container types are usually implemented by using the same basic
implementation of a binary tree.

5.2.3 Container Adapters

In addition to the fundamental container classes, the C++ standard library provides special
predefined container adapters that meet special needs. These are implemented by using the
fundamental containers classes. The predefined container adapters are as follows:

• Stacks

The name says it all. A stack is a container that manages its elements by the LIFO (last-
in-first-out) policy.

• Queues

A queue is a container that manages its elements by the FIFO (first-in-first-out) policy.
That is, it is an ordinary buffer.

• Priority Queues

A priority queue is a container in which the elements may have different priorities. The
priority is based on a sorting criterion that the programmer may provide (by default,
operator < is used). A priority queue is, in effect, a buffer in which the next element is

The C++ Standard Library

dyne-book 78

always the element that has the highest priority inside the queue. If more than one
element has the highest priority, the order of these elements is undefined.

Container adapters are historically part of the STL. However, from a programmer's view point,
they are just special containers that use the general framework of the containers, iterators, and
algorithms provided by the STL. Therefore, container adapters are described apart from the STL
in Chapter 10.

5.3 Iterators

An iterator is an object that can "iterate" (navigate) over elements. These elements may be all or
part of the elements of a STL container. An iterator represents a certain position in a container.
The following fundamental operations define the behavior of an iterator:

• Operator *

Returns the element of the actual position. If the elements have members, you can use
operator -> to access those members directly from the iterator. [5]

[5] In some older environments, operator -> might not work yet for iterators.

• Operator ++

Lets the iterator step forward to the next element. Most iterators also allow stepping
backward by using operator --.

• Operators == and !=

Return whether two iterators represent the same position.

• Operator =

Assigns an iterator (the position of the element to which it refers).

These operations are exactly the interface of ordinary pointers in C and C++ when they are used
to iterate over the elements of an array. The difference is that iterators may be smart pointers —
pointers that iterate over more complicated data structures of containers. The internal behavior of
iterators depends on the data structure over which they iterate. Hence, each container type
supplies its own kind of iterator. In fact, each container class defines its iterator type as a nested
class. As a result, iterators share the same interface but have different types. This leads directly
to the concept of generic programming: Operations use the same interface but different types, so
you can use templates to formulate generic operations that work with arbitrary types that satisfy
the interface.

All container classes provide the same basic member functions that enable them to use iterators
to navigate over their elements. The most important of these functions are as follows:

• begin()

Returns an iterator that represents the beginning of the elements in the container. The
beginning is the position of the first element (if any).

The C++ Standard Library

dyne-book 79

• end()

Returns an iterator that represents the end of the elements in the container. The end is
the position behind the last element. Such an iterator is also called a past-the-end
iterator.

Thus, begin() and end() define a half-open range that includes the first element but excludes
the last (Figure 5.3). A half-open range has two advantages:

Figure 5.3. begin() and end() for Containers

1. You have a simple end criterion for loops that iterate over the elements: They simply
continue as long as end() is not reached.

2. It avoids special handling for empty ranges. For empty ranges, begin() is equal to
end().

Here is an example demonstrating the use of iterators. It prints all elements of a list container (it is
the promised enhanced version of the first list example).

 // stl/list2.cpp

 #include <iostream>
 #include <list>
 using namespace std;

 int main()
 {
 list<char> coll; //list container for character elements

 // append elements from 'a' to 'z'
 for (char c='a'; c<='z'; ++c) {
 coll.push_back(c);
 }

 /*print all elements
 * - iterate over all elements
 */
 list<char>::const_iterator pos;
 for (pos = coll.begin(); pos != coll.end(); ++pos) {
 cout << *pos << ' ' ;
 }

The C++ Standard Library

dyne-book 80

 cout << endl;
 }

After the list is created and filled with the characters 'a' through 'z', all elements are printed
within a for loop:

 list<char>::const_iterator pos;
 for (pos = coll.begin(); pos != coll.end(); ++pos) {
 cout << *pos << ' ';
 }

The iterator pos is declared just before the loop. Its type is the iterator type for constant element
access of its container class:

 list<char>::const_iterator pos;

Every container defines two iterator types:

1. container::iterator

is provided to iterate over elements in read/write mode.

2. container: : const_iterator

is provided to iterate over elements in read-only mode.

For example, in class list the definitions might look like the following:

 namespace std {
 template <class T>
 class list {
 public:
 typedef ... iterator;
 typedef ... const_iterator;
 ...
 };
 }

The exact type of iterator and const_iterator is implementation defined.

Inside the for loop, the iterator pos first gets initialized with the position of the first element:

 pos = coll.begin()

The loop continues as long as pos has not reached the end of the container elements:

 pos != coll.end()

Here, pos is compared with the past-the-end iterator. While the loop runs the increment operator,
++pos navigates the iterator pos to the next element.

The C++ Standard Library

dyne-book 81

All in all, pos iterates from the first element, element-by-element, until it reaches the end (Figure
5.4). If the container has no elements, the loop does not run because coll.begin() would
equal coll.end().

Figure 5.4. Iterator pos Iterating Over Elements of a List

In the body of the loop, the expression *pos represents the actual element. In this example, it is
written followed by a space character. You can't modify the elements because a
const_iterator is used. Thus, from the iterator's point of view the elements are constant.
However, if you use a nonconstant iterator and the type of the elements is nonconstant, you can
change the values. For example:

 //make all characters in the list uppercase
 list<char>::iterator pos;
 for (pos = coll.begin(); pos != coll.end(); ++pos) {
 *pos = toupper(*pos);
 }

Note that the preincrement operator (prefix ++) is used here. This is because it might have better
performance than the postincrement operator. The latter involves a temporary object because it
must return the old position of the iterator. For this reason, it generally is best to prefer ++pos
over pos++. Thus, you should avoid the following version:

 for (pos = coll.begin(); pos != coll.end(); pos++) {
 ^^^^^ // OK, but slower
 ...
 }

For this reason, I recommend using the preincrement and pre-decrement operators in general.

5.3.1 Examples of Using Associative Containers

The iterator loop in the previous example could be used for any container. You only have to
adjust the iterator type. Now you can print elements of associative containers. The following are
some examples of the use of associative containers.

Examples of Using Sets and Multisets

The first example shows how to insert elements into a set and to use iterators to print them:

The C++ Standard Library

dyne-book 82

 // stl/set1.cpp

 #include <iostream>
 #include <set>

 int main()
 {
 //type of the collection
 typedef std::set<int> IntSet;

 IntSet coll; //set container for int values

 /* insert elements from 1 to 6 in arbitray order
 *- value 1 gets inserted twice
 */
 coll.insert(3);
 coll.insert(1);
 coll.insert(5);
 coll.insert(4);
 coll.insert(1);
 coll.insert(6);
 coll.insert(2);

 /* print all elements
 *- iterate over all elements
 */
 IntSet::const_iterator pos;
 for (pos = coll.begin(); pos != coll.end(); ++pos) {
 std::cout << *pos << ' ';
 }
 std::cout << std::endl;
 }

As usual, the include directive

 #include <set>

defines all necessary types and operations of sets.

The type of the container is used in several places, so first a shorter type name gets defined:

 typedef set<int> IntSet;

This statement defines type IntSet as a set for elements of type int. This type uses the
default sorting criterion, which sorts the elements by using operator <. This means the elements
are sorted in ascending order. To sort in descending order or use a completely different sorting
criterion, you can pass it as a second template parameter. For example, the following statement
defines a set type that sorts the elements in descending order [6] :

[6] Note that you have to put a space between the two ">" characters. ">>" would be parsed as shift
operator, which would result in a syntax error.

 typedef set<int,greater<int> > IntSet;

The C++ Standard Library

dyne-book 83

greater<> is a predefined function object that is discussed in Section 5.9.2. For a sorting
criterion that uses only a part of the data of an object (such as the ID) see Section 8.1.1.

All associative containers provide an insert() member function to insert a new element:

 coll.insert(3);
 coll.insert(1);
 ...

The new element receives the correct position automatically according to the sorting criterion.
You can't use the push_back() or push_front() functions provided for sequence containers.
They make no sense here because you can't specify the position of the new element.

After all values are inserted in any order, the state of the container is as shown in Figure 5.5.
The elements are sorted into the internal tree structure of the container so that the value of the
left child of an element is always less (with respect to the actual sorting criterion) and the value of
the right child of an element is always greater. Duplicates are not allowed in a set, so the
container contains the value 1 only once.

Figure 5.5. A Set that Has Six Elements

To print the elements of the container, you use the same loop as in the previous list example. An
iterator iterates over all elements and prints them:

 IntSet::const_iterator pos;
 for (pos = coll.begin(); pos != coll.end(); ++pos) {
 cout << *pos << ' ';
 }

Again, because the iterator is defined by the container, it does the right thing, even if the internal
structure of the container is more complicated. For example, if the iterator refers to the third

The C++ Standard Library

dyne-book 84

element, operator ++ moves to the fourth element at the top. After the next call of operator ++ the
iterator refers to the fifth element at the bottom (Figure 5.6).

Figure 5.6. Iterator pos Iterating over Elements of a Set

The output of the program is as follows:

 1 2 3 4 5 6

If you want to use a multiset rather than a set, you need only change the type of the container
(the header file remains the same):

 typedef multiset<int> IntSet;

A multiset allows duplicates, so it would contain two elements that have value 1. Thus, the output
of the program would change to the following:

 1 1 2 3 4 5 6

Examples of Using Maps and Multimaps

The elements of maps and multimaps are key/value pairs. Thus, the declaration, the insertion,
and the access to elements are a bit different. Here is an example of using a multimap:

The C++ Standard Library

dyne-book 85

 // stl/mmap1.cpp

 #include <iostream>
 #include <map>
 #include <string>
 using namespace std;

 int main()
 {
 //type of the collection
 typedef multimap<int, string> IntStringMMap;

 IntStringMMap coll; //set container for int/string values

 //insert some elements in arbitrary order
 //- a value with key 1 gets inserted twice
 coll.insert(make_pair(5,"tagged"));
 coll.insert(make_pair(2,"a"));
 coll.insert(make_pair(1,"this"));
 coll.insert(make_pair(4,"of"));
 coll.insert(make_pair(6,"strings"));
 coll.insert(make_pair(1,"is"));
 coll.insert(make_pair(3,"multimap"));

 /* print all element values
 *- iterate over all elements
 *- element member second is the value
 */
 IntStringMMap::iterator pos;
 for (pos = coll.begin(); pos != coll.end(); ++pos) {
 cout << pos->second << ' ';
 }
 cout << endl;
 }

The program may have the following output:

 this is a multimap of tagged strings

However, because "this" and "is" have the same key, their order might be the other way
around.

When you compare this example with the set example on page 87, you can see the following two
differences:

1. The elements are key/value pairs, so you must create such a pair to insert it into the
collection. The auxiliary function make_pair() is provided for this purpose. See page
203 for more details and other possible ways to insert a value.

2. The iterators refer to key/value pairs. Therefore, you can't just print them as a whole.
Instead, you must access the members of the pair structure, which are called first
and second (type pair is introduced in Section 4.1). Thus, the expression

 pos->second

The C++ Standard Library

dyne-book 86

yields the second part of the key/value pair, which is the value of the multimap element.
As with ordinary pointers, the expression is defined as an abbreviation for [7]

[7] In some older environments, operator -> might not work yet for iterators. In this case, you
must use the second version.

 (*pos) .second

Similarly, the expression

 pos->first

yields the first part of the key/value pair, which is the key of the multimap element.

Multimaps can also be used as dictionaries. See page 209 for an example.

Maps as Associative Arrays

In the previous example, if you replace type multimap with map you would get the output without
duplicate keys (the values might still be the same). However, a collection of key/value pairs with
unique keys could also be thought of as an associative array. Consider the following example:

 // stl/map1.cpp

 #include <iostream>
 #include <map>
 #include <string>
 using namespace std;

 int main()
 {

 /* type of the container:
 * - map: elements key/value pairs
 * - string: keys have type string
 * - float: values have type float
 */
 typedef map<string,float> StringFloatMap;
 StringFloatMap coll;

 //insert some elements into the collection
 coll["VAT"] = 0.15;
 coll["Pi"] = 3.1415;
 coll["an arbitrary number"] = 4983.223;
 coll["Null"] = 0;

 /*print all elements
 * - iterate over all elements
 * - element member first is the key
 * - element member second is the value
 */
 StringFloatMap::iterator pos;
 for (pos = coll.begin(); pos != coll.end(); ++pos) {
 cout << "key: \"" << pos->first << "\" "

The C++ Standard Library

dyne-book 87

 << "value: " << pos->second << endl;
 }
 }

The declaration of the container type must specify both the type of the key and the type of the
value:

 typedef map<string,float> StringFloatMap;

Maps enable you to insert elements by using the subscript operator []:

 coll["VAT"] = 0.15;
 coll["Pi"] = 3.1415;
 coll["an arbitrary number"] = 4983.223;
 coll["Null"] = 0;

Here, the index is used as the key and may have any type. This is the interface of an associative
array. An associative array is an array in which the index may be of an arbitrary type.

Note that the subscript operator behaves differently than the usual subscript operator for arrays:
Not having an element for an index is not an error. A new index (or key) is taken as a reason to
create and to insert a new element of the map that has the index as the key. Thus, you can't have
a wrong index. Therefore, in this example in the statement

 coll["Null"] = 0;

the expression

 coll["Null"]

creates a new element that has the key "Null". The assignment operator assigns 0 (which gets
converted into float) as the value. Section 6.6.3, discusses maps as associative arrays in
more detail.

You can't use the subscript operator for multimaps. Multimaps allow multiple elements that have
the same key, so the subscript operator makes no sense because it can handle only one value.
As shown on page 90, you must create key/value pairs to insert elements into a multimap. You
can do the same with maps. See page 202 for details.

Similar to multimaps, for maps to access the key and the value of an element you have to use the
first and second members of the pair structure. The output of the program is as follows:

 key: "Null" value: 0
 key: "Pi" value: 3.1415
 key: "VAT" value: 0.15
 key: "an arbitrary number" value: 4983.22

5.3.2 Iterator Categories

Iterators can have capabilities in addition to their fundamental operations. The additional abilities
depend on the internal structure of the container type. As usual, the STL provides only those
operations that have good performance. For example, if containers have random access (such as

The C++ Standard Library

dyne-book 88

vectors or deques) their iterators are also able to perform random access operations (for
example, positioning the iterator directly at the fifth element).

Iterators are subdivided into different categories that are based on their general abilities. The
iterators of the predefined container classes belong to one of the following two categories:

1. Bidirectional iterator

As the name indicates, bidirectional iterators are able to iterate in two directions: forward,
by using the increment operator, and backward, by using the decrement operator. The
iterators of the container classes list, set, multiset, map, and multimap are
bidirectional iterators.

2. Random access iterator

Random access iterators have all the properties of bidirectional iterators. In addition, they
can perform random access. In particular, they provide operators for "iterator arithmetic"
(in accordance with "pointer arithmetic" of an ordinary pointer). You can add and subtract
offsets, process differences, and compare iterators by using relational operators such as
< and >. The iterators of the container classes vector and deque, and iterators of
strings are random access iterators.

Other iterator categories are discussed in Section 7.2.

To write generic code that is as independent of the container type as possible, you should not use
special operations for random access iterators. For example, the following loop works with any
container:

 for (pos = coll.begin(); pos != coll.end(); ++pos) {
 ...
 }

However, the following does not work with all containers:

 for (pos = coll.begin() ; pos < coll.end(); ++pos) {
 ...
 }

The only difference is the use of operator < instead of operator != in the condition of the loop.
Operator < is only provided for random access iterators, so this loop does not work with lists,
sets, and maps. To write generic code for arbitrary containers, you should use operator != rather
than operator <. However, doing so might lead to code that is less safe. This is because you may
not recognize that pos gets a position behind end() (see Section 5.11, for more details about
possible errors when using the STL). It's up to you to decide which version to use. It might be a
question of the context, or it might even be a question of taste.

To avoid misunderstanding, note that I am talking about "categories" and not "classes." A
category only defines the abilities of iterators. The type doesn't matter. The generic concept of the
STL works with pure abstraction; that is, anything that behaves like a bidirectional iterator is a
bidirectional iterator.

The C++ Standard Library

dyne-book 89

5.4 Algorithms

The STL provides several standard algorithms for the processing of elements of collections.
These algorithms offer general fundamental services, such as searching, sorting, copying,
reordering, modifying, and numeric processing.

Algorithms are not member functions of the container classes. Instead, they are global functions
that operate with iterators. This has an important advantage: Instead of each algorithm being
implemented for each container type, all are implemented only once for any container type. The
algorithm might even operate on elements of different container types. You can also use the
algorithms for user-defined container types. All in all, this concept reduces the amount of code
and increases the power and the flexibility of the library.

Note that this is not an object-oriented programming paradigm; it is a generic functional
programming paradigm. Instead of data and operations being unified, as in object-oriented
programming, they are separated into distinct parts that can interact via a certain interface.
However, this concept also has its price: First, the usage is not intuitive. Second, some
combinations of data structures and algorithms might not work. Even worse, a combination of a
container type and an algorithm might be possible but not useful (for example, it may lead to bad
performance). Thus, it is important to learn the concepts and the pitfalls of the STL to benefit from
it without abusing it. I provide examples and more details about this throughout the rest of this
chapter.

Let's start with a simple example of the use of STL algorithms. Consider the following program,
which shows some algorithms and their usage:

 // stl/algo1.cpp

 #include <iostream>
 #include <vector>
 #include <algorithm>
 using namespace std;

 int main()
 {
 vector<int> coll;
 vector<int>::iterator pos;

 //insert elements from 1 to 6 in arbitrary order
 coll.push_back(2);
 coll.push_back(5);
 coll.push_back(4);
 coll.push_back(1);
 coll.push_back(6);
 coll.push_back(3);

 //find and print minimum and maximum elements
 pos = min_element (coll.begin(), coll.end());
 cout << "min: " << *pos << endl;
 pos = max_element (coll.begin(), coll.end());
 cout << "max: " << *pos << endl;

 //sort all elements
 sort (coll.begin(), coll.end());

 //find the first element with value 3

The C++ Standard Library

dyne-book 90

 pos = find (coll.begin(), coll.end(), //range
 3); //value

 //reverse the order of the found element with value 3 and all
following elements
 reverse (pos, coll.end());

 //print all elements
 for (pos=coll.begin(); pos!=coll.end(); ++pos) {
 cout << *pos << ' ' ;
 }
 cout << endl;
 }

To be able to call the algorithms, you must include the header file <algorithm>:

 #include <algorithm>

The first two algorithms called are min_element() and max_element(). They are called with
two parameters that define the range of the processed elements. To process all elements of a
container you simply use begin() and end(). Both algorithms return an iterator for the
minimum and maximum elements respectively. Thus, in the statement

 pos = min_element (coll.begin(), coll.end());

the min_element() algorithm returns the position of the minimum element (if there is more than
one, the algorithm returns the first). The next statement prints that element:

 cout << "min: " << *pos << endl;

Of course, you could do both in one statement:

 cout << *max_element(coll.begin(), coll.end()) << endl;

The next algorithm called is sort(). As the name indicates, it sorts the elements of the range
defined by the two arguments. As usual, you could pass an optional sorting criterion. The default
sorting criterion is operator <. Thus, in this example all elements of the container are sorted in
ascending order:

 sort (coll.begin(), coll.end());

So afterward, the vector contains the elements in this order:

 1 2 3 4 5 6

The find() algorithm searches for a value inside the given range. In this example, it searches
the first element that is equal to the value 3 in the whole container:

 pos = find (coll.begin(), coll.end(), //range
 3); //value

If the find() algorithm is successful, it returns the iterator position of the element found. If it
fails, it returns the end of the range, the past-the-end iterator, which is passed as the second
argument. In this example, the value 3 is found as the third element, so afterward pos refers to
the third element of coll.

The C++ Standard Library

dyne-book 91

The last algorithm called in the example is reverse(), which reverses the elements of the
passed range. Here the third element that was found by the find() algorithms and the past-the-
end iterator are passed as arguments:

 reverse (pos, coll.end());

This call reverses the order of the third element up to the last one. The output of the program is
as follows:

 min: 1
 max: 6
 1 2 6 5 4 3

5.4.1 Ranges

All algorithms process one or more ranges of elements. Such a range might, but is not required
to, embrace all elements of a container. Therefore, to be able to handle subsets of container
elements, you pass the beginning and the end of the range as two separate arguments rather
than the whole collection as one argument.

This interface is flexible but dangerous. The caller must ensure that the first and second
arguments define a valid range. This is the case if the end of the range is reachable from the
beginning by iterating through the elements. This means, it is up to the programmer to ensure
that both iterators belong to the same container and that the beginning is not behind the end. If
this is not the case, the behavior is undefined and endless loops or forbidden memory access
may result. In this respect, iterators are just as unsafe as ordinary pointers. But note that
undefined behavior also means that an implementation of the STL is free to find such kinds of
errors and handle them accordingly. The following paragraphs show that ensuring that ranges are
valid is not always as easy as it sounds. See Section 5.11, for more details about the pitfalls
and safe versions of the STL.

Every algorithm processes half-open ranges. Thus, a range is defined so that it includes the
position used as the beginning of the range but excludes the position used as the end. This
concept is often described by using the traditional mathematical notations for half-open ranges:

[begin,end)

or

[begin,end[

I use the first alternative in this book.

The half-open range concept has the advantages that were described on page 84 (it is simple
and avoids special handling for empty collections). However, it also has some disadvantages.
Consider the following example:

 // stl/find1.cpp

 #include <iostream>
 #include <list>
 #include <algorithm>

The C++ Standard Library

dyne-book 92

 using namespace std;

 int main()
 {
 list<int> coll;
 list<int>::iterator pos;

 //insert elements from 20 to 40
 for (int i=20; i<=40; ++i) {
 coll.push_back(i);
 }
 /*find position of element with value 3
 * - there is none, so pos gets coll.end()
 */
 pos = find (coll .begin() , coll.end(), //range
 3); //value

 /*reverse the order of elements between found element and the end
 * - because pos is coll.end() it reverses an empty range
 */
 reverse (pos, coll.end());

 //find positions of values 25 and 35
 list<int>::iterator pos25, pos35;
 pos25 = find (coll.begin(), coll.end(), //range
 25); //value
 pos35 = find (coll.begin(), coll.end(), //range
 35); //value

 /*print the maximum of the corresponding range
 * - note: including pos25 but excluding pos35
 */
 cout << "max: " << *max_element (pos25, pos35) << endl;

 //process the elements including the last position
 cout << "max: " << *max_element (pos25, ++pos35) << endl;
 }

In this example, the collection is initialized with integral values from 20 to 40. When the search
for an element with the value 3 fails, find() returns the end of the processed range
(coll.end() in this example) and assigns it to pos. Using that return value as the beginning of
the range in the following call of reverse() poses no problem because it results in the following
call:

 reverse (coll.end(), coll.end());

This is simply a call to reverse an empty range. Thus, it is an operation that has no effect (a so-
called "no-op").

However, if find() is used to find the first and the last elements of a subset, you should
consider that passing these iterator positions as a range will exclude the last element. So, the first
call of max_element()

 max_element (pos25, pos35)

The C++ Standard Library

dyne-book 93

finds 34 and not 35:

 max: 34

To process the last element, you have to pass the position that is one past the last element:

 max_element (pos25, ++pos35)

Doing this yields the correct result:

 max: 35

Note that this example uses a list as the container. Thus, you must use operator ++ to get the
position that is behind pos35. If you have random access iterators, as with vectors and deques,
you also could use the expression pos35 + 1. This is because random access iterators allow
"iterator arithmetic" (see Section 2, page 93, and Section 7.2.5, for details).

Of course, you could use pos25 and pos35 to find something in that subrange. Again, to search
including pos35 you have to pass the position after pos35. For example:

 //increment pos35 to search with its value included
 ++pos35;
 pos30 = find(pos25,pos35, //range
 30); //value
 if (pos30 == pos35) {
 cout << "30 is in NOT the subrange" << endl;
 }
 else {
 cout << "30 is in the subrange" << endl;
 }

All the examples in this section work only because you know that pos25 is in front of pos35.
Otherwise, [pos25,pos35) would not be a valid range. If you are not sure which element is in
front, things are getting more complicated and undefined behavior may occur.

Suppose you don't know whether the element that has value 25 is in front of the element that has
value 35. It might even be possible that one or both values are not present. By using random
access iterators, you can call operator < to check this:

 if (pos25 < pos35) {
 //only [pos25,pos35) is valid
 ...
 }
 else if (pos35 < pos25) {
 //only [pos35,pos25) is valid
 ...
 }
 else {
 //both are equal, so both must be end()
 ...
 }

The C++ Standard Library

dyne-book 94

However, without random access iterators you have no simple, fast way to find out which iterator
is in front. You can only search for one iterator in the range of the beginning to the other iterator
or in the range of the other iterator to the end. In this case, you should change your algorithm as
follows: Instead of searching for both values in the whole source range, you should try to find out,
while searching for them, which value comes first. For example:

 pos25 = find (coll.begin(), coll.end(), //range
 25); //value
 pos35 = find (coll.begin(), pos25, //range
 35); //value
 if (pos35 != pos25) {
 /*pos35 is in front of pos25
 *so, only [pos35,pos25) is valid
 */
 ...
 }
 else {
 pos35 = find (pos25, coll.end(), //range
 35); //value
 if (pos35 != pos25) {
 /*pos25 is in front of pos35
 *so, only [pos25,pos35) is valid
 */
 ...
 }
 else {
 // both are equal, so both must be end()
 ...
 }
 }

In contrast to the previous version, here you don't search for pos35 in the full range of all
elements of coll. Instead, you first search for it from the beginning to pos25. Then, if it's not
found, you search for it in the part that contains the remaining elements after pos25. As a result
you know which iterator position comes first and which subrange is valid.

This implementation is not very efficient. A more efficient way to find the first element that either
has value 25 or value 35 is to search exactly for that. You could do this by using some abilities of
the STL that are not introduced yet as follows:

 pos = find_if (coll.begin(), coll.end(), //range
 compose_f_gx_hx(logical_or<bool>(), //criterion
 bind2nd(equal_to<int>(), 25),
 bind2nd(equal_to<int>(), 35)));
 switch (*pos) {
 case 25:
 //element with value 25 comes first
 pos25 = pos;
 pos35 = find (++pos, coll.end(), //range
 35); //value
 ...
 break;
 case 35:
 //element with value 35 comes first
 pos35 = pos;

The C++ Standard Library

dyne-book 95

 pos25 = find (++pos, coll.end(), //range
 25); //value
 ...
 break;
 default:
 //no element with value 25 or 35 found
 ...
 break;
 }

Here, a special expression is used as a sorting criterion that allows a search of the first element
that has either value 25 or value 35. The expression is a combination of several predefined
function objects, which are introduced in Section 5.9.2, and Section 8.2, and a supplementary
function object compose_f_gx_hx, which is introduced in Section 8.3.1.

5.4.2 Handling Multiple Ranges

Several algorithms process more than one range. In this case you usually must define both the
beginning and the end only for the first range. For all other ranges you need to pass only their
beginnings. The ends of the other ranges follow from the number of elements of the first range.
For example, the following call of equal() compares all elements of the collection coll1
element-by-element with the elements of coll2 beginning with its first element:

 if (equal (coll1.begin(), coll1.end(),
 coll2.begin())) {
 ...
 }

Thus, the number of elements of coll2 that are compared with the elements of coll1 is
specified indirectly by the number of elements in coll1.

This leads to an important consequence: When you call algorithms for multiple ranges, make sure
the second and additional ranges have at least as many elements as the first range. In particular,
make sure that destination ranges are big enough for algorithms that write to collections!

Consider the following program:

 // stl/copy1.cpp

 #include <iostream>
 #include <vector>
 #include <list>
 #include <algorithm>
 using namespace std;

 int main()
 {
 list<int> coll1;
 vector<int> coll2;

 //insert elements from 1 to 9
 for (int i=1; i<=9; ++i) {
 coll1.push_back(i);
 }

The C++ Standard Library

dyne-book 96

 //RUNTIME ERROR:
 // - overwrites nonexisting elements in the destination
 copy (coll1 .begin(), coll1.end(), //source
 coll2.begin()); //destination

 }

Here, the copy() algorithm is called. It simply copies all elements of the first range into the
destination range. As usual, for the first range, the beginning and the end are defined, whereas
for the second range, only the beginning is specified. However, the algorithm overwrites rather
than inserts. So, the algorithm requires that the destination has enough elements to be
overwritten. If there is not enough room, as in this case, the result is undefined behavior. In
practice, this often means that you overwrite whatever comes after the coll2.end(). If you're
in luck, you'll get a crash; at least then you'll know that you did something wrong. However, you
can force your luck by using a safe version of the STL for which the undefined behavior is defined
as leading to a certain error handling procedure (see Section 5.11.1).

To avoid these errors, you can (1) ensure that the destination has enough elements on entry, or
(2) use insert iterators. Insert iterators are covered in Section 5.5.1. I'll first explain how to
modify the destination so that it is big enough on entry.

To make the destination big enough, you must either create it with the correct size or change its
size explicitly. Both alternatives apply only to sequence containers (vectors, deques, and lists).
This is not really a problem because associative containers cannot be used as a destination for
purposes for overwriting algorithms (Section 5.6.2, explains why). The following program shows
how to increase the size of containers:

 // stl/copy2.cpp

 #include <iostream>
 #include <vector>
 #include <list>
 #include <deque>
 #include <algorithm>
 using namespace std;

 int main()
 {
 list<int> coll1;
 vector<int> coll2;

 //insert elements from 1 to 9
 for (int i=1; i<=9; ++i) {
 coll1.push_back(i);
 }

 //resize destination to have enough room for the overwriting
algorithm
 coll2.resize (coll1. size());

 /*copy elements from first into second collection
 *- overwrites existing elements in destination
 */

The C++ Standard Library

dyne-book 97

 copy (coll1.begin(), coll1.end(), //source
 coll2.begin()); //destination

 /*create third collection with enough room
 *- initial size is passed as parameter
 */

 deque<int> coll3(coll1 size());

 //copy elements from first into third collection
 copy (coll1.begin(), coll1.end(), //source
 coll3.begin()); //destination
 }

Here, resize() is used to change the number of elements in the existing container coll2:

 coll2.resize (coll1.size());

coll3 is initialized with a special initial size so that it has enough room for all elements of
coll1:

 deque<int> coll3(coll1.size());

Note that both resizing and initializing the size create new elements. These elements are
initialized by their default constructor because no arguments are passed to them. You can pass
an additional argument both for the constructor and for resize() to initialize the new elements.

5.5 Iterator Adapters

Iterators are pure abstractions: Anything that behaves like an iterator is an iterator. For this
reason, you can write classes that have the interface of iterators but do something (completely)
different. The C++ standard library provides several predefined special iterators: iterator adapters.
They are more than auxiliary classes; they give the whole concept a lot more power.

The following subsections introduce three iterator adapters:

1. Insert iterators
2. Stream iterators
3. Reverse iterators

Section 7.4, will cover them in detail.

5.5.1 Insert Iterators

The first example of iterator adapters are insert iterators, or inserters. Inserters are used to let
algorithms operate in insert mode rather than in overwrite mode. In particular, they solve the
problem of algorithms that write to a destination that does not have enough room: They let the
destination grow accordingly.

Insert iterators redefine their interface internally as follows:

The C++ Standard Library

dyne-book 98

• If you assign a value to their actual element, they insert that value into the collection to
which they belong. Three different insert iterators have different abilities with regard to
where the elements are inserted — at the front, at the end, or at a given position.

• A call to step forward is a no-op.

Consider the following example:

 // stl/copy3.cpp

 #include <iostream>
 #include <vector>
 #include <list>
 #include <deque>
 #include <set>
 #include <algorithm>
 using namespace std;

 int main()
 {
 list<int> coll1;

 //insert elements from 1 to 9 into the first collection
 for (int i=1; i<=9; ++i) {
 coll1.push_back(i);
 }

 // copy the elements of coll1 into coll2 by appending them
 vector<int> coll2;
 copy (coll1.begin(), coll1.end(), //source
 back_inserter(coll2)); //destination

 //copy the elements of coll1 into coll3 by inserting them at the
front
 // - reverses the order of the elements
 deque<int> coll3;
 copy (coll1.begin(), coll1.end(), //source
 front_inserter(coll3)); //destination

 //copy elements of coll1 into coll4
 // - only inserter that works for associative collections
 set<int> coll4;
 copy (coll1.begin(), coll1.end(), //source
 inserter(coll4,coll4.begin())); //destination
 }

This example uses all three predefined insert iterators:

1. Back inserters

Back inserters insert the elements at the back of their container (appends them) by
calling push_back(). For example, with the following statement, all elements of coll1
are appended into coll2:

 copy (coll1.begin(), coll1.end(), //source

The C++ Standard Library

dyne-book 99

 back_inserter(coll2)); //destination

Of course, back inserters can be used only for containers that provide push_back() as a
member function. In the C++ standard library, these containers are vector, deque, and
list.

2. Front inserters

Front inserters insert the elements at the front of their container by calling
push_front(). For example, with the following statement, all elements of coll1 are
inserted into coll3:

 copy (coll1.begin(), coll1.end(), //source
 front_inserter(coll3)) ; //destination

Note that this kind of insertion reverses the order of the inserted elements. If you insert 1
at the front and then 2 at the front, the 1 is after the 2.

Front inserters can be used only for containers that provide push_front() as a
member function. In the C++ standard library, these containers are deque and list.

3. General inserters

A general inserter, also called simply an inserter, inserts elements directly in front of the
position that is passed as the second argument of its initialization. It calls the insert()
member function with the new value and the new position as arguments. Note that all
predefined containers have such an insert() member function. This is the only
predefined inserter for associative containers.

But wait a moment. I said that you can't specify the position of a new element in an
associative container because the positions of the elements depend on their values. The
solution is simple: For associative containers, the position is taken as a hint to start the
search for the correct position. If the position is not correct, however, the timing may be
worse than if there was no hint. Section 7.5.2, describes a user-defined inserter that is
more useful for associative containers.

Table 5.1 lists the functionality of insert iterators. Additional details are described in Section
7.4.2.

Table 5.1. Predefined Insert Iterators
Expression Kind of Inserter

back_inserter (container) Appends in the same order by using push_back()
front_inserter (container) Inserts at the front in reverse order by using push_front()
inserter (container ,pos) Inserts at pos (in the same order) by using insert()

5.5.2 Stream Iterators

Another very helpful kind of iterator adapter is a stream iterator. Stream iterators are iterators that
read from and write to a stream. [8] Thus, they provide an abstraction that lets the input from the
keyboard behave as a collection, from which you can read. Similarly you can redirect the output
of an algorithm directly into a file or onto the screen.

The C++ Standard Library

dyne-book 100

[8] A stream is an object that represents I/O channels (see Chapter 13).

Consider the following example. It is a typical example of the power of the whole STL. Compared
with ordinary C or C++, it does a lot of complex processing by using only a few statements:

 // stl/ioiter1.cpp

 #include <iostream>
 #include <vector>
 #include <string>
 #include <algorithm>
 using namespace std;

 int main()
 {
 vector<string> coll;

 /*read all words from the standard input
 * - source: all strings until end-of-file (or error)
 * - destination: coll (inserting)
 */
 copy (istream_iterator<string>(cin), //start of source
 istream_iterator<string>(), //end of source
 back_inserter(coll)); //destination

 //sort elements
 sort (coll.begin(), coll.end());

 /*print all elements without duplicates
 * - source: coll
 * - destination: standard output (with newline between elements)
 */
 unique_copy (coll.begin(), coll.end(), //source
 ostream_iterator<string> (cout, "\n"));
//destination
 }

The program has only three statements that read all words from the standard input and print a
sorted list of them. Let's consider the three statements step-by-step. In the statement

 copy (istream_iterator<string>(cin),
 istream_iterator<string>(),
 back_inserter(coll));

two input stream iterators are used:

1. The expression

 istream_iterator<string>(cin)
creates a stream iterator that reads from the standard input stream cin.[9] The template
argument string specifies that the stream iterator reads elements of this type (string
types are covered in Chapter 11). These elements are read with the usual input
operator >>. Thus, each time the algorithm wants to process the next element, the
istream iterator transforms that desire into a call of

The C++ Standard Library

dyne-book 101

[9] In older systems you must use ptrdiff_t as the second template parameter to create an
istream iterator (see Section 7.4.3).

 cin >> string
The input operator for strings usually reads one word separated by whitespaces (see
page 492), so the algorithm reads word-by-word.

2. The expression

 istream_iterator<string>()
calls the default constructor of istream iterators that creates an end-of-stream iterator. It
represents a stream from which you can no longer read.

As usual, the copy() algorithm operates as long as the (incremented) first argument differs from
the second argument. The end-of-stream iterator is used as the end of the range, so the
algorithm reads all strings from cin until it can no longer read any more (due to end-of-stream or
an error). To summarize, the source of the algorithm is "all words read from cin." These words
are copied by inserting them into coll with the help of a back inserter.

The sort() algorithm sorts all elements:

 sort (coll.begin(), coll.end());

Lastly, the statement

 unique_copy (coll.begin(), coll.end(),
 ostream_iterator<string>(cout,"\n"));

copies all elements from the collection into the destination cout. During the process, the
unique_copy() algorithm eliminates adjacent duplicate values. The expression

 ostream_iterator<string>(cout,"\n")

creates an output stream iterator that writes strings to cout by calling operator >> for each
element. The second argument behind cout serves as a separator between the elements. It is
optional. In this example, it is a newline, so every element is written on a separate line.

All components of the program are templates, so you can change the program easily to sort other
value types, such as integers or more complex objects. Section 7.4.3, explains more and gives
more examples about iostream iterators.

In this example, one declaration and three statements were used to sort all words from standard
input. However, you could do the same by using only one declaration and one statement. See
page 228 for an example.

5.5.3 Reverse Iterators

The third kind of predefined iterator adapters are reverse iterators. Reverse iterators operate in
reverse. They switch the call of an increment operator internally into a call of the decrement
operator, and vice versa. All containers can create reverse iterators via their member functions
rbegin() and rend(). Consider the following example:

The C++ Standard Library

dyne-book 102

 // stl/riter1.cpp

 #include <iostream>
 #include <vector>
 #include <algorithm>
 using namespace std;

 int main()
 {
 vector<int> coll;

 //insert elements from 1 to 9
 for (int i=1; i<=9; ++i) {
 coll.push_back(i);
 }

 //print all element in reverse order
 copy (coll.rbegin(), coll.rend(), //source
 ostream_iterator<int> (cout," ")); //destination
 cout << endl;
 }

The expression

 coll.rbegin()

returns a reverse iterator for coll. This iterator may be used as the beginning of a reverse
iteration over the elements of the collection. Its position is the last element of the collection. Thus,
the expression

 *coll.rbegin()

returns the value of the last element.
Accordingly, the expression

 coll.rend()

returns a reverse iterator for coll that may be used as the end of a reverse iteration. As usual for
ranges, its position is past the end of the range, but from the opposite direction; that is, it is the
position before the first element in the collection.
The expression

 *coll.rend()

is as undefined as is

 *coll.end()

You should never use operator * (or operator ->) for a position that does not represent a valid
element.

The advantage of using reverse iterators is that all algorithms are able to operate in the opposite
direction without special code. A step to the next element with operator ++ is redefined into a step
backward with operator --. For example, in this case, copy() iterates over the elements of
coll from the last to the first element. So, the output of the program is as follows:

The C++ Standard Library

dyne-book 103

 9 8 7 6 5 4 3 2 1

You can also switch "normal" iterators into reverse iterators, and vice versa. However, in doing so
the element of an iterator changes. This and other details about reverse iterators are covered in
Section 7.4.1.

5.6 Manipulating Algorithms

Several algorithms modify destination ranges. In particular, they may remove elements. If this
happens, special aspects apply. These aspects are explained in this section. They are surprising
and show the price of the STL concept that separates containers and algorithms with great
flexibility.

5.6.1 "Removing" Elements

The remove() algorithm removes elements from a range. However, if you use it for all elements
of a container it operates in a surprising way. Consider the following example:

 // stl/remove1.cpp

 #include <iostream>
 #include <list>
 #include <algorithm>
 using namespace std;

 int main()
 {
 list<int> coll;

 //insert elements from 6 to 1 and 1 to 6
 for (int i=1; i<=6; ++i) {
 coll.push_front(i);
 coll.push_back(i);
 }

 //print all elements of the collection
 cout << "pre: ";
 copy (coll.begin(), coll.end(), //source
 ostream_iterator<int> (cout," ")); //destination
 cout << endl;

 //remove all elements with value 3
 remove (coll.begin() , coll.end(), //range
 3); //value

 //print all elements of the collection
 cout << "post: ";
 copy (coll.begin(), coll.end(), //source
 ostream_iterator<int> (cout," ")); //destination
 cout << endl;
 }

The C++ Standard Library

dyne-book 104

Someone reading this program without deeper knowledge would expect that all elements with
value 3 are removed from the collection. However, the output of the program is as follows:

 pre: 6 5 4 3 2 1 1 2 3 4 5 6
 post: 6 5 4 2 1 1 2 4 5 6 5 6

Thus, remove() did not change the number of elements in the collection for which it was called.

The end() member function returns the old end, whereas size() returns the old number of
elements. However, something has changed: The elements changed their order as if the
elements were removed. Each element with value 3 was overwritten by the following elements
(Figure 5.7). At the end of the collection, the old elements that were not overwritten by the
algorithm remain unchanged. Logically, these elements no longer belong to the collection.

Figure 5.7. How remove() Operates

However, the algorithm does return the new end. By using it, you can access the resulting range,
reduce the size of the collection, or process the number of removed elements. Consider the
following modified version of the example:

 // stl/remove2.cpp

 #include <iostream>
 #include <list>
 #include <algorithm>
 using namespace std;

 int main()
 {
 list<int> coll;

 //insert elements from 6 to 1 and 1 to 6
 for (int i=1; i<=6; ++i) {
 coll.push_front(i);
 coll.push_back(i);
 }

 //print all elements of the collection
 copy (coll.begin(), coll.end(),
 ostream_iterator<int>(cout," "));
 cout << endl;

 //remove all elements with value 3
 // - retain new end
 list<int>::iterator end = remove (coll.begin(), coll.end(),
 3);

 //print resulting elements of the collection

The C++ Standard Library

dyne-book 105

 copy (coll.begin(), end,
 ostream_iterator<int>(cout," "));
 cout << endl;

 //print number of resulting elements
 cout << "number of removed elements: "
 << distance(end,coll.end()) << endl;

 //remove "removed'' elements
 coll.erase (end, coll.end());

 //print all elements of the modified collection
 copy (coll.begin(), coll.end(),
 ostream_iterator<int>(cout," "));
 cout << endl;
 }

In this version, the return value of remove() is assigned to the iterator end:

 list<int>::iterator end = remove (coll.begin(), coll.end(),
 3);

This is the new logical end of the modified collection after the elements are "removed." You can
use this return value as the new end for further operations:

 copy (coll.begin(), end,
 ostream_iterator<int>(cout," "));

Another possibility is to process the number of "removed" elements by processing the distance
between the "logical" and the real ends of the collection:

 cout << "number of removed elements: "
 << distance(end,coll.end()) << endl;

Here, a special auxiliary function for iterators, distance(), is used. It returns the distance
between two iterators. If the iterators were random access iterators you could process the
difference directly with operator -. However, the container is a list, so it provides only
bidirectional iterators. See Section 7.3.2, for details about distance().[10]

[10] The definition of distance() has changed, so in older STL versions you must include the file
distance.hpp, which is mentioned on page 263.

If you really want to remove the "removed" elements, you must call an appropriate member
function of the container. To do this, containers provide the erase() member function, erase()
removes all elements of the range that is specified by its arguments:

 coll.erase (end, coll.end());

Here is the output of the whole program:

 6 5 4 3 2 1 1 2 3 4 5 6

The C++ Standard Library

dyne-book 106

 6 5 4 2 1 1 2 4 5 6
 number of removed elements: 2
 6 5 4 2 1 1 2 4 5 6

If you really want to remove elements in one statement, you can call the following statement:

 coll.erase (remove(coll.begin(),coll.end(),
 3),
 coll.end());

Why don't algorithms call erase() by themselves? Well, this question highlights the price of the
flexibility of the STL. The STL separates data structures and algorithms by using iterators as the
interface. However, iterators are an abstraction to represent a position in a container. In general,
iterators do not know their containers. Thus, the algorithms, which use the iterators to access the
elements of the container, can't call any member function for it.

This design has important consequences because it allows algorithms to operate on ranges that
are different from "all elements of a container." For example, the range might be a subset of all
elements of a collection. And, it might even be a container that provides no erase() member
function (ordinary arrays are an example of such a container). So, to make algorithms as flexible
as possible, there are good reasons not to require that iterators know their container.

Note that it is often not necessary to remove the "removed" elements. Often, it is no problem to
use the returned new logical end instead of the real end of the container. In particular, you can
call all algorithms with the new logical end.

5.6.2 Manipulating Algorithms and Associative Containers

Manipulation algorithms (those that remove elements as well as those that reorder or modify
elements) have another problem when you try to use them with associative containers:
Associative containers can't be used as a destination. The reason for this is simple: If modifying
algorithms would work for associative containers, they could change the value or position of
elements so that they are not sorted anymore. This would break the general rule that elements in
associative containers are always sorted automatically according to their sorting criterion. So, not
to compromise the sorting, every iterator for an associative container is declared as an iterator for
a constant value (or key). Thus, manipulating elements of or in associative containers results in a
failure at compile time. [11]

[11] Unfortunately, some systems provide really bad error handling. You see that something went wrong but
have problems finding out why. Some compilers don't even print the source code that caused the trouble.
This will change in the future, I hope.

Note that this problem prevents you from calling removing algorithms for associative containers
because these algorithms manipulate elements implicitly. The values of "removed" elements are
overwritten by the following elements that are not removed.

Now the question arises, How does one remove elements in associative containers? Well, the
answer is simple: Call their member functions! Every associative container provides member
functions to remove elements. For example, you can call the member function erase() to
remove elements:

 // stl/remove3.cpp

The C++ Standard Library

dyne-book 107

 #include <iostream>
 #include <set>
 #include <algorithm>
 using namespace std;

 int main()
 {
 set<int> coll;

 //insert elements from 1 to 9
 for (int i=1; i<=9; ++i) {
 coll.insert(i);
 }

 //print all elements of the collection
 copy (coll.begin(), coll.end(),
 ostream_iterator<int>(cout," "));
 cout << endl;

 /*Remove all elements with value 3
 * - algorithm remove() does not work
 * - instead member function erase() works
 */
 int num = coll.erase(3);

 //print number of removed elements
 cout << "number of removed elements: " << num << endl;

 //print all elements of the modified collection
 copy (coll.begin(), coll.end(),
 ostream_iterator<int>(cout," "));
 cout << endl;
 }

Note that containers provide different erase() member functions. Only the form that gets the
value of the element(s) to remove as a single argument returns the number of removed elements.
Of course, when duplicates are not allowed, the return value can only be 0 or 1 (as is the case for
sets and maps).

The output of the program is as follows:

 1 2 3 4 5 6 7 8 9
 number of removed elements: 1
 1 2 4 5 6 7 8 9

5.6.3 Algorithms versus Member Functions

Even if you are able to use an algorithm, it might be a bad idea to do so. A container might have
member functions that provide much better performance.

Calling remove() for elements of a list is a good example of this. If you call remove() for
elements of a list, the algorithm doesn't know that it is operating on a list. Thus, it does what it
does for any container: It reorders the elements by changing their values. If, for example, it

The C++ Standard Library

dyne-book 108

removes the first element, all the following elements are assigned to their previous elements. This
behavior contradicts the main advantage of lists — the ability to insert, move, and remove
elements by modifying the links instead of the values.

To avoid bad performance, lists provide special member functions for all manipulating algorithms.
You should always use them. Furthermore, these member functions really remove "removed"
elements, as this example shows:

 // stl/remove4.cpp

 #include <iostream>
 #include <list>
 #include <algorithm>
 using namespace std;

 int main()
 {
 list<int> coll;

 //insert elements from 6 to 1 and 1 to 6
 for (int i=1; i<=6; ++i) {
 coll.push_front(i);
 coll.push_back(i);
 }

 //remove all elements with value 3
 //- poor performance
 coll.erase (remove(coll.begin(),coll.end(),
 3),
 coll.end());

 //remove all elements with value 4
 //- good performance
 coll.remove (4);
 }

You should always prefer a member function over an algorithm if good performance is the goal.
The problem is, you have to know that a member function exists that has significantly better
performance for a certain container. No warning or error message appears if you use the
remove() algorithm for a list. However, if you prefer a member function in these cases you have
to change the code when you switch to another container type. In the reference sections of
algorithms (Chapter 9) I mention when a member function exists that provides better
performance than an algorithm.

5.7 User-Defined Generic Functions

The STL is an extensible framework. This means you can write your own functions and
algorithms to process elements of collections. Of course, these operations may also be generic.
However, to declare a valid iterator in these operations, you must use the type of the container,
which is different for each container type. To facilitate the writing of generic functions, each
container type provides some internal type definitions. Consider the following example:

 // stl/print.hpp

The C++ Standard Library

dyne-book 109

 #include <iostream>

 /* PRINT_ELEMENTS()
 * - prints optional C-string optcstr followed by
 * - all elements of the collection coll
 * - separated by spaces
 */
 template <class T>
 inline void PRINT_ELEMENTS (const T& coll, const char* optcstr="")
 {
 typename T::const_iterator pos;

 std::cout << optcstr;
 for (pos=coll.begin(); pos!=coll.end(); ++pos) {
 std::cout << *pos << ' ';
 }
 std::cout << std::endl;
 }

This example defines a generic function that prints an optional string followed by all elements of
the passed container. In the declaration

 typename T::const_iterator pos;

pos is declared as having the iterator type of the passed container type, typename is necessary
to specify that const_iterator is a type and not a value of type T (see the introduction of
typename on page 11).

In addition to iterator and const_iterator, containers provide other types to facilitate the
writing of generic functions. For example, they provide the type of the elements to enable the
handling of temporary copies of elements. See Section 7.5.1, for details.

The optional second argument of PRINT_ELEMENTS is a string that is used as a prefix before all
elements are written. Thus, by using PRINT_ELEMENTS() you could comment or introduce the
output like this:

 PRINT_ELEMENTS (coll, "all elements: ");

I introduced this function here because I use it often in the rest of the book to print all elements of
containers by using a simple call.

5.8 Functions as Algorithm Arguments

To increase their flexibility and power, several algorithms allow the passing of user-defined
auxiliary functions. These functions are called internally by the algorithms.

5.8.1 Examples of Using Functions as Algorithm Arguments

The simplest example is the for_each() algorithm. It calls a user-defined function for each
element of the specified range. Consider the following example:

 // stl/foreach1.cpp

The C++ Standard Library

dyne-book 110

 #include <iostream>
 #include <vector>
 #include <algorithm>
 using namespace std;

 //function that prints the passed argument
 void print (int elem)
 {
 cout << elem << ' ' ;
 }

 int main()
 {
 vector<int> coll;

 //insert elements from 1 to 9
 for (int i=1; i<=9; ++i) {
 coll.push_back(i);
 }

 //print all elements
 for_each (coll.begin(), coll.end(), //range
 print); //operation
 cout << endl;
 }

The for_each() algorithm calls the passed print() function for every element in the range
[coll.begin(),coll.end()). Thus, the output of the program is as follows:

 1 2 3 4 5 6 7 8 9

Algorithms use auxiliary functions in several variants—some optional, some mandatory. In
particular, you can use them to specify a search criterion, a sorting criterion, or to define a
manipulation while transferring elements from one collection to another.

Here is another example program:

 // stl/transform1.cpp

 #include <iostream>
 #include <vector>
 #include <set>
 #include <algorithm>
 #include "print.hpp"

 int square (int value)
 {
 return value*value;
 }

 int main()
 {
 std::set<int> coll1;
 std::vector<int> coll2;

The C++ Standard Library

dyne-book 111

 //insert elements from 1 to 9 into coll1
 for (int i=1; i<=9; ++i) {
 coll1.insert(i);
 }
 PRINT_ELEMENTS(coll1,"initialized: ");

 //transform each element from coll1 to coll2
 // - square transformed values
 std::transform (coll1.begin(),coll1.end(), //source
 std::back_inserter(coll2), //destination
 square); //operation

 PRINT_ELEMENTS(coll2,"squared: ");
 }

In this example, square() is used to square each element of coll1 while it is transformed to
coll2 (Figure 5.8). The program has the following output:

Figure 5.8. How transform() Operates

 initialized: 1 2 3 4 5 6 7 8 9
 squared: 1 4 9 16 25 36 49 64 81

5.8.2 Predicates

A special kind of auxiliary function for algorithms is a predicate. Predicates are functions that
return a Boolean value. They are often used to specify a sorting or a search criterion. Depending
on their purpose, predicates are unary or binary. Note that not every unary or binary function that
returns a Boolean value is a valid predicate. The STL requires that predicates always yield the
same result for the same value. This rules out functions that modify their internal state when they
are called. See Section 8.1.4, for details.

Unary Predicates

The C++ Standard Library

dyne-book 112

Unary predicates check a specific property of a single argument. A typical example is a function
that is used as a search criterion to find the first prime number:

 // stl/prime1.cpp

 #include <iostream>
 #include <list>
 #include <algorithm>
 #include <cstdlib> //for abs()
 using namespace std;

 //predicate, which returns whether an integer is a prime number
 bool isPrime (int number)
 {
 //ignore negative sign
 number = abs(number);

 // 0 and 1 are prime numbers
 if (number == 0 || number == 1) {
 return true;
 }

 //find divisor that divides without a remainder
 int divisor;
 for (divisor = number/2; number%divisor != 0; --divisor) {
 ;
 }

 //if no divisor greater than 1 is found, it is a prime number
 return divisor == 1;
 }

 int main()
 {
 list<int> coll;

 //insert elements from 24 to 30
 for (int i=24; i<=30; ++i) {
 coll.push_back(i);
 }

 //search for prime number
 list<int>::iterator pos;
 pos = find_if (coll.begin(), coll.end(), //range
 isPrime); //predicate
 if (pos != coll.end()) {
 //found
 cout << *pos << " is first prime number found" << endl;
 }
 else {
 //not found
 cout << "no prime number found" << endl;
 }
 }

The C++ Standard Library

dyne-book 113

In this example, the find_if() algorithm is used to search for the first element of the given
range for which the passed unary predicate yields true. Here, the predicate is the isPrime()
function. This function checks whether a number is a prime number. By using it, the algorithm
returns the first prime number in the given range. If the algorithm does not find any element that
matches the predicate, it returns the end of the range (its second argument). This is checked after
the call. The collection in this example has a prime number between 24 and 30. So the output of
the program is as follows:

 29 is first prime number found

Binary Predicates

Binary predicates typically compare a specific property of two arguments. For example, to sort
elements according to your own criterion you could provide it as a simple predicate function. This
might be necessary because the elements do not provide operator < or because you wish to use
a different criterion.

The following example sorts elements of a set by the first name and last name of a person:

 // stl/sort1.cpp

 #include <iostream>
 #include <string>
 #include <deque>
 #include <algorithm>
 using namespace std;

 class Person {
 public:
 string firstname() const;
 string lastname() const;
 ...
 };

 /*binary function predicate:
 *- returns whether a person is less than another person
 */
 bool personSortCriterion (const Person& p1, const Person& p2)
 {
 /*a person is less than another person
 *- if the last name is less
 *- if the last name is equal and the first name is less
 */
 return p1.lastname()<p2.1astname() ||
 (!(p2.1astname()<p1.lastname()) &&
 p1.firstname()<p2.firstname());
 }

 int main()
 {
 deque<Person> coll;
 ...

 sort (coll. begin(), coll. end() , //range

The C++ Standard Library

dyne-book 114

 personSortCriterion); //sort criterion
 ...
 }

Note that you can also implement a sorting criterion as a function object. This kind of
implementation has the advantage that the criterion is a type, which you could use, for example,
to declare sets that use this criterion for sorting its elements. See Section 8.1.1, for such an
implementation of this sorting criterion.

5.9 Function Objects

Functional arguments for algorithms don't have to be functions. They can be objects that behave
as functions. Such an object is called a function object, or functor. Sometimes you can use a
function object when an ordinary function won't work. The STL often uses function objects and
provides several function objects that are very helpful.

5.9.1 What Are Function Objects?

Function objects are another example of the power of generic programming and the concept of
pure abstraction. You could say that anything that behaves like a function is a function. So, if you
define an object that behaves as a function, it can be used as a function.

So, what is the behavior of a function? The answer is: A functional behavior is something that you
can call by using parentheses and passing arguments. For example:

 function (arg1 ,arg2); //a function call

So, if you want objects to behave this way you have to make it possible to "call" them by using
parentheses and passing arguments. Yes, that's possible (there are rarely things that are not
possible in C++). All you have to do is define operator () with the appropriate parameter
types:

 class X {
 public:
 //define "function call" operator
 return-value operator() (arguments) const;
 ...
 };

Now you can use objects of this class to behave as a function that you can call:

 X fo;
 ...
 fo(arg1, arg2); //call operator () for function object fo

The call is equivalent to:

 fo.operator() (arg1,arg2); //call operator () for function object fo

The following is a complete example. This is the function object version of a previous example
(see page 119) that did the same with an ordinary function:

 // stl/foreach2.cpp

The C++ Standard Library

dyne-book 115

 #include <iostream>
 #include <vector>
 #include <algorithm>
 using namespace std;

 //simple function object that prints the passed argument
 class PrintInt {
 public:
 void operator() (int elem) const {
 cout << elem << ' ';
 }
 };

 int main()
 {
 vector<int> coll;
 //insert elements from 1 to 9
 for (int i=1; i<=9; ++i) {
 coll.push_back(i);
 }

 //print all elements
 for_each (coll.begin(), coll.end(), //range
 PrintInt()); //operation
 cout << endl;
 }

The class PrintInt defines objects for which you can call operator () with an int argument.
The expression

 PrintInt()

in the statement

 for_each (coll.begin(), coll.end(),
 PrintInt());

creates a temporary object of this class, which is passed to the for_each() algorithm as an
argument. The for_each() algorithm is written like this:

 namespace std {
 template <class Iterator, class Operation>
 Operation for_each (Iterator act, Iterator end, Operation op)
 {
 while (act != end) { //as long as not reached the end
 op (*act); // - call op() for actual element
 act++; // - move iterator to the next element
 }
 return op; }
 }
 }

The C++ Standard Library

dyne-book 116

for_each() uses the temporary function object op to call op(*act) for each element act. If
the third parameter is an ordinary function, it simply calls it with *act as an argument. If the third
parameter is a function object, it calls operator () for the function object op with *act as an
argument. Thus, in this example program for_each() calls:

 PrintInt::operator()(*act)

You may be wondering what all this is good for. You might even think that function objects look
strange, nasty, or nonsensical. It is true that they do complicate code. However, function objects
are more than functions, and they have some advantages:

1. Function objects are "smart functions."

Objects that behave like pointers are smart pointers. This is similarly true for objects that
behave like functions: They can be "smart functions" because they may have abilities
beyond operator (). Function objects may have other member functions and attributes.
This means that function objects have a state. In fact, the same function, represented by
a function object, may have different states at the same time. This is not possible for
ordinary functions. Another advantage of function objects is that you can initialize them at
runtime before you use/call them.

2. Each function object has its own type.

Ordinary functions have different types only when their signatures differ. However,
function objects can have different types even when their signatures are the same. In
fact, each functional behavior defined by a function object has its own type. This is a
significant improvement for generic programming using templates because you can pass
functional behavior as a template parameter. It enables containers of different types to
use the same kind of function object as a sorting criterion. This ensures that you don't
assign, combine, or compare collections that have different sorting criteria. You can even
design hierarchies of function objects so that you can, for example, have different, special
kinds of one general criterion.

3. Function objects are usually faster than ordinary functions.

The concept of templates usually allows better optimization because more details are
defined at compile time. Thus, passing function objects instead of ordinary functions often
results in better performance.

In the rest of this subsection I present some examples that demonstrate how function objects can
be "smarter" than ordinary functions. Chapter 8, which deals only with function objects, provides
more examples and details. In particular, it shows how to benefit from the ability to pass
functional behavior as a template parameter.

Suppose you want to add a certain value to all elements of a collection. If you know the value you
want to add at compile time, you could use an ordinary function:

 void add10 (int& elem)
 {
 elem += 10;
 }

The C++ Standard Library

dyne-book 117

 void fl()
 {
 vector<int> coll;
 ...

 for_each (coll.begin(), coll.end(), //range
 add10); //operation
 }

If you need different values that are known at compile time, you could use a template instead:

 template <int theValue>
 void add (int& elem)
 {
 elem += theValue;
 }

 void f1()
 {
 vector<int> coll;
 ...

 for_each (coll.begin() , coll.end(), //range
 add<10>); //operation
 }

If you process the value to add at runtime, things get complicated. You must pass the value to the
function before the function is called. This normally results in some global variable that is used
both by the function that calls the algorithm and by the function that is called by the algorithm to
add that value. This is messy style.

If you need such a function twice, with two different values to add, and both values are processed
at runtime, you can't achieve this with one ordinary function. You must either pass a tag or you
must write two different functions. Did you ever copy the definition of a function because it had a
static variable to keep its state and you needed the same function with another state at the same
time? This is exactly the same type of problem.

With function objects, you can write a "smarter" function that behaves in the desired way.
Because the object may have a state, it can be initialized by the correct value. Here is a complete
example [12] :

[12] The auxiliary function PRINT_ELEMENTS() was introduced on page 118.

 // stl/add1.cpp

 #include <iostream>
 #include <list>
 #include <algorithm>
 #include "print.hpp"
 using namespace std;

 //function object that adds the value with which it is initialized
 class AddValue {

The C++ Standard Library

dyne-book 118

 private:
 int the Value; //the value to add
 public:
 //constructor initializes the value to add
 AddValue(int v) : theValue(v) {
 }

 //the "function call" for the element adds the value
 void operator() (int& elem) const {
 elem += theValue;
 }
 };

 int main()
 {
 list<int> coll;

The first call of for_each() adds 10 to each value:

 for_each (coll.begin(), coll.end(), //range
 AddValue(10)) ; //operation

Here, the expression AddValue(10) creates an object of type AddValue that is initialized with
the value 10. The constructor of AddValue stores this value as the member theValue. Inside
for_each(), "()" is called for each element of coll. Again, this is a call of operator () for
the passed temporary function object of type AddValue. The actual element is passed as an
argument. The function object adds its value 10 to each element. The elements then have the
following values:

 after adding 10: 11 12 13 14 15 16 17 18 19

The second call of for_each() uses the same functionality to add the value of the first element
to each element. It initializes a temporary function object of type AddValue with the first element
of the collection:

 AddValue (*coll. begin())

The output is then as follows:

 after adding first element: 22 23 24 25 26 27 28 29 30

See page 335 for a modified version of this example, in which the AddValue function object type
is a template for the type of value to add.

By using this technique, two different function objects can solve the problem of having a function
with two states at the same time. For example, you could simply declare two function objects and
use them independently:

 AddValue addx (x); //function object that adds value x
 AddValue addy (y); //function object that adds value y

The C++ Standard Library

dyne-book 119

 for_each (coll.begin(),coll.end(), //add value x to each element
 addx);
 ...
 for_each (coll.begin(),coll.end(), //add value y to each element
 addy);
 ...
 for_each (coll.begin() .coll.end(), //add value x to each element
 addx);

Similarly you can provide additional member functions to query or to change the state of the
function object during its lifetime. See page 300 for a good example.

Note that for some algorithms the C++ standard library does not specify how often function
objects are called for each element, and it might happen that different copies of the function
object are passed to the elements. This might have some nasty consequences if you use function
objects as predicates. Section 8.1.4, covers this issue.

5.9.2 Predefined Function Objects

The C++ standard library contains several predefined function objects that cover fundamental
operations. By using them, you don't have to write your own function objects in several cases. A
typical example is a function object used as a sorting criterion. The default sorting criterion for
operator < is the predefined sorting criterion less<>. Thus, if you declare

 set<int> coll;

it is expanded to [13]

[13] For systems that don't provide default template arguments, you usually must use the latter form.

 set<int, less<int> > coll; //sort elements with <

From there, it is easy to sort elements in the opposite order [14] :

[14] Note that you have to put a space between the two ">" characters. ">>" would be parsed as shift
operator, which would result in a syntax error.

 set<int ,greater<int> > coll; //sort elements with >

Similarly, many function objects are provided to specify numeric processing. For example, the
following statement negates all elements of a collection:

 transform (coll.begin() , coll.end(), //source
 coll.begin(), //destination
 negate<int>()) ; //operation

The expression

The C++ Standard Library

dyne-book 120

 negate<int>()

creates a function object of the predefined template class negate that simply returns the negated
element of type int for which it is called. The transform() algorithm uses that operation to
transform all elements of the first collection into the second collection. If source and destination
are equal (as in this case), the returned negated elements overwrite themselves. Thus, the
statement negates each element in the collection.

Similarly, you can process the square of all elements in a collection:

 //process the square of all elements
 transform (coll.begin(), coll.end(), //first source
 coll.begin(), //second source
 coll.begin(), //destination
 multiplies<int>()) ; //operation

Here, another form of the transform() algorithm combines elements of two collections by using
the specified operation, and writes the resulting elements into the third collection. Again, all
collections are the same, so each element gets multiplied by itself, and the result overwrites the
old value. [15]

[15] In earlier versions of the STL, the function object for multiplication had the name times. This was
changed due to a name clash with a function of operating system standards (X/Open, POSIX) and because
multiplies was clearer.

By using special function adapters you can combine predefined function objects with other values
or use special cases. Here is a complete example:

 // stl/fo1.cpp

 #include <iostream>
 #include <set>
 #include <deque>
 #include <algorithm>
 #include "print.hpp"
 using namespace std;

 int main()
 {
 set<int,greater<int> > coll1;
 deque<int> coll2;

 //insert elements from 1 to 9
 for (int i=1; i<=9; ++i) {
 coll1.insert(i);
 }

 PRINT.ELEMENTS(coll1,"initialized: ");

 //transform all elements into coll2 by multiplying 10
 transform (coll1 .begin(), coll1 .end(), //source
 back_inserter(coll2), //destination
 bind2nd(multiplies<int>() ,10)); //operation

The C++ Standard Library

dyne-book 121

 PRINT_ELEMENTS(coll2,"transformed: ");

 //replace value equal to 70 with 42
 replace_if (coll2.begin(),coll2.end(), //range
 bind2nd(equal_to<int>() ,70) , //replace criterion
 42) ; //new value
 PRINT_ELEMENTS(coll2,"replaced: ");

 //remove all elements with values less than 50
 coll2.erase(remove_if(coll2.begin(),coll2.end(), //range
 bind2nd(less<int>() ,50)), //remove criterion
 coll2.end());

 PRINT_ELEMENTS(coll2,"removed: ");
 }

With the statement

 transform (coll1.begin() ,coll1.end() //source
 back_inserter (coll2) , //destination
 bind2nd(multiplies<int>() ,10)) ; //operation

all elements of coll1 are transformed into coll2 (inserting) while multiplying each element by
10. Here, the function adapter bind2nd causes multiply<int> to be called for each element
of the source collection as the first argument and the value 10 as the second.

The way bind2nd operates is as follows: transform() is expecting as its fourth argument an
operation that takes one argument; namely, the actual element. However, we would like to
multiply that argument by ten. So, we have to combine an operation that takes two arguments
and the value that always should be used as a second argument to get an operation for one
argument. bind2nd does that job. It stores the operation and the second argument as internal
values. When the algorithm calls bind2nd with the actual element as the argument, bind2nd
calls its operation with the element from the algorithm as the first argument and the internal value
as the second argument, and returns the result of the operation.
Similarly, in

 replace_if (coll2.begin(),coll2.end(), //range
 bind2nd(equal_to<int>(),70), //replace criterion
 42);

the expression

 bind2nd(equal_to<int>(),70)

is used as a criterion to specify the elements that are replaced by 42. bind2nd calls the binary
predicate equal_to with value 70 as the second argument, thus defining a unary predicate for
the elements of the processed collection.

The last statement is similar because the expression

 bind2nd(less<int>(),50)

The C++ Standard Library

dyne-book 122

is used to specify the element that should be removed from the collection. It specifies that all
elements that are less than value 50 be removed. The output of the program is as follows:

 initialized: 9 8 7 6 5 4 3 2 1
 transformed: 90 80 70 60 50 40 30 20 10
 replaced: 90 80 42 60 50 40 30 20 10
 removed: 90 80 60 50

This kind of programming results in functional composition. What is interesting is that all these
function objects are usually declared inline. Thus, you use a function-like notation or abstraction,
but you get good performance.

There are other kinds of function objects. For example, some function objects provide the ability
to call a member function for each element of a collection:

 for_each (coll.begin(), coll.end(), //range
 mem_fun_ref (&Person: : save)); //operation

The function object mem_fun_ref calls a specified member function for the element for which it
is called. Thus, for each element of the collection coll, the member function save() of class
Person is called. Of course, this works only if the elements have type Person or a type derived
from Person.

Section 8.2, lists and discusses in more detail all predefined function objects, function adapters,
and aspects of functional composition. It also explains how you can write your own function
objects.

5.10 Container Elements

Elements of containers must meet certain requirements because containers handle them in a
special way. In this section I describe these requirements. I also discuss the consequences of the
fact that containers make copies of their elements internally.

5.10.1 Requirements for Container Elements

Containers, iterators, and algorithms of the STL are templates. Thus, they can process any type,
whether predefined or user defined. However, because of the operations that are called, some
requirements apply. The elements of STL containers must meet the following three fundamental
requirements:

1. An element must be copyable by a copy constructor. The generated copy should be
equivalent to the source. This means that any test for equality returns that both are equal
and that both source and copy behave the same.

All containers create internal copies of their elements and return temporary copies of
them, so the copy constructor is called very often. Thus, the copy constructor should
perform well (this is not a requirement, but a hint to get better performance). If copying
objects takes too much time you can avoid copying objects by using the containers with
reference semantics. See Section 6.8, for details.

The C++ Standard Library

dyne-book 123

2. An element must be assignable by the assignment operator. Containers and algorithms
use assignment operators to overwrite old elements with new elements.

3. An element must be destroyable by a destructor. Containers destroy their internal copies
of elements when these elements are removed from the container. Thus, the destructor
must not be private. Also, as usual in C++, a destructor must not throw; otherwise, all
bets are off.

These three operations are generated implicitly for any class. Thus, a class meets the
requirements automatically, provided no special versions of these operations are defined and no
special members disable the sanity of those operations.

Elements might also have to meet the following requirements [16] :

[16] In some older C++ systems, you may have to implement these additional requirements even if they are
not used. For example, some implementations of vector always require the default constructor for
elements. Other implementations always require the existence of the comparison operator. However,
according to the standard, such a requirement is wrong, and these limitations will likely be eliminated.

• For some member functions of sequence containers, the default constructor must be
available. For example, it is possible to create a nonempty container or increase the
number of elements with no hint of the values those new elements should have. These
elements are created without any arguments by calling the default constructor of their
type.

• For several operations, the test of equality with operator == must be defined. It is
especially needed when elements are searched.

• For associative containers the operations of the sorting criterion must be provided by the
elements. By default, this is the operator <, which is called by the less<> function
object.

5.10.2 Value Semantics or Reference Semantics

All containers create internal copies of their elements and return copies of those elements. This
means that container elements are equal but not identical to the objects you put into the
container. If you modify objects as elements of the container, you modify a copy, not the original
object.

Copying values means that the STL containers provide value semantics. They contain the values
of the objects you insert rather than the objects themselves. In practice, however, you also need
reference semantics. This means that the containers contain references to the objects that are
their elements.

The approach of the STL, only to support value semantics, has strengths and weaknesses. Its
strengths are:

• Copying elements is simple.
• References are error prone. You must ensure that references don't refer to objects that

no longer exist. You also have to manage circular references, which might occur.

Its weaknesses are:

• Copying elements might result in bad performance or may not even be possible.
• Managing the same object in several containers at the same time is not possible.

The C++ Standard Library

dyne-book 124

In practice you need both approaches; you need copies that are independent of the original data
(value semantics) and copies that still refer to the original data and get modified accordingly
(reference semnatics). Unfortunately, there is no support for reference semantics in the C++
standard library. However, you can implement reference semantics in terms of value semantics.

The obvious approach to implementing reference semantics is to use pointers as elements. [17]
However, ordinary pointers have the usual problems. For example, objects to which they refer
may no longer exist, and comparisons may not work as desired because pointers instead of the
objects are compared. Thus, you should be very careful when you use ordinary pointers as
container elements.

[17] C programmers might recognize the use of pointers to get reference semantics. In C, function arguments
are able to get passed only by value, so you need pointers to enable a call-by-reference.

A better approach is to use a kind of smart pointer — objects that have a pointer-like interface but
that do some additional checking or processing internally. The important question here is, how
smart do they have to be? The C++ standard library does provide a smart pointer class that might
look like it would be useful here: auto_ptr (see Section 4.2). However, you can't use
auto_ptrs because they don't meet a fundamental requirement for container elements. That is,
after a copy or an assignment of an auto_ptr is made, source and destination are not
equivalent. In fact, the source auto_ptr gets modified because its value gets transferred and
not copied(see page 43 and page 47). In practice, this means that sorting or even printing the
elements of a container might destroy them. So, do not use auto.ptrs as container elements (if
you have a standard-conforming C++ system, you will get an error at compile time if you try to
use an auto_ptr as a container element). See page 43 for details.

To get reference semantics for STL containers you must write your own smart pointer class. But
be aware: Even if you use a smart pointer with reference counting (a smart pointer that destroys
its value automatically when the last reference to it gets destroyed), it is troublesome. For
example, if you have direct access to the elements, you can modify their values while they are in
the container. Thus, you could break the order of elements in an associative container. You don't
want to do this.

Section 6.8, offers more details about containers with reference semantics. In particular, it
shows a possible way to implement reference semantics for STL containers by using smart
pointers with reference counting.

5.11 Errors and Exceptions Inside the STL

Errors happen. They might be logical errors caused by the program (the programmer) or runtime
errors caused by the context or the environment of a program (such as low memory). Both kinds
of errors may be handled by exceptions (see page 15 for a short introduction to exceptions). This
section discusses how errors and exceptions are handled in the STL.

5.11.1 Error Handling

The design goal of the STL was the best performance rather than the most security. Error
checking wastes time, so almost none is done. This is fine if you can program without making any
errors, but it can be a catastrophe if you can't. Before the STL was adopted into the C++ standard
library, discussions were held regarding whether to introduce more error checking. The majority
decided not to, for two reasons:

1. Error checking reduces performance, and speed is still a general goal of programs. As
mentioned, good performance was one of the design goals of the STL.

The C++ Standard Library

dyne-book 125

2. If you prefer safety over speed, you can still get it, either by adding wrappers or by using
special versions of the STL. But you can't program to avoid error checking to get better
performance when error checking is built into all basic operations. For example, when
every subscript operation checks whether a range is valid, you can't write your own
subscripts without checking. However, it is possible the other way around.

As a consequence, error checking is possible but not required inside the STL.

The C++ standard library states that any use of the STL that violates preconditions results in
undefined behavior. Thus, if indexes, iterators, or ranges are not valid, the result is undefined. If
you do not use a safe version of the STL, undefined memory access typically results, which
causes some nasty side effects or even a crash. In this sense, the STL is as error prone as
pointers are in C.

Finding such errors could be very hard, especially without a safe version of the STL.

In particular, the use of the STL requires that the following be met:

• Iterators must be valid. For example, they must be initialized before they are used. Note
that iterators may become invalid as a side effect of other operations. In particular, they
become invalid for vectors and deques if elements are inserted or deleted, or reallocation
takes place.

• Iterators that refer to the past-the-end position have no element to which to refer. Thus,
calling operator * or operator -> is not allowed. This is especially true for the return
values of the end() and rend() container member functions.

• Ranges must be valid:
o Both iterators that specify a range must refer to the same container.
o The second iterator must be reachable from the first iterator.

• If more than one source range is used, the second and later ranges must have at least as
many elements as the first one.

• Destination ranges must have enough elements that can be overwritten; otherwise, insert
iterators must be used.

The following example shows some possible errors:

 // stl/iterbug1.cpp

 #include <iostream>
 #include <vector>
 #include <algorithm>
 using namespace std;
 int main()
 {
 vector<int> coll1; //empty collection
 vector<int> coll2; //empty collection

 /* RUNTIME ERROR:
 * - beginning is behind the end of the range
 */
 vector<int>::iterator pos = coll1.begin();
 reverse (++pos, coll1 .end());

 //insert elements from 1 to 9 into coll2
 for (int i=1; i<=9; ++i) {
 coll2.push_back (i);

The C++ Standard Library

dyne-book 126

 }

 /*RUNTIME ERROR:
 * - overwriting nonexisting elements
 */
 copy (coll2.begin(), coll2.end(), //source
 coll1 .begin()) ; //destination

 /* RUNTIME ERROR:
 * - collections mistaken
 * - begin() and end() mistaken
 */
 copy (coll1.begin(), coll2.end(), //source
 coll1. end()); //destination
 }

Note that these errors occur at runtime, not at compile time, and thus they cause undefined
behavior.

There are many ways to make mistakes when using the STL, and the STL is not required to
protect you from yourself. Thus, it is a good idea to use a "safe" STL, at least during software
development. A first version of a safe STL was introduced by Cay Horstmann. [18] Unfortunately,
most library vendors provide the STL based on the original source code, which doesn't include
error handling. But things get better. An exemplary version of the STL is the "STLport," which is
available for free for almost any platform at www.stlport.org/.

[18] You can find the safe STL by Cay Horstmann at www.horstmann.com/safestl.html.

5.11.2 Exception Handling

The STL almost never checks for logical errors. Therefore, almost no exceptions are generated
by the STL itself due to a logical problem. In fact, there is only one function call for which the
standard requires that it might cause an exception directly: the at() member function for vectors
and deques. (It is the checked version of the subscript operator.) Other than that, the standard
requires that only the usual standard exceptions may occur, such as bad_alloc for lack of
memory or exceptions of user-defined operations.

When are exceptions generated and what happens to STL components when they are? For a
long time during the standardization process there was no defined behavior regarding this. In fact,
every exception resulted in undefined behavior. Even the destruction of an STL container after an
exception was thrown during one of its operations resulted in undefined behavior, such as a
crash. Thus, the STL was useless when you needed guaranteed, defined behavior because it
was not even possible to unwind the stack.

How to handle exceptions was one of the last topics addressed during the standardization
process. Finding a good solution was not easy, and it took a long time for the following reasons:

1. It was very difficult to determine the degree of safety the C++ standard library should
provide. You might argue that it is always best to provide as much safety as possible. For
example, you could say that the insertion of a new element at any position in a vector
ought to either succeed or have no effect. Ordinarily an exception might occur while
copying later elements into the next position to make room for the new element, from
which a full recovery is impossible. To achieve the stated goal, the insert operation would
need to be implemented to copy every element of the vector into new storage, which

The C++ Standard Library

dyne-book 127

would have a serious impact on performance. If good performance is a design goal (as is
the case for the STL), you can't provide perfect exception handling in all cases. You have
to find a compromise that meets both needs.

2. There was a concern that the presence of code to handle exceptions could adversely
affect performance. This would contradict the design goal of achieving the best possible
performance. However, compiler writers state that, in principle, exception handling can be
implemented without any significant performance overhead (and many such
implementations exist). There is no doubt that it is better to have guaranteed, defined
behavior for exceptions without a significant performance penalty instead of the risk that
exceptions might crash your system.

As a result of these discussions, the C++ standard library now gives the following basic
guarantee for exception safety [19] : The C++ standard library will not leak resources or violate
container invariants in the face of exceptions.

[19] Many thanks to Dave Abrahams and Greg Colvin for their work on exception safety in the C++ standard
library and for the feedback they gave me regarding this topic.

Unfortunately, for many purposes this is not enough. Often you need a stronger guarantee that
specifies that an operation has no effect if an exception is thrown. Such operations can be
considered to be atomic with respect to exceptions. Or, to use terms from database
programming, you could say that these operations support commit-or-rollback behavior or are
transaction safe.

Regarding this stronger guarantee, the C++ standard library now guarantees the following:

• For all node-based containers (lists, sets, multisets, maps and multimaps), any failure to
construct a node simply leaves the container as it was. Furthermore, removing a node
can't fail (provided destructors don't throw). However, for multiple-element insert
operations of associative containers, the need to keep elements sorted makes full
recovery from throws impractical. Thus, all single-element insert operations of associative
containers support commit-or-rollback behavior. That is, they either succeed or have no
effect. In addition, it is guaranteed that all erase operations for both single- and multiple-
elements always succeed.

For lists, even multiple-element insert operations are transaction-safe. In fact, all list
operations, except remove(), remove_if(), merge(), sort(), and unique(),
either succeed or have no effect. For some of them the C++ standard library provides
conditional guarantees. Thus, if you need a transaction-safe container, you should use a
list.

• All array-based containers (vectors and deques) do not fully recover when an element
gets inserted. To do this, they would have to copy all subsequent elements before any
insert operation, and handling full recovery for all copy operations would take quite a lot
of time. However, push and pop operations that operate at the end do not require that
existing elements have to get copied. So if they throw, it is guaranteed that they have no
effect. Furthermore, if elements have a type with copy operations (copy constructor and
assignment operator) that do not throw, then every container operation for these
elements either succeeds or has no effect.

See Section 6.10.10, for a detailled overview of all container operations that give stronger
guarantees in face of exceptions.

The C++ Standard Library

dyne-book 128

Note that all these guarantees are based on the requirement that destructors never throw (which
should always be the case in C++). The C++ standard library makes this promise, and so must
the application programmer.
If you need a container that has a full commit-or-rollback ability, you should use either a list
(without calling the sort() and unique() member functions) or an associative container
(without calling their multiple-element insert operations). This avoids having to make copies
before a modifying operation to ensure that no data gets lost. Note that making copies of a
container could be very expensive.

If you can't use a node-based container and need the full commit-or-rollback ability, you have to
provide wrappers for each critical operation. For example, the following function would almost
safely insert a value in any container at a certain position:

 template <class T, class Cont, class Iter>
 void insert (const Cont& coll, Iter pos, const T& value)
 {
 Cont tmp(coll); //copy container and all elements
 tmp. insert (pos, value); //modify the copy
 coll. swap (tmp); //use copy (in case no exception was thrown)
 }

Note that I wrote "almost," because this function still is not perfect. This is because the swap()
operation throws when, for associative containers, copying the comparison criterion throws. You
see, handling exceptions perfectly is not easy.

5.12 Extending the STL

The STL is designed as a framework that may be extended in almost any direction. You can
supply your own containers, iterators, algorithms, or function objects, provided they meet certain
requirements. In fact, there are some useful extensions that are missing in the C++ standard
library. This happened because at some point the committee had to stop introducing new features
and concentrate on perfecting the existing parts; otherwise, the job would never have been
completed.

The most important component that is missing in the STL is an additional kind of container that is
implemented as a hash table. The proposal of having hash tables be part of the C++ standard
library simply came too late. However, newer versions of the standard will likely contain some
form of hash tables. Most implementations of the C++ library already provide hash containers, but
unfortunately they're all different. See Section 6.7.3, for more details.

Other useful extensions are some additional function objects (see Section 8.3), iterators (see
Section 7.5.2), containers (see Section 6.7), and algorithms (see Section 7.5.1).

The C++ Standard Library

dyne-book 129

Chapter 6. STL Containers
This chapter discusses STL containers in detail. It continues the discussion that was begun in
Chapter 5. The chapter starts with a general overview of the general abilities and operations of
all container classes, with each container class explained in detail. The explanation includes a
description of their internal data structures, their operations, and their performance. It also shows
how to use the different operations and gives examples if the usage is not trivial. Each section
about the containers ends with examples of the typical use of the container. The chapter then
discusses the interesting question of when to use which container. By comparing the general
abilities, advantages, and disadvantages of all container types, it shows you how to find the best
container to meet your needs. Lastly, the chapter covers all members of all container classes in
detail. This part is intended as a type of reference manual. You can find the minor details of the
container interface and the exact signature of the container operations. When useful,
crossreferences to similar or supplementary algorithms are included.

The C++ standard library provides some special container classes, the so-called container
adapters (stack, queue, priority queue), bitmaps, and valarrays. All of these have special
interfaces that don't meet the general requirements of STL containers, so they are covered in
separate sections.[1] Container adapters and bitsets are covered in Chapter 10. Valarrays are
described in Section 12.2

[1] Historically, container adapters are part of the STL. However, from a conceptional perspective, they are
not part of the STL framework; they "only" use the STL.

6.1 Common Container Abilities and Operations

6.1.1 Common Container Abilities

This section covers the common abilities of STL container classes. Most of them are
requirements that, in general, every STL container should meet. The three core abilities are as
follows:

1. All containers provide value rather than reference semantics. Containers copy elements
internally when they are inserted rather than managing references to it. Thus, each
element of an STL container must be able to be copied. If objects you want to store don't
have a public copy constructor, or copying is not useful (for example, because it takes
time or elements must be part of multiple containers), the container elements must be
pointers or pointer objects that refer to these objects. Section 5.10.2, covers this
problem in detail.

2. In general, all elements have an order. Thus, you can iterate one or many times over all
elements in the same order. Each container type provides operations that return iterators
to iterate over the elements. This is the key interface of the STL algorithms.

3. In general, operations are not safe. The caller must ensure that the parameters of the
operations meet the requirements. Violating these requirements (such as using an invalid
index) results in undefined behavior. Usually the STL does not throw exceptions by itself.
If user-defined operations called by the STL containers do throw, the behavior is different.
See Section 5.11.2, for details.

6.1.2 Common Container Operations

The C++ Standard Library

dyne-book 130

The operations common to all containers meet the core abilities that were mentioned in the
previous subsection. Table 6.1 lists these operations. The following subsections explore some of
these common operations.

Initialization

Every container class provides a default constructor, a copy constructor, and a destructor. You
can also initialize a container with elements of a given range. This constructor is provided to
initialize the container with elements of another container, with an array, or from standard input.
These constructors are member templates (see page 11), so not only the container but also the
type of the elements may differ, provided there is an automatic conversion from the source
element type to the destination element type.[2] The following examples expand on this:

[2] If a system does not provide member templates, it will typically allow only the same types. In this case,
you can use the copy() algorithm instead. See page 188 for an example.

Table 6.1. Common Operations of Container Classes
Operation Effect

ContType c Creates an empty container without any element
ContType c1(c2) Copies a container of the same type
ContType c(beg,end) Creates a container and initializes it with copies of all elements of

[beg,end)
c.~ContType() Deletes all elements and frees the memory
c.size() Returns the actual number of elements
c.empty() Returns whether the container is empty (equivalent to size()==0, but

might be faster)
c.max_size() Returns the maximum number of elements possible
c1 == 2 Returns whether c1 is equal to c2
c1 != c2 Returns whether c1 is not equal to c2 (equivalent to !(c1==c2))
c1 < c2 Returns whether c1 is less than c2
c1 > c2 Returns whether c1 is greater than c2 (equivalent to c2<c1
c1 <= c2 Returns whether c1 is less than or equal to c2 (equivalent to

!(c2<c1))
c1 >= c2 Returns whether c1is greater than or equal to c2 (equivalent to

!(c1<c2))
c1 = c2 Assigns all elements of c1 to c2
c1.swap(c2) Swaps the data of c1and c2
swap(c1,c2) Same (as global function)
c.begin() Returns an iterator for the first element
c.end() Returns an iterator for the position after the last element
c.rbegin() Returns a reverse iterator for the first element of a reverse iteration
c.rend() Returns a reverse iterator for the position after the last element of a

reverse iteration
c.insert(pos,elem) Inserts a copy of elem (return value and the meaning of pos differ)
c.erase(beg,end) Removes all elements of the range [beg,end) (some containers return

next element not removed)
c.clear() Removes all elements (makes the container empty)

The C++ Standard Library

dyne-book 131

c.get_allocator() Returns the memory model of the container

• Initialize with the elements of another container:

 std::list<int> l; //l is a linked list of ints
 ...
 //copy all elements of the list as floats into a vector
 std::vector<float> c(l.begin(),l.end());

• Initialize with the elements of an array:

 int array[] = { 2, 3, 17, 33, 45, 77 };
 ...
 //copy all elements of the array into a set
 std::set<int> c(array,array+sizeof(array)/sizeof(array[0]));

• Initialize by using standard input:

 //read all integer elements of the deque from standard input
 std::deque<int> c((std::istream_iterator<int>(std::cin)),
 (std::istream_iterator<int>()));

Don't forget the extra parentheses around the initializer arguments here. Otherwise, this
expression does something very different and you probably will get some strange
warnings or errors in following statements. Consider writing the statement without extra
parentheses:

 std::deque<int> c(std::istream_iterator<int>(std::cin),
 std::istream_iterator<int>());
In this case, c declares a function with a return type that is deque<int>. Its first
parameter is of type istream_iterator<int> with the name cin, and its second
unnamed parameter is of type "function taking no arguments returning
istream_iterator<int>." This construct is valid syntactically as either a declaration
or an expression. So, according to language rules, it is treated as a declaration. The extra
parentheses force the initializer not to match the syntax of a declaration.[3]

[3] Thanks to John H. Spicer from EDG for this explanation.

In principle, these techniques are also provided to assign or to insert elements from another
range. However, for those operations the exact interfaces either differ due to additional
arguments or are not provided for all container classes.

Size Operations

For all container classes, three size operations are provided:

1. size()

Returns the actual number of elements of the container.

2. empty()

The C++ Standard Library

dyne-book 132

Is a shortcut for checking whether the number of elements is zero (size()==0).
However, empty() might be implemented more efficiently, so you should use it if
possible.

3. max_size()

Returns the maximum number of elements a container might contain. This value is
implementation defined. For example, a vector typically contains all elements in a single
block of memory, so there might be relevant restrictions on PCs. Otherwise,
max_size() is usually the maximum value of the type of the index.

Comparisons

The usual comparison operators ==, ! =, <, <=, >, and >= are defined according to the
following three rules:

1. Both containers must have the same type.
2. Two containers are equal if their elements are equal and have the same order. To check

equality of elements, use operator ==.
3. To check whether a container is less than another container, a lexicographical

comparison is done(see page 360).

To compare containers with different types, you must use the comparing algorithms of Section
9.5.4.

Assignments and swap ()

If you assign containers, you copy all elements of the source container and remove all old
elements in the destination container. Thus, assignment of containers is relatively expensive.

If the containers have the same type and the source is no longer used, there is an easy
optimization: Use swap(). swap() offers much better efficiency because it swaps only the
internal data of the containers. In fact, it swaps only some internal pointers that refer to the data
(elements, allocator, sorting criterion, if any). So, swap() is guaranteed to have only constant
complexity, instead of the linear complexity of an assignment.

6.2 Vectors

A vector models a dynamic array. Thus, it is an abstraction that manages its elements with a
dynamic array (Figure 6.1). However, note that the standard does not specify that the
implementation use a dynamic array. Rather, it follows from the constraints and specification of
the complexity of its operation.

Figure 6.1. Structure of a Vector

To use a vector, you must include the header file <vector>[4] :

The C++ Standard Library

dyne-book 133

[4] In the original STL, the header file for vectors was <vector.h>.

 #include <vector>

There, the type is defined as a template class inside namespace std:

 namespace std {
 template <class T,
 class Allocator = allocator<T> >
 class vector;
 }

The elements of a vector may have any type T that is assignable and copyable. The optional
second template parameter defines the memory model (see Chapter 15). The default memory
model is the model allocator, which is provided by the C++ standard library.[5]

[5] In systems without support for default template parameters, the second argument is typically missing.

6.2.1 Abilities of Vectors

Vectors copy their elements into their internal dynamic array. The elements always have a certain
order. Thus, vectors are a kind of ordered collection. Vectors provide random access. Thus, you
can access every element directly in constant time, provided you know its position. The iterators
are random access iterators, so you can use any algorithm of the STL.

Vectors provide good performance if you append or delete elements at the end. If you insert or
delete in the middle or at the beginning, performance gets worse. This is because every element
behind has to be moved to another position. In fact, the assignment operator would be called for
every following element.

Size and Capacity

Part of the way in which vectors give good performance is by allocating more memory than they
need to contain all their elements. To use vectors effectively and correctly you should understand
how size and capacity cooperate in a vector.

Vectors provide the usual size operations size(), empty(), and max_size() (see Section
6.1.2). An additional "size" operation is the capacity() function. capacity() returns the
number of characters a vector could contain in its actual memory. If you exceed the
capacity(), the vector has to reallocate its internal memory.

The capacity of a vector is important for two reasons:

1. Reallocation invalidates all references, pointers, and iterators for elements of the vector.
2. Reallocation takes time.

Thus, if a program manages pointers, references, or iterators into a vector, or if speed is a goal, it
is important to take the capacity into account.

To avoid reallocation, you can use reserve() to ensure a certain capacity before you really
need it. In this way, you can ensure that references remain valid as long as the capacity is not
exceeded:

The C++ Standard Library

dyne-book 134

 std::vector<int> v; // create an empty vector
 v.reserve (80); // reserve memory for 80 elements

Another way to avoid reallocation is to initialize a vector with enough elements by passing
additional arguments to the constructor. For example, if you pass a numeric value as parameter,
it is taken as the starting size of the vector:

 std::vector<T> v(5); // creates a vector and initializes it
with five values
 // (calls five times the default
constructor of type T)

Of course, the type of the elements must provide a default constructor for this ability. But note
that for complex types, even if a default constructor is provided, the initialization takes time. If the
only reason for initialization is to reserve memory, you should use reserve().

The concept of capacity for vectors is similar to that for strings (see Section 11.2.5), with one
big difference: Unlike strings, it is not possible to call reserve() for vectors to shrink the
capacity. Calling reserve() with an argument that is less than the current capacity is a no-op.
Furthermore, how to reach an optimal performance regarding speed and memory usage is
implementation defined. Thus, implementations might increase capacity in larger steps. In fact, to
avoid internal fragmentation, many implementations allocate a whole block of memory (such as
2K) the first time you insert anything if you don't call reserve() first yourself. This can waste
Jots of memory if you have many vectors with only a few small elements.

Because the capacity of vectors never shrinks, it is guaranteed that references, pointers, and
iterators remain valid even when elements are deleted or changed, provided they refer to a
position before the manipulated elements. However, insertions may invalidate references,
pointers, and iterators.

There is a way to shrink the capacity indirectly: Swapping the contents with another vector swaps
the capacity. The following function shrinks the capacity while preserving the elements:

 template <class T>
 void shrinkCapacity(std::vector<T>& v)
 {
 std::vector<T> tmp(v); // copy elements into a new vector
 v.swap(tmp); // swap internal vector data
 }

You can even shrink the capacity without calling this function by calling the following statement[6] :

[6] You (or your compiler) might consider this statement as being incorrect because it calls a nonconstant
member function for a temporary value. However, standard C++ allows you to call a nonconstant member
function for temporary values.

 //shrink capacity of vector v for type T
 std::vector<T>(v).swap(v);

However, note that after swap(), all references, pointers, and iterators swap their containers.
They still refer to the elements to which they referred on entry. Thus, shrinkCapacity()
invalidates all references, pointers, and iterators.

6.2.2 Vector Operations

The C++ Standard Library

dyne-book 135

Create, Copy, and Destroy Operations

Table 6.2 lists the constructors and destructors for vectors. You can create vectors with and
without elements for initialization. If you pass only the size, the elements are created with their
default constructor. Note that an explicit call of the default constructor also initializes fundamental
types such as int with zero (this language feature is covered on page 14). See Section 6.1.2,
for some remarks about possible initialization sources.

Table 6.2. Constructors and Destructors of Vectors
Operation Effect

vector<Elem> c Creates an empty vector without any elements
vector<Elem> c1(c2) Creates a copy of another vector of the same type (all elements

are copied)
vector<Elem> c(n) Creates a vector with n elements that are created by the default

constructor
vector<Elem> c(n,elem) Creates a vector initialized with n copies of element elem
vector<Elem>
c(beg,end)

Creates a vector initialized with the elements of the range
[beg,end)

c.~vector<Elem>() Destroys all elements and frees the memory

Nonmodifying Operations

Table 6.3 lists all nonmodifying operations of vectors.[7] See additional remarks in Section
6.1.2, and Section 6.2.1.

[7] reserve() manipulates the vector because it invalidates references, pointers, and iterators to elements.
However, it is mentioned here because it does not manipulate the logical contents of the container.

Table 6.3. Nonmodifying Operations of Vectors
Operation Effect

c.size() Returns the actual number of elements
c.empty() Returns whether the container is empty (equivalent to size()==0, but might

be faster)
c.max_size() Returns the maximum number of elements possible
capacity() Returns the maximum possible number of elements without reallocation
reserve() Enlarges capacity, if not enough yet[7]
c1 == c2 Returns whether c1 is equal to c2
c1 != c2 Returns whether c1 is not equal to c2 (equivalent to ! (c1==c2))
c1 < c2 Returns whether c1 is less than c2
c1 > c2 Returns whether c1 is greater than c2 (equivalent to c2<c1)
c1 <= c2 Returns whether c1 is less than or equal to c2 (equivalent to ! (c2<c1))
c1 >= c2 Returns whether c1 is greater than or equal to c2 (equivalent to ! (c1<c2))

The C++ Standard Library

dyne-book 136

Assignments

Table 6.4. Assignment Operations of Vectors
Operation Effect

c1 = c2 Assigns all elements of c2 to c1
c.assign(n,elem) Assigns n copies of element elem
c.assign(beg,end) Assigns the elements of the range [beg,end)
c1.swap(c2) Swaps the data of c1 and c2
swap(c1,c2) Same (as global function)

Table 6.4 lists the ways to assign new elements while removing all ordinary elements. The set of
assign() functions matches the set of constructors. You can use different sources for
assignments (containers, arrays, standard input) similar to those described for constructors on
page 144. All assignment operations call the default constructor, copy constructor, assignment
operator, and/or destructor of the element type, depending on how the number of elements
changes. For example:

 std::list<Elem> l;
 std::vector<Elem> coll;
 ...
 //make coll be a copy of the contents of l
 coll.assign(l.begin(),l.end());

Element Access

Table 6.5 shows all vector operations for direct element access. As usual in C and C++, the first
element has index 0 and the last element has index size()-1. Thus, the nth element has index
n-1. For nonconstant vectors, these operations return a reference to the element. Thus you could
modify an element by using one of these operations (provided it is not forbidden for other
reasons).

Table 6.5. Direct Element Access of Vectors
Operation Effect
c.at(idx) Returns the element with index idx (throws range error exception if idx is out of

range)
c[idx] Returns the element with index idx (no range checking)
c.front() Returns the first element (no check whether a first element exists)
c.back() Returns the last element (no check whether a last element exists)

The most important issue for the caller is whether these operations perform range checking. Only
at() performs range checking. If the index is out of range, it throws an out_of_range
exception (see Section 3.3). All other functions do not check. A range error results in undefined
behavior. Calling operator [], front(), and back() for an empty container always results in
undefined behavior:

 std::vector<Elem> coll; // empty!
 coll [5] = elem; // RUNTIME ERROR ? undefined behavior
 std::cout << coll. front (); // RUNTIME ERROR ? undefined behavior

The C++ Standard Library

dyne-book 137

So, you must ensure that the index for operator [] is valid and the container is not empty when
either front() or back() is called:

 std::vector<Elem> coll; // empty!

 if (coll.size() > 5) {
 coll [5] = elem; // OK
 }
 if (!coll.empty()) {
 cout << coll.front(); // OK
 }
 coll.at(5) = elem; // throws out_of_range exception

Iterator Functions

Vectors provide the usual operators to get iterators (Table 6.6). Vector iterators are random
access iterators (see Section 7.2, for a discussion of iterator categories). Thus, in principle you
could use all algorithms of the STL.

Table 6.6. Iterator Operations of Vectors
Operation Effect

c.begin() Returns a random access iterator for the first element
c.end() Returns a random access iterator for the position after the last element
c.rbegin() Returns a reverse iterator for the first element of a reverse iteration
c.rend() Returns a reverse iterator for the position after the last element of a reverse

iteration

The exact type of these iterators is implementation defined. However, for vectors they are often
ordinary pointers. An ordinary pointer is a random access iterator, and because the internal
structure of a vector is usually an array, it has the correct behavior. However, you can't count on
it. For example, if a safe version of the STL that checks range errors and other potential problems
is used, the iterator type is usually an auxiliary class. See Section 7.2.6, for a look at the nasty
difference between iterators implemented as pointers and iterators implemented as classes.

Iterators remain valid until an element with a smaller index gets inserted or removed, or
reallocation occurs and capacity changes (see Section 6.2.1).

Inserting and Removing Elements

Table 6.7 shows the operations provided for vectors to insert or to remove elements. As usual
by using the STL, you must ensure that the arguments are valid. Iterators must refer to valid
positions, the beginning of a range must have a position that is not behind the end, and you must
not try to remove an element from an empty container.

Regarding performance, you should consider that inserting and removing happens faster when

• Elements are inserted or removed at the end
• The capacity is large enough on entry
• Multiple elements are inserted by a single call rather than by multiple calls

The C++ Standard Library

dyne-book 138

Inserting or removing elements invalidates references, pointers, and iterators that refer to the
following elements. If an insertion causes reallocation, it invalidates all references, iterators, and
pointers.

Table 6.7. Insert and Remove Operations of Vectors
Operation Effect

c.insert(pos,elem) Inserts at iterator position pos a copy of elem and returns the
position of the new element

c.insert(pos,n,elem) Inserts at iterator position pos n copies of elem (returns nothing)
c.insert(pos,beg,end) Inserts at iterator position pos a copy of all elements of the range

[beg,end) (returns nothing)
c.push_back(elem) Appends a copy of elem at the end
c.pop_back() Removes the last element (does not return it)
c.erase(pos) Removes the element at iterator position pos and returns the

position of the next element
c.erase(beg,end) Removes all elements of the range [beg,end) and returns the

position of the next element
c.resize(num) Changes the number of elements to num (if size() grows, new

elements are created by their default constructor)
c.resize(num,elem) Changes the number of elements to num (if size() grows, new

elements are copies of elem)
c.clear() Removes all elements (makes the container empty)

Vectors provide no operation to remove elements directly that have a certain value. You must use
an algorithm to do this. For example, the following statement removes all elements that have the
value val:

 std::vector<Elem> coll;
 ...
 //remove all elements with value val
 coll.erase(remove(coll.begin(),coll.end(),
 val),
 coll.end());

This statement is explained in Section 5.6.1.

To remove only the first element that has a certain value, you must use the following statements:

 std::vector<Elem> coll;
 ...
 //remove first element with value val
 std::vector<Elem>::iterator pos;
 pos = find(coll.begin(),coll.end(),
 val);
 if (pos != coll.end()) {
 coll.erase(pos);
 }

The C++ Standard Library

dyne-book 139

6.2.3 Using Vectors as Ordinary Arrays

The C++ standard library does not state clearly whether the elements of a vector are required to
be in contiguous memory. However, it is the intention that this is guaranteed and it will be fixed
due to a defect report. Thus, you can expect that for any valid index i in vector v, the following
yields true:

 &v[i] == &v[0] + i

This guarantee has some important consequences. It simply means that you can use a vector in
all cases in which you could use a dynamic array. For example, you can use a vector to hold data
of ordinary C-strings of type char* or const char*:

 std::vector<char> v; // create vector as dynamic array of chars

 v.resize(41); // make room for 41 characters (including
'\0')
 strcpy(&v[0], "hello, world"); // copy a C-string into the vector
 printf("%s\n", &v[0]); // print contents of the vector as C-string

Of course, you have to be careful when you use a vector in this way (like you always have to be
careful when using dynamic arrays). For example, you have to ensure that the size of the vector
is big enough to copy some data into it and that you have an '\0' element at the end if you use
the contents as a C-string. However, this example shows that whenever you need an array of
type T for any reason (such as for an existing C library) you can use a vector<T> and pass the
address of the first element.

Note that you must not pass an iterator as the address of the first element. Iterators of vectors
have an implementation-specific type, which may be totally different from an ordinary pointer:

 printf("%s\n", v.begin()); // ERROR (might work, but not portable)
 printf("%s\n", &v[0]); // OK

6.2.4 Exception Handling

Vectors provide only minimal support for logical error checking. The only member function for
which the standard requires that it may throw an exception is at(), which is the safe version of
the subscript operator (see page 152). In addition, the standard requires that only the usual
standard exceptions may occur, such as bad_alloc for a lack of memory or exceptions of user-
defined operations.

If functions called by a vector (functions for the element type or functions that are user supplied)
throw exceptions, the C++ standard library guarantees the following:

1. If an element gets inserted with push_back() and an exception occurs, this function has
no effect.

2. insert() either succeeds or has no effect if the copy operations (copy constructor and
assignment operator) of the elements do not throw.

3. pop_back() does not throw any exceptions.
4. erase() and clear do not throw if the copy operations (copy constructor and

assignment operator) of the elements do not throw.

The C++ Standard Library

dyne-book 140

5. swap() does not throw.
6. If elements are used that never throw exceptions on copy operations (copy constructor

and assignment operator), every operation is either successful or has no effect. Such
elements might be "plain old data" (POD). POD describes types that use no special C++
feature. For example, every ordinary C structure is POD.

All these guarantees are based on the requirements that destructors don't throw. See Section
5.11.2, for a general discussion of exceptions handling in the STL and Section 6.10.10, for a
list of all container operations that give special guarantees in face of exceptions.

6.2.5 Examples of Using Vectors

The following example shows a simple usage of vectors:

 // cont/vector1.cpp

 #include <iostream>
 #include <vector>
 #include <string>
 #include <algorithm>
 using namespace std;

 int main()
 {

 //create empty vector for strings
 vector<string> sentence;

 //reserve memory for five elements to avoid reallocation
 sentence.reserve(5);

 //append some elements
 sentence.push_back("Hello,");
 sentence.push_back("how");
 sentence.push_back("are");
 sentence.push_back("you");
 sentence.push_back("?");

 //print elements separated with spaces
 copy (sentence.begin(), sentence.end(),
 ostream_iterator<string>(cout," "));
 cout << endl;

 //print ''technical data''
 cout << " max_size(): " << sentence.max_size() << endl;
 cout << " size(): " << sentence.size() << endl;
 cout << " capacity(): " << sentence.capacity() << endl;

 //swap second and fourth element
 swap (sentence[1], sentence [3]);

 //insert element "always" before element "?"
 sentence.insert (find(sentence.begin(),sentence.end(),"?"),
 "always");

The C++ Standard Library

dyne-book 141

 //assign "!" to the last element
 sentence.back() = "!";

 //print elements separated with spaces
 copy (sentence.begin(), sentence.end(),
 ostream_iterator<string>(cout," "));
 cout << endl;

 //print "technical data" again
 cout << " max_size(): " << sentence.max_size() << endl;
 cout << " size(): " << sentence.size() << endl;
 cout << " capacity(): " << sentence.capacity() << endl;

 }

The output of the program might look like this:

 Hello, how are you ?
 max_size(): 268435455
 size(): 5
 capacity(): 5
 Hello, you are how always !
 max_size(): 268435455
 size(): 6
 capacity(): 10

Note my use of the word "might." The values of max_size() and capacity() are
implementation defined. Here, for example, you can see that the implementation doubles the
capacity if the capacity no longer fits.

6.2.6 Class vector<bool>

For Boolean elements of a vector, the C++ standard library provides a specialization of vector.
The goal is to have a version that is optimized to use less size than a usual implementation of
vector for type bool. Such a usual implementation would reserve at least 1 byte for each
element. The vector<bool> specialization usually uses internally only 1 bit for an element, so it
is typically eight times smaller. Note that such an optimization also has a snag: In C++, the
smallest addressable value must have a size of at least 1 byte. Thus, such a specialization of a
vector needs special handling for references and iterators.

As a result, a vector<bool> does not meet all requirements of other vectors (for example, a
vector<bool>::reference is not a true lvalue and vector<bool>::iterator is not a
random access iterator). Therefore, template code might work for vectors of any type except
bool. In addition, vector<bool> might perform slower than normal implementations because
element operations have to be transformed into bit operations. However, how vector<bool> is
implemented is implementation specific. Thus, the performance (speed and memory) might differ.

Note that class vector<bool> is more than a specialization of vector<> for bool. It also
provides some special bit operations. You can handle bits or flags in a more convenient way.

vector<bool> has a dynamic size, so you can consider it a bitfield with dynamic size. Thus,
you can add and remove bits. If you need a bitfield with static size, you should use bitset rather
than a vector<bool>. Class bitset is covered in Section 10.4.

The C++ Standard Library

dyne-book 142

Table 6.8. Special Operations of vector<bool>

Operation Effect
c.flip() Negates all Boolean elements (complement of all bits)
m[idx].flip() Negates the Boolean element with index idx (complement of a single bit)
m[idx] = val Assigns val to the Boolean element with index idx (assignment to a

single bit)
m[idx1] =
m[idx2]

Assigns the value of the element with index idx2 to the element with
index idx1

The additional operations of vector<bool> are shown in Table 6.8. The operation flip(),
which processes the complement, can be called for all bits and a single bit of the vector. Note that
you can call flip() for a single Boolean element. This is surprising, because you might expect
that the subscript operator returns bool and that calling flip() for such a fundamental type is
not possible. Here the class vector<bool> uses a common trick, called a proxy[8] : For
vector<bool>, the return type of the subscript operator (and other operators that return an
element) is an auxiliary class. If you need the return value to be bool, an automatic type
conversion is used. For other operations, the member functions are provided. The relevant part of
the declaration of vector<bool> looks like this:

[8] A proxy allows you to keep control where usually no control is provided. This is often used to get more
security. In this case, it maintains control to allow certain operations, although the return value in principle
behaves as bool.

 namespace std {
 class vector<bool> {
 public:
 //auxiliary type for subscript operator
 class reference {
 ...
 public:
 //automatic type conversion to bool
 operator bool() const;

 //assignments
 reference& operator= (const bool);
 reference& operator= (const reference&);

 //bit complement
 void flip();
 }
 ...

 //operations for element access
 //-return type is reference instead of bool
 reference operator[](size_type n);
 reference at(size_type n);
 reference front();
 reference back();
 ...
 };
 }

The C++ Standard Library

dyne-book 143

As you can see, all member functions for element access return type reference. Thus, you
could also use the following statement:

 c.front().flip(); // negate first Boolean element
 c.at(5) = c.back(); // assign last element to element with index 5

As usual, to avoid undefined behavior, the caller must ensure that the first, last, and sixth
elements exist.

The internal type reference is only used for nonconstant containers of type vector<bool>.
The constant member functions for element access return ordinary values of type bool.

6.3 Deques

A deque (pronounced "deck") is very similar to a vector. It manages its elements with a dynamic
array, provides random access, and has almost the same interface as a vector. The difference is
that with a deque the dynamic array is open at both ends. Thus, a deque is fast for insertions and
deletions at both the end and the beginning (Figure 6.2).

Figure 6.2. Logical Structure of a Deque

To provide this ability, the deque is implemented typically as a bunch of individual blocks, with the
first block growing in one direction and the last block growing in the opposite direction (Figure
6.3).

Figure 6.3. Internal Structure of a Deque

To use a deque, you must include the header file <deque>[9] :

[9] In the original STL, the header file for deques was <deque.h>.

The C++ Standard Library

dyne-book 144

 #include <deque>

There, the type is defined as a template class inside namespace std:

 namespace std {
 template <class T,
 class Allocator = allocator<T> >
 class deque;
 }

As with vectors, the type of the elements is passed as a first template parameter and may be of
any type that is assignable and copyable. The optional second template argument is the memory
model, with allocator as the default (see Chapter 15).[10]

[10] In systems without support for default template parameters, the second argument is typically missing.

6.3.1 Abilities of Deques

Deques have the following differences compared with the abilities of vectors:

• Inserting and removing elements is fast both at the beginning and at the end (for vectors
it is only fast at the end). These operations are done in amortized constant time.

• The internal structure has one more indirection to access the elements, so element
access and iterator movement of deques are usually a bit slower.

• Iterators must be smart pointers of a special type rather than ordinary pointers because
they must jump between different blocks.

• In systems that have size limitations for blocks of memory (for example, some PC
systems), a deque might contain more elements because it uses more than one block of
memory. Thus, max_size() might be larger for deques.

• Deques provide no support to control the capacity and the moment of reallocation. In
particular, any insertion or deletion of elements other than at the beginning or end
invalidates all pointers, references, and iterators that refer to elements of the deque.
However, reallocation may perform better than for vectors, because according to their
typical internal structure, deques don't have to copy all elements on reallocation.

• Blocks of memory might get freed when they are no longer used, so the memory size of a
deque might shrink (however, whether and how this happens is implementation specific).

The following features of vectors also apply to deques:

• Inserting and deleting elements in the middle is relatively slow because all elements up to
either of both ends may be moved to make room or to fill a gap.

• Iterators are random access iterators.

In summary, you should prefer a deque if the following is true:

• You insert and remove elements at both ends (this is the classic case for a queue).
• You don't refer to elements of the container.
• It is important that the container frees memory when it is no longer used (however, the

standard does not guarantee that this happens).

The C++ Standard Library

dyne-book 145

The interface of vectors and deques is almost the same, so trying both is very easy when no
special feature of a vector or a deque is necessary.

6.3.2 Deque Operations

Table 6.9 through Table 6.11 list all operations provided for deques.

Table 6.9. Constructors and Destructor of Deques
Operation Effect
deque<Elem> c Creates an empty deque without any elements
deque<Elem> c1(c2) Creates a copy of another deque of the same type (all elements are

copied)
deque<Elem> c(n) Creates a deque with n elements that are created by the default

constructor
deque<Elem> c(n,elem) Creates a deque initialized with n copies of element elem
deque<Elem>
c(beg,end)

Creates a deque initialized with the elements of the range
[beg,end)

c.~deque<Elem>() Destroys all elements and frees the memory
Table 6.10. Nonmodifying Operations of Deques

Operation Effect
c.size() Returns the actual number of elements
c.empty () Returns whether the container is empty (equivalent to size()==0, but might

be faster)
c.max_size() Returns the maximum number of elements possible
c1 == c2 Returns whether c1 is equal to c2
c1 != c2 Returns whether c1 is not equal to c2 (equivalent to ! (c1==c2))
c1 < c2 Returns whether c1 is less than c2
c1 > c2 Returns whether c1 is greater than c2 (equivalent to c2<c1)
c1 <= c2 Returns whether c1 is less than or equal to c2 (equivalent to ! (c2<c1))
c1 >= c2 Returns whether c1 is greater than or equal to c2 (equivalent to ! (c1<c2))
c.at(idx) Returns the element with index idx (throws range error exception if idx is out

of range)
c[idx] Returns the element with index idx (no range checking)
c.front() Returns the first element (no check whether a first element exists)
c.back() Returns the last element (no check whether a last element exists)
c.begin() Returns a random access iterator for the first element
c.end() Returns a random access iterator for the position after the last element
c.rbegin() Returns a reverse iterator for the first element of a reverse iteration
c.rend() Returns a reverse iterator for the position after the last element of a reverse

iteration
Table 6.11. Modifying Operations of Deques

Operation Effect
c1 = c2 Assigns all elements of c2 to c1
c.assign (n,elem) Assigns n copies of element elem
c.assign (beg,end) Assigns the elements of the range [beg,end)

The C++ Standard Library

dyne-book 146

c1.swap(c2) Swaps the data of c1 and c2
swap(c1,c2) Same (as global function)
c.insert
(pos,elem)

Inserts at iterator position pos a copy of elem and returns the position
of the new element

c. insert
(pos,n,elem)

Inserts at iterator position pos n copies of elem (returns nothing)

c.insert
(pos,beg,end)

Inserts at iterator position pos a copy of all elements of the range
[beg,end) (returns nothing)

c.push_back (elem) Appends a copy of elem at the end
c.pop_back() Removes the last element (does not return it)
c.push_front
(elem)

Inserts a copy of elem at the beginning

c.pop_front() Removes the first element (does not return it)
c.erase(pos) Removes the element at iterator position pos and returns the position of

the next element
c.erase (beg,end) Removes all elements of the range [beg,end) and returns the position

of the next element
c. resize (num) Changes the number of elements to num (if size () grows, new

elements are created by their default constructor)
c.resize (num,
elem)

Changes the number of elements to num (if size () grows, new
elements are copies of elem)

c.clear() Removes all elements (makes the container empty)

Deque operations differ from vector operations only as follows:

1. Deques do not provide the functions for capacity (capacity () and reserve ()).
2. Deques do provide direct functions to insert and to delete the first element (push_front

() and pop_front()).

Because the other operations are the same, they are not reexplained here. See Section 6.2.2,
for a description of them.

Note that you still must consider the following:

1. No member functions for element access (except at ()) check whether an index or an
iterator isvalid.

2. An insertion or deletion of elements might cause a reallocation. Thus, any insertion or
deletioninvalidates all pointers, references, and iterators that refer to other elements of
the deque. Theexception is when elements are inserted at the front or the back. In this
case, references andpointers to elements stay valid (but iterators don't).

6.3.3 Exception Handling

In principle, deques provide the same support for exception handing as do vectors (see page
155). The additional operations push_front() and pop_front() behave according to
push_back() and pop_back () respectively. Thus, the C++ standard library provides the
following behavior:

The C++ Standard Library

dyne-book 147

• If an element gets inserted with push_back () or push_front () and an exception
occurs, these functions have no effect.

• Neither pop_back () nor pop_front () throw any exceptions.

See Section 5.11.2, for a general discussion of exceptions handling in the STL and Section
6.10.10, for a list of all container operations that give special guarantees in face of exceptions.

6.3.4 Examples of Using Deques

The following program is a simple example that shows the abilities of deques:

 // cont/deque1. cpp

 #include <iostream>
 #include <deque>
 #include <string>
 #include <algorithm>
 using namespace std;

 int main()
 {

 //create empty deque of strings
 deque<string> coll;

 //insert several elements
 coll.assign (3, string("string"));
 coll.push_back ("last string");
 coll.push_front ("first string");

 //print elements separated by newlines
 copy (coll.begin(), coll.end(),
 ostream_iterator<string>(cout,"\n"));
 cout << endl;

 //remove first and last element
 coll.pop_front();
 coll.pop_back();

 //insert ''another'' into every element but the first
 for (int i=1; i<coll.size(); ++i) {
 coll[i] = "another " + coll [i];

 }

 //change size to four elements
 coll.resize (4, "resized string");

 //print elements separated by newlines
 copy (coll.begin(), coll.end(),
 ostream_iterator<string>(cout,"\n"));

 }

The C++ Standard Library

dyne-book 148

The program has the following output:

 first string
 string
 string
 string
 last string

 string
 another string
 another string
 resized string

6.4 Lists

A list manages its elements as a doubly linked list (Figure 6.4). As usual, the C++ standard
library does not specify the kind of the implementation, but it follows from the list's name,
constraints, and specifications.

Figure 6.4. Structure of a List

To use a list you must include the header file <list>[11] :

[11] In the original STL, the header file for lists was <list.h>.

 #include <list>

There, the type is defined as a template class inside namespace std:

 namespace std {
 template <class T,
 class Allocator = allocator<T> >
 class list;
 }

The elements of a list may have any type T that is assignable and copyable. The optional second
template parameter defines the memory model (see Chapter 15). The default memory model is
the model allocator, which is provided by the C++ standard library.[12]

[12] In systems without support for default template parameters, the second argument is typically missing.

6.4.1 Abilities of Lists

The internal structure of a list is totally different from a vector or a deque. Thus, a list differs in
several major ways compared with vectors and deques:

The C++ Standard Library

dyne-book 149

• A list does not provide random access. For example, to access the fifth element, you
must navigate the first four elements following the chain of links. Thus, accessing an
arbitrary element using a list is slow.

• Inserting and removing elements is fast at each position, and not only at one or both
ends. You can always insert and delete an element in constant time because no other
elements have to be moved. Internally, only some pointer values are manipulated.

• Inserting and deleting elements does not invalidate pointers, references, and iterators to
other elements.

• A list supports exception handling in such a way that almost every operation succeeds or
is a no-op. Thus, you can't get into an intermediate state in which only half of the
operation is complete.

The member functions provided for lists reflect these differences compared with vectors and
deques as follows:

• Lists provide neither a subscript operator nor at() because no random access is
provided.

• Lists don't provide operations for capacity or reallocation because neither is needed.
Each element has its own memory that stays valid until the element is deleted.

• Lists provide many special member functions for moving elements. These member
functions are faster versions of general algorithms that have the same names. They are
faster because they only redirect pointers rather than copy and move the values.

6.4.2 List Operations

Create, Copy, and Destroy Operations

The ability to create, copy, and destroy lists is the same as it is for every sequence container. See
Table 6.12 for the list operations that do this. See also Section 6.1.2, for some remarks about
possible initialization sources.

Table 6.12. Constructors and Destructor of Lists
Operation Effect

list<Elem> c Creates an empty list without any elements
list<Elem> c1(c2) Creates a copy of another list of the same type (all elements are

copied)
list<Elem> c(n) Creates a list with n elements that are created by the default

constructor
list<Elem> c(n,elem) Creates a list initialized with n copies of element elem
list<Elem> c
(beg,end)

Creates a list initialized with the elements of the range [beg,end)

c.~list<Elem>() Destroys all elements and frees the memory

Nonmodifying Operations

Lists provide the usual operations for size and comparisons. See Table 6.13 for a list and
Section 6.1.2, for details.

Table 6.13. Nonmodifying Operations of Lists
Operation Effect

The C++ Standard Library

dyne-book 150

c.size() Returns the actual number of elements
c. empty () Returns whether the container is empty (equivalent to size()==0, but might

be faster)
c.max_size() Returns the maximum number of elements possible
c1 == c2 Returns whether c1 is equal to c2
c1 != c2 Returns whether c1 is not equal to c2 (equivalent to ! (c1==c2))
c1 < c2 Returns whether c1 is less than c2
c1 > c2 Returns whether c1 is greater than c2 (equivalent to c2<c1)
c1 <= c2 Returns whether c1 is less than or equal to c2 (equivalent to ! (c2<c1))
c1 >= c2 Returns whether c1 is greater than or equal to c2 (equivalent to ! (c1<c2))

Assignments

Lists also provide the usual assignment operations for sequence containers (Table 6.14).

Table 6.14. Assignment Operations of Lists
Operation Effect

c1 = c2 Assigns all elements of c2 to c1
c.assign(n,elem) Assigns n copies of element elem
c.assign(beg,end) Assigns the elements of the range [beg,end)
c1.swap(c2) Swaps the data of c1 and c2
swap(c1,c2) Same (as global function)

As usual, the insert operations match the constructors to provide different sources for initialization
(see Section 6.1.2, for details).

Element Access

Because a list does not have random access, it provides only front() and back() for
accessing elements directly (Table 6.15).

Table 6.15. Direct Element Access of Lists
Operation Effect

c.front() Returns the first element (no check whether a first element exists)
c.back() Returns the last element (no check whether a last element exists)

As usual, these operations do not check whether the container is empty. If the container is empty,
calling them results in undefined behavior. Thus, the caller must ensure that the container
contains at least one element. For example:

 std::list<Elem> coll; // empty!

 std::cout << coll.front(); // RUNTIME ERROR ? undefined behavior

 if (!coll.empty()) {
 std::cout << coll.back(); // OK

 }

The C++ Standard Library

dyne-book 151

Iterator Functions

To access all elements of a list, you must use iterators. Lists provide the usual iterator functions
(Table 6.16). However, because a list has no random access, these iterators are only
bidirectional. Thus, you can't call algorithms that require random access iterators. All algorithms
that manipulate the order of elements a lot (especially sorting algorithms) fall under this category.
However, for sorting the elements, lists provide the special member function sort() (see page
245).

Table 6.16. Iterator Operations of Lists
Operation Effect

c.begin() Returns a bidirectional iterator for the first element
c.end() Returns a bidirectional iterator for the position after the last element
c.rbegin() Returns a reverse iterator for the first element of a reverse iteration
c.rend() Returns a reverse iterator for the position after the last element of a reverse

iteration

Inserting and Removing Elements

Table 6.17 shows the operations provided for lists to insert and to remove elements. Lists
provide all functions of deques, supplemented by special implementations of the remove() and
remove_if() algorithms.

As usual by using the STL, you must ensure that the arguments are valid. Iterators must refer to
valid positions, the beginning of a range must have a position that is not behind the end, and you
must not try to remove an element from an empty container.

Inserting and removing happens faster if, when working with multiple elements, you use a single
call for all elements rather than multiple calls.

For removing elements, lists provide special implementations of the remove() algorithms (see
Section 9.7.1). These member functions are faster than the remove() algorithms because they
manipulate only internal pointers rather than the elements. So, in contrast to vectors or deques,
you should call remove() as a member function and not as an algorithm (as mentioned on page
154). To remove all elements that have a certain value, you can do the following (see Section
5.6.3, for further details):

 std::list<Elem> coll;
 ...
 //remove all elements with value val
 coll.remove(val);

Table 6.17. Insert and Remove Operations of Lists
Operation Effect
c.insert (pos, elem) Inserts at iterator position pos a copy of elem and returns the

position of the new element
c.insert (pos,n,
elem)

Inserts at iterator position pos n copies of elem (returns nothing)

The C++ Standard Library

dyne-book 152

c. insert (pos,
beg,end)

Inserts at iterator position pos a copy of all elements of the range
[beg,end) (returns nothing)

c.push_back(elem) Appends a copy of elem at the end
c.pop_back() Removes the last element (does not return it)
c.push_front(elem) Inserts a copy of elem at the beginning
c.pop_front () Removes the first element (does not return it)
c. remove (val) Removes all elements with value val
c.remove_if (op) Removes all elements for which op(elem) yields true
c. erase (pos) Removes the element at iterator position pos and returns the

position of the next element
c.erase (beg,end) Removes all elements of the range [beg,end) and returns the

position of the next element
c. resize (num) Changes the number of elements to num (if size() grows, new

elements are created by their default constructor)
c.resize (num, elem) Changes the number of elements to num (if size () grows, new

elements are copies of elem)
c. clear () Removes all elements (makes the container empty)

However, to remove only the first occurrence of a value, you must use an algorithm such as that
mentioned on page 154 for vectors.

You can use remove_if() to define the criterion for the removal of the elements by a function
or a function object.[13] remove_if() removes each element for which calling the passed
operation yields true. An example of the use of remove_if() is a statement to remove all
elements that have an even value:

[13] The remove_if() member function is usually not provided in systems that do not support member
templates.

 list.remove_if (not1(bind2nd(modulus<int>(),2)));

If you don't understand this statement, don't panic. Turn to page 306 for details. See page 378 for
additional examples of remove() and remove_if().

Splice Functions

Linked lists have the advantage that you can remove and insert elements at any position in
constant time. If you move elements from one container to another, this advantage doubles in
that you only need to redirect some internal pointers (Figure 6.5).

Figure 6.5. Splice Operations to Change the Order of List Elements

The C++ Standard Library

dyne-book 153

To support this ability, lists provide not only remove() but also additional modifying member
functions to change the order of and relink elements and ranges. You can call these operations to
move elements inside a single list or between two lists, provided the lists have the same type.
Table 6.18 lists these functions. They are covered in detail in Section 6.10.8, with examples in
Section 6.4.4.

Table 6.18. Special Modifying Operations for Lists
Operation Effect
c.unique() Removes duplicates of consecutive elements with the

same value
c.unique(op) Removes duplicates of consecutive elements, for which

op() yields true
c1.splice(pos,c2) Moves all elements of c2 to c1 in front of the iterator

position pos
c1.splice(pos,c2,c2pos) Moves the element at c2pos in c2 in front of pos of list

c1 (c1 and c2 may be identical)
c1.splice(pos,c2,c2beg,c2end) Moves all elements of the range [c2beg,c2end) in c2

in front of pos of list c1 (c1 and c2 may be identical)
c.sort() Sorts all elements with operator <
c.sort(op) Sorts all elements with op()
c1.merge(c2) Assuming both containers contain the elements sorted,

moves all elements of c2 into c1 so that all elements are
merged and still sorted

c1.merge(c2,op) Assuming both containers contain the elements sorted
due to the sorting criterion op(), moves all elements of
c2 into c1 so that all elements are merged and still
sorted according to op()

c.reverse() Reverses the order of all elements

6.4.3 Exception Handling

Lists have the best support of exception safety of the standard containers in the STL. Almost all
list operations will either succeed or have no effect. The only operations that don't give this
guarantee in face of exceptions are assignment operations and the member function sort()
(they give the usual "basic guarantee" that they will not leak resources or violate container
invariants in the face of exceptions), merge(), remove(), remove_if(), and unique()
give guarantees under the condition that comparing the elements (using operator == or the
predicate) doesn't throw. Thus, to use a term from database programming, you could say that
lists are transaction safe, provided you don't call assignment operations or sort() and ensure
that comparing elements doesn't throw. Table 6.19 lists all operations that give special
guarantees in face of exceptions. See Section 5.11.2, for a general discussion of exception
handling in the STL.

The C++ Standard Library

dyne-book 154

Table 6.19. List Operations with Special Guarantees in Face of Exceptions

Operation Guarantee
push_back() Either succeeds or has no effect
push_front() Either succeeds or has no effect
insert () Either succeeds or has no effect
pop_back() Doesn't throw
pop_front() Doesn't throw
erase() Doesn't throw
clear() Doesn't throw
resize() Either succeeds or has no effect
remove() Doesn't throw if comparing the elements doesn't throw
remove_if() Doesn't throw if the predicate doesn't throw
Unique() Doesn't throw if comparing the elements doesn't throw
splice() Doesn't throw
Merge() Either succeeds or has no effect if comparing the elements doesn't throw
reverse() Doesn't throw
swap() Doesn't throw

6.4.4 Examples of Using Lists

The following example in particular shows the use of the special member functions for lists:

 // cont/list1.cpp

 #include <iostream>
 #include <list>
 #include <algorithm>
 using namespace std;

 void printLists (const list<int>& 11, const list<int>& 12)
 {

 cout << "list1: ";
 copy (l1.begin(), l1.end(), ostream_iterator<int>(cout," "));
 cout << endl << "list2: ";
 copy (12.begin(), 12.end(), ostream_iterator<int>(cout," "));
 cout << endl << endl;

 }

 int main()
 {

 //create two empty lists
 list<int> list1, list2;

 //fill both lists with elements
 for (int i=0; i<6; ++i) {
 list1.push_back(i);
 list2.push_front(i);

The C++ Standard Library

dyne-book 155

 }
 printLists(list1, list2);

 //insert all elements of list1 before the first element with
value 3 of list2
 //-find() returns an iterator to the first element with value 3
 list2.splice(find(list2.begin(),list2.end(), // destination
position
 3),
 list1); // source list
 printLists(list1, list2);

 //move first element to the end
 list2.splice(list2.end(), // destination position
 list2, // source list
 list2.begin()); // source position
 printLists(list1, list2);

 //sort second list, assign to list1 and remove duplicates
 list2.sort();
 list1 = list2;
 list2.unique();
 printLists(list1, list2);

 //merge both sorted lists into the first list
 list1.merge(list2);
 printLists(list1, list2);
 }

The program has the following output:

 list1: 0 1 2 3 4 5
 list2: 5 4 3 2 1 0

 list1:
 list2: 5 4 0 1 2 3 4 5 3 2 1 0

 list1:
 list2: 4 0 1 2 3 4 5 3 2 1 0 5

 list1: 0 0 1 1 2 2 3 3 4 4 5 5
 list2: 0 1 2 3 4 5

 list1: 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5
 list2:

6.5 Sets and Multisets

Set and multiset containers sort their elements automatically according to a certain sorting
criterion. The difference between the two is that multisets allow duplicates, whereas sets do not
(see Figure 6.6 and the earlier discussion on this topic in Chapter 5).

Figure 6.6. Sets and Multisets

The C++ Standard Library

dyne-book 156

To use a set or multiset, you must include the header file <set>[14] :

[14] In the original STL, the header file for sets was <set.h>, and for multisets it was <multiset.h>.

 #include <set>

There, the type is defined as a template class inside namespace std:

 namespace std {
 template <class T,
 class Compare = less<T>,
 class Allocator = allocator<T> >
 class set;

 template <class T,
 class Compare = less<T>,
 class Allocator = allocator<T> >
 class multiset;
 }

The elements of a set or multiset may have any type T that is assignable, copyable, and
comparable according to the sorting criterion. The optional second template argument defines the
sorting criterion. If a special sorting criterion is not passed, the default criterion less is used. The
function object less sorts the elements by comparing them with operator < (see page 305 for
details about less).[15] The optional third template parameter defines the memory model (see
Chapter 15). The default memory model is the model allocator, which is provided by the
C++ standard library.[16]

[15] In systems without support for default template parameters, the second argument typically is mandatory.

[16] In systems without support for default template parameters, the third argument typically is missing.

The sorting criterion must define "strict weak ordering." Strict weak ordering is defined by the
following three properties:

1. It has to be antisymmetric.

This means for operator <: If x < y is true, then y < x is false.

This means for a predicate op(): If op(x,y) is true, then op(y,x) is false.

The C++ Standard Library

dyne-book 157

2. It has to be transitive.

This means for operator <: If x < y is true and y < z is true, then x < z is true.

This means for a predicate op(): If op(x,y) is true and op (y,z) is true, then
op(x,z) is true.

3. It has to be irreflexive.

This means for operator <:x < x is always false.

This means for a predicate op(): op(x,x) is always false.

Based on these properties the sorting criterion is also used to check equality. That is, two
elements are equal if neither is less than the other (or if both op(x,y) and op(y,x) are false).

6.5.1 Abilities of Sets and Multisets

Like all standardized associative container classes, sets and multisets are usually implemented
as balanced binary trees (Figure 6.7). The standard does not specify this, but it follows from the
complexity of set and multiset operations.[17]

[17] In fact, sets and multisets are typically implemented as "red-black trees." Red-black trees are good for
both changing the number of elements and searching for elements. They guarantee at most two internal
relinks on insertions and that the longest path is at least twice as long as the shortest path to an element.

Figure 6.7. Internal Structure of Sets and Multisets

The major advantage of automatic sorting is that a binary tree performs well when elements with
a certain value are searched. In fact, search functions have logarithmic complexity. For example,

The C++ Standard Library

dyne-book 158

to search for an element in a set or multiset of 1,000 elements, a tree search (which is performed
by the member function) needs, on average, one fiftieth of the comparisons of a linear search
(which is performed by the algorithm). See Section 2.3, for more details about complexity.

However, automatic sorting also imposes an important constraint on sets and multisets: You may
not change the value of an element directly because this might compromise the correct order.
Therefore, to modify the value of an element, you must remove the element that has the old value
and insert a new element that has the new value. The interface reflects this behavior:

• Sets and multisets don't provide operations for direct element access.
• Indirect access via iterators has the constraint that, from the iterator's point of view, the

element value is constant.

6.5.2 Set and Multiset Operations

Create, Copy, and Destroy Operations

Table 6.20 lists the constructors and destructors of sets and multisets.

Operation Effect
set c Creates an empty set/multiset without any elements
set c(op) Creates an empty set/multiset that uses op as the sorting criterion
set c1(c2) Creates a copy of another set/multiset of the same type (all elements are

copied)
set c(beg,end) Creates a set/multiset initialized by the elements of the range [beg,end)
set c(beg,end,
op)

Creates a set/multiset with the sorting criterion op initialized by the elements
of the range [beg,end)

c.~set() Destroys all elements and frees the memory

Here, set may be one of the following:

Table 6.20. Constructors and Destructors of Sets and Multisets
set Effect
set<Elem> A set that sorts with less<> (operator <)
set<Elem,0p> A set that sorts with 0p
multiset<Elem> A multiset that sorts with less<> (operator <)
multiset<Elem,0p> A multiset that sorts with 0p

You can define the sorting criterion in two ways:

1. As a template parameter.

For example[18] :

[18] Note that you have to put a space between the two ">" characters. ">>" would be parsed as
shift operator, which would result in a syntax error.

 std::set<int,std::greater<int> > coll;

The C++ Standard Library

dyne-book 159

In this case, the sorting criterion is part of the type. Thus, the type system ensures that
only containers with the same sorting criterion can be combined. This is the usual way to
specify the sorting criterion. To be more precise, the second parameter is the type of the
sorting criterion. The concrete sorting criterion is the function object that gets created with
the container. To do this, the constructor of the container calls the default constructor of
the type of the sorting criterion. See page 294 for an example that uses a user-defined
sorting criterion.

2. As a constructor parameter.

In this case, you might have a type for several sorting criteria, and the initial value or
state of the sorting criteria might differ. This is useful when processing the sorting
criterion at runtime and when sorting criteria are needed that are different but of the same
data type. See page 191 for a complete example.

If no special sorting criterion is passed, the default sorting criterion, function object less<>, is
used, which sorts the elements by using operator <.[19]

[19] In systems without support for default template parameters, you typically must always pass the sorting
criterion as follows:

 set<int,less<int> > coll;

Note that the sorting criterion is also used to check for equality of the elements. Thus, when the
default sorting criterion is used, the check for equality of two elements looks like this:

 if (! (elem1<elem2 || elem2<elem1))

This has three advantages:

1. You need to pass only one argument as the sorting criterion.
2. You don't have to provide operator == for the element type.
3. You can have contrary definitions for equality (it doesn't matter if operator == behaves

differently than in the expression). However, this might be a source of confusion.

However, checking for equality in this way takes a bit more time. This is because two
comparisons might be necessary to evaluate the previous expression. Note that if the result of the
first comparison yields true, the second comparison is not evaluated.

By now the type name of the container might be a bit complicated and boring, so it is probably a
good idea to use a type definition. This definition could be used as a shortcut wherever the
container type is needed (this also applies to iterator definitions):

 typedef std::set<int,std::greater<int> > IntSet;
 ...
 IntSet coll;
 IntSet::iterator pos;

The constructor for the beginning and the end of a range could be used to initialize the container
with elements from containers that have other types, from arrays, or from the standard input. See
Section 6.1.2, for details.

Nonmodifying Operations

The C++ Standard Library

dyne-book 160

Sets and multisets provide the usual nonmodifying operations to query the size and to make
comparisons (Table 6.21).

Table 6.21. Nonmodifying Operations of Sets and Multisets
Operation Effect
c.size() Returns the actual number of elements
c.empty () Returns whether the container is empty (equivalent to size()==0, but might

be faster)
c.max_size() Returns the maximum number of elements possible
c1 == c2 Returns whether c1 is equal to c2
c1 != c2 Returns whether c1 is not equal to c2 (equivalent to ! (c1==c2))
c1 < c2 Returns whether c1 is less than c2
c1 > c2 Returns whether c1 is greater than c2 (equivalent to c2<c1)
c1 <= c2 Returns whether c1 is less than or equal to c2 (equivalent to ! (c2<c1))
c1 >= c2 Returns whether c1 is greater than or equal to c2 (equivalent to !(c1<c2))

Comparisons are provided only for containers of the same type. Thus, the elements and the
sorting criterion must have the same types; otherwise, a type error occurs at compile time. For
example:

 std::set<float> c1; // sorting criterion: std::less<>
 std::set<float,std::greater<float> > c2;
 ...
 if (c1 == c2) { // ERROR: different types
 ...
 }

The check whether a container is less than another container is done by a lexicographical
comparison (see page 360). To compare containers of different types (different sorting criteria),
you must use the comparing algorithms in Section 9.5.4.

Special Search Operations

Sets and multisets are optimized for fast searching of elements, so they provide special search
functions (Table 6.22). These functions are special versions of general algorithms that have the
same name. You should always prefer the optimized versions for sets and multisets to achieve
logarithmic complexity instead of the linear complexity of the general algorithms. For example, a
search of a collection of 1,000 elements requires on average only 10 comparisons instead of 500
(see Section 2.3,).

Table 6.22. Special Search Operations of Sets and Multisets
Operation Effect
count (elem) Returns the number of elements with value elem
find(elem) Returns the position of the first element with value elem or end()
lower _bound(
elem)

Returns the first position, where elem would get inserted (the first element
>= elem)

upper _bound
(elem)

Returns the last position, where elem would get inserted (the first
element > elem)

equal_range Returns the first and last position, where elem would get inserted (the

The C++ Standard Library

dyne-book 161

(elem) range of elements == elem)

The find() member function searches the first element that has the value that was passed as
the argument and returns its iterator position. If no such element is found, find() returns end()
of the container.

lower_bound() and upper_bound() return the first and last position respectively, at which an
element with the passed value would be inserted. In other words, lower_bound() returns the
position of the first element that has the same or a greater value than the argument, whereas
upper_bound() returns the position of the first element with a greater value. equal_range()
returns both return values of lower_bound() and upper_bound() as a pair (type pair is
introduced in Section 4.1). Thus, it returns the range of elements that have the same value as
the argument. If lower_bound() or the first value of equal_range() is equal to
upper_bound() or the second value of equal_range(), then no elements with the same
value exist in the set or multiset. Naturally, in a set the range of elements that have the same
values could contain at most one element.

The following example shows how to use lower_bound(), upper_bound(), and
equal_range():

 // cont/set2.cpp

 #include <iostream>
 #include <set>
 using namespace std;
 int main ()
 {

 set<int> c;

 c.insert(1);
 c.insert(2);
 c.insert(4);
 c.insert(5);
 c.insert(6);

 cout << "lower_bound(3): " << *c.lower_bound(3) << endl;
 cout << "upper_bound(3): " << *c.upper_bound(3) << endl;
 cout << "equal_range(3): " << *c.equal_range(3).first << " "
 << *c.equal_range(3).second << endl;
 cout << endl;
 cout << "lower_bound(5): " << *c.lower_bound(5) << endl;
 cout << "upper_bound(5): " << *c.upper_bound(5) << endl;
 cout << "equal_range(5): " << *c.equal_range(5).first << " "
 << *c.equal_range(5).second << endl;
 }

The output of the program is as follows:

 lower_bound(3): 4
 upper_bound(3): 4
 equal_range(3): 4 4

 lower_bound(5): 5

The C++ Standard Library

dyne-book 162

 upper_bound(5): 6
 equal_range(5): 5 6

If you use a multiset instead of a set, the program has the same output.

Assignments

Sets and multisets provide only the fundamental assignment operations that all containers
provide (Table 6.23). See page 147 for more details.

For these operations both containers must have the same type. In particular, the type of the
comparison criteria must be the same, although the comparison criteria themselves may be
different. See page 191 for an example of different sorting criteria that have the same type. If the
criteria are different, they will also get assigned or swapped.

Table 6.23. Assignment Operations of Sets and Multisets
Operation Effect
c1 = c2 Assigns all elements of c2 to c1
c1.swap(c2) Swaps the data of c1 and c2
swap(c1,c2) Same (as global function)

Iterator Functions

Sets and multisets do not provide direct element access, so you have to use iterators. Sets and
multisets provide the usual member functions for iterators (Table 6.24).

Table 6.24. Iterator Operations of Sets and Multisets
Operation Effect
c.begin() Returns a bidirectional iterator for the first element (elements are considered

const)
c.end() Returns a bidirectional iterator for the position after the last element (elements are

considered const)
c.rbegin() Returns a reverse iterator for the first element of a reverse iteration
c.rend() Returns a reverse iterator for the position after the last element of a reverse

iteration

As with all associative container classes, the iterators are bidirectional iterators (see Section
7.2.4). Thus, you can't use them in algorithms that are provided only for random access iterators
(such as algorithms for sorting or random shuffling).

More important is the constraint that, from an iterator's point of view, all elements are considered
constant. This is necessary to ensure that you can't compromise the order of the elements by
changing their values. However, as a result you can't call any modifying algorithm on the
elements of a set or multiset. For example, you can't call the remove() algorithm to remove
elements because it "removes" by overwriting "removed" elements the with following arguments

The C++ Standard Library

dyne-book 163

(see Section 5.6.2, for a detailed discussion of this problem). To remove elements in sets and
multisets, you can use only member functions provided by the container.

Inserting and Removing Elements

Table 6.25 shows the operations provided for sets and multisets to insert and remove elements.
As usual by using the STL, you must ensure that the arguments are valid. Iterators must refer to
valid positions, the beginning of a range must have a position that is not behind the end, and you
must not try to remove an element from an empty container.

Inserting and removing happens faster if, when working with multiple elements, you use a single
call for all elements rather than multiple calls.

Table 6.25. Insert and Remove Operations of Sets and Multisets
Operation Effect
c. insert(elem) Inserts a copy of elem and returns the position of the new element and,

for sets, whether it succeeded
c. insert(pos,
elem)

Inserts a copy of elem and returns the position of the new element (pos
is used as a hint pointing to where the insert should start the search)

c. insert
(beg,end)

Inserts a copy of all elements of the range [beg,end) (returns nothing)

c. erase(elem) Removes all elements with value elem and returns the number of
removed elements

c. erase(pos) Removes the element at iterator position pos (returns nothing)
c.
erase(beg,end)

Removes all elements of the range [beg,end) (returns nothing)

c. clear() Removes all elements (makes the container empty)

Note that the return types of the insert functions differ as follows:

• Sets provide the following interface:

 pair<iterator,bool> insert(const value_type& elem);
 iterator insert(iterator pos_hint,
 const value_type& elem);

• Multisets provide the following interface:

 iterator insert(const value_type& elem);
 iterator insert(iterator pos_hint,
 const value_type& elem);

The difference in return types results because multisets allows duplicates, whereas sets do not.
Thus, the insertion of an element might fail for a set if it already contains an element with the
same value. Therefore, the return type of a set returns two values by using a pair structure
(pair is discussed in Section 4.1,):

1. The member second of the pair structure returns whether the insertion was successful.
2. The member first of the pair structure returns the position of the newly inserted

element or the position of the still existing element.

The C++ Standard Library

dyne-book 164

In all other cases, the functions return the position of the new element (or of the existing element
if the set contains an element with the same value already).

The following example shows how to use this interface to insert a new element into a set. It tries
to insert the element with value 3.3 into the set c:

 std::set<double> c;

 if (c.insert(3.3).second) {
 std::cout << "3.3 inserted" << std::endl;
 }
 else {
 std::cout << "3.3 already exists" << std::endl;
 }

If you also want to process the new or old positions, the code gets more complicated:

 //define variable for return value of insert()
 std::pair<std::set<float>::iterator,bool> status;

 //insert value and assign return value
 status = c.insert(value);

 //process return value
 if (status.second) {
 std::cout << value << " inserted as element "
 }
 else {
 std::cout << value << " already exists as element "
 }
 std::cout << std::distance(c.begin().status.first) + 1
 << std::endl;

The output of two calls of this sequence might be as follows:

 8.9 inserted as element 4
 7.7 already exists as element 3

Note that the return types of the insert functions with an additional position parameter don't differ.
These functions return a single iterator for both sets and multisets. However, these functions
have the same effect as the functions without the position parameter. They differ only in their
performance. You can pass an iterator position, but this position is processed as a hint to
optimize performance. In fact, if the element gets inserted right after the position that is passed as
the first argument, the time complexity changes from logarithmic to amortized constant
(complexity is discussed in Section 2.3,). The fact that the return type for the insert functions
with the additional position hint doesn't have the same difference as the insert functions without
the position hint ensures that you have one insert function that has the same interface for all
container types. In fact, this interface is used by general inserters. See Section 7.4.2, especially
page 275, for details about inserters. To remove an element that has a certain value, you simply
call erase():

 std::set<Elem> coll;
 ...
 //remove all elements with passed value

The C++ Standard Library

dyne-book 165

 coll.erase(value);

Unlike with lists, the erase() member function does not have the name remove() (see page
170 for a discussion of remove()). It behaves differently because it returns the number of
removed elements. When called for sets, it returns only 0 or 1.

If a multiset contains duplicates, you can't use erase() to remove only the first element of these
duplicates. Instead, you can code as follows:

 std::multiset<Elem> coll;
 ...
 //remove first element with passed value
 std::multiset<Elem>::iterator pos;
 pos = coll.find (elem);
 if (pos != coll.end()) {
 coll.erase(pos);
 }

You should use the member function find() instead of the find() algorithm here because it is
faster (see the example on page 154).

Note that there is another inconsistency in return types here. That is, the return types of the
erase() functions differ between sequence and associative containers as follows:

1. Sequence containers provide the following erase() member functions:

 iterator erase(iterator pos);
 iterator erase(iterator beg, iterator end);

2. Associative containers provide the following erase() member functions:

 void erase(iterator pos);
 void erase(iterator beg, iterator end);

The reason for this difference is performance. It might cost time to find and return the successor
in an associative container because the container is implemented as a binary tree. However, as a
result, to write generic code for all containers you must ignore the return value.

6.5.3 Exception Handling

Sets and multisets are node-based containers, so any failure to construct a node simply leaves
the container as it was. Furthermore, because destructors in general don't throw, removing a
node can't fail.

However, for multiple-element insert operations, the need to keep elements sorted makes full
recovery from throws impractical. Thus, all single-element insert operations support commit-or-
rollback behavior. That is, they either succeed or they have no effect. In addition, it is guaranteed
that all multiple-element delete operations always succeed. If copying/assigning the comparison
criterion may throw, swap() may throw.

See Section 5.11.2, for a general discussion of exceptions handling in the STL and Section
6.10.10, for a list of all container operations that give special guarantees in face of exceptions.

The C++ Standard Library

dyne-book 166

6.5.4 Examples of Using Sets and Multisets

The following program demonstrates some abilities of sets[20] :

[20] The definition of distance() has changed, so in older STL versions you must include the file
distance.hpp, which is mentioned on page 263.

 // cont/set1.cpp

 #include <iostream>
 #include <set>
 using namespace std;

 int main()
 {

 /*type of the collection:
 *-no duplicates
 *-elements are integral values
 *-descending order
 */
 typedef set<int,greater<int> > IntSet;

 IntSet coll1; // empty set container

 //insert elements in random order
 coll1.insert(4);
 coll1.insert(3);
 coll1.insert(5);
 coll1.insert(1);
 coll1.insert(6);
 coll1.insert(2);
 coll1.insert(5);

 //iterate over all elements and print them
 IntSet::iterator pos;
 for (pos = coll1.begin(); pos != coll1.end(); ++pos) {
 cout << *pos << ' ';
 }
 cout << endl;

 //insert 4 again and process return value
 pair<IntSet::iterator,bool> status = coll1.insert(4);
 if (status.second) {
 cout << "4 inserted as element "
 << distance (coll1.begin(),status. first) + 1
 << endl;
 }
 else {
 cout << "4 already exists" << endl;
 }

 //assign elements to another set with ascending order
 set<int> coll2(coll1.begin(),
 coll1.end());

The C++ Standard Library

dyne-book 167

 //print all elements of the copy
 copy (coll2.begin(), coll2.end(),
 ostream_iterator<int>(cout," "));
 cout << endl;

 //remove all elements up to element with value 3
 coll2.erase (coll2.begin(), coll2.find(3));

 //remove all elements with value 5
 int num;
 num = coll2.erase (5);
 cout << num << " element(s) removed" << endl;

 //print all elements
 copy (coll2.begin(), coll2.end(),
 ostream_iterator<int>(cout," "));
 cout << endl;
 }

At first, the type definition

 typedef set<int,greater<int> > IntSet;

defines a short type name for a set of ints with descending order. After an empty set is created,
several elements are inserted by using insert ():

 IntSet coll1;

 coll1.insert(4);
 ...

Note that the element with value 5 is inserted twice. However, the second insertion is ignored
because sets do not allow duplicates.

After printing all elements, the program tries again to insert the element 4. This time it processes
the return values of insert() as discussed on page 183.

The statement

 set<int> coll2(coll1.begin(), coll1. end());

creates a new set of ints with ascending order and initializes it with the elements of the old
set.[21]

[21] This statement requires several new language features; namely, member templates and default template
arguments. If your system does not provide them, you must program as follows:

 set<int,less<int> > coll2;
 copy (coll1.begin(), coll1. end(),
 inserter(coll2,coll2.begin()));

The C++ Standard Library

dyne-book 168

Both containers have different sorting criteria, so their types differ and you can't assign or
compare them directly. However, you can use algorithms, which in general are able to handle
different container types as long as the element types are equal or convertible.
The statement

 coll2.erase (coll2.begin(), coll2.find(3));

removes all elements up to the element with value 3. Note that the element with value 3 is the
end of the range, so that it is not removed.

Lastly, all elements with value 5 are removed:

 int num;
 num = coll2.erase (5);
 cout << num << " element(s) removed" << endl;

The output of the whole program is as follows:

 6 5 4 3 2 1
 4 already exists
 1 2 3 4 5 6
 1 element(s) removed
 3 4 6

For multisets, the same program looks a bit differently and produces different results:

 // cont/mset1.cpp

 #include <iostream>
 #include <set>
 using namespace std;

 int main()
 {

 /*type of the collection:
 *-duplicates allowed
 *-elements are integral values
 *-descending order
 */
 typedef multiset<int,greater<int> > IntSet;

 IntSet coll1, // empty multiset container

 //insert elements in random order
 coll1.insert(4);
 coll1.insert(3);
 coll1.insert(5);
 coll1.insert(l);
 coll1.insert(6);
 coll1.insert(2);

The C++ Standard Library

dyne-book 169

 coll1.insert(5);

 //iterate over all elements and print them
 IntSet::iterator pos;
 for (pos = coll1.begin(); pos != coll1.end(); ++pos) {
 cout << *pos << ' ';
 }
 cout << endl;

 //insert 4 again and process return value
 IntSet::iterator ipos = coll1.insert(4);
 cout << "4 inserted as element "
 << distance (coll1.begin(),ipos) + 1
 << endl;

 //assign elements to another multiset with ascending order
 multiset<int> coll2(coll1.begin(),
 coll1.end());

 //print all elements of the copy
 copy (coll2.begin(), coll2.end(),
 ostream_iterator<int>(cout," "));
 cout << endl;

 //remove all elements up to element with value 3
 coll2.erase (coll2.begin(), coll2.find(3));

 //remove all elements with value 5
 int num;
 num = coll2.erase (5);
 cout << num << " element(s) removed" << endl;

 //print all elements
 copy (coll2.begin(), coll2.end(),
 ostream_iterator<int>(cout," "));
 cout << endl;
 }

In all cases type set was changed to multiset. In addition, the processing of the return value
of insert() looks different:

 IntSet::iterator ipos = coll1.insert(4);
 cout << "4 inserted as element "
 << distance (coll1.begin(),ipos) + 1
 << endl;

Because multisets may contain duplicates, the insertion can fail only if an exception gets thrown.
Thus, the return type is only the iterator position of the new element.

The output of the program changed as follows:

 6 5 5 4 3 2 1
 4 inserted as element 5
 1 2 3 4 4 5 5 6

The C++ Standard Library

dyne-book 170

 2 element(s) removed
 3 4 4 6

6.5.5 Example of Specifying the Sorting Criterion at Runtime

Normally you define the sorting criterion as part of the type, either by passing it as a second
template argument or by using the default sorting criterion less<>. However, sometimes you
must process the sorting criterion at runtime, or you may need different sorting criteria with the
same data type. In this case, you need a special type for the sorting criterion — one that lets you
pass your sorting details at runtime. The following example program demonstrates how to do this:

 // cont/setcmp.cpp

 #include <iostream>
 #include <set>
 #include "print.hpp"
 using namespace std;

 //type for sorting criterion
 template <class T>
 class RuntimeCmp {
 public:
 enum cmp_mode {normal, reverse};
 private:
 cmp_mode mode;
 public:
 //constructor for sorting criterion
 //-default criterion uses value normal
 RuntimeCmp (cmp_mode m=normal) : mode(m) {
 }
 //comparision of elements
 bool operator() (const T& t1, const T& t2) const {
 return mode == normal ? t1 < t2 : t2 < t1;
 }
 //comparision of sorting criteria
 bool operator== (const RuntimeCmp& rc) {
 return mode == rc.mode;
 }
 };

 //type of a set that uses this sorting criterion
 typedef set<int,RuntimeCmp<int> > IntSet;

 //forward declaration
 void fill (IntSet& set);

 int main()
 {
 //create, fill, and print set with normal element order
 //-uses default sorting criterion
 IntSet coll1;
 fill(coll1);
 PRINT_ELEMENTS (coll1, "coll1: ");

The C++ Standard Library

dyne-book 171

 //create sorting criterion with reverse element order
 RuntimeCmp<int> reverse_order(RuntimeCmp<int>::reverse);

 //create, fill, and print set with reverse element order
 IntSet coll2(reverse_order);
 fill(coll2);
 PRINT_ELEMENTS (coll2, "coll2: ");

 //assign elements AND sorting criterion
 coll1 = coll2;
 coll1.insert(3);
 PRINT_ELEMENTS (coll1, "coll1: ");

 //just to make sure...
 if (coll1.value_comp() == coll2.value_comp()) {
 cout << "coll1 and coll2 have same sorting criterion"
 << endl;
 }
 else {
 cout << "coll1 and coll2 have different sorting criterion"
 << endl;
 }
 }

 void fill (IntSet& set)
 {
 //fill insert elements in random order
 set.insert(4);
 set.insert(7);
 set.insert(5);
 set.insert(1);
 set.insert(6);
 set.insert(2);
 set.insert(5);
 }

In this program, RuntimeCmp<> is a simple template that provides the general ability to specify,
at runtime, the sorting criterion for any type. Its default constructor sorts in ascending order using
the default value normal. It also is possible to pass RuntimeCmp<>::reverse to sort in
descending order.

The output of the program is as follows:

 coll1: 1 2 4 5 6 7
 coll2: 7 6 5 4 2 1
 coll1: 7 6 5 4 3 2 1
 coll1 and coll2 have same sorting criterion

Note that coll1 and coll2 have the same type, which is used in fill(), for example. Note
also that the assignment operator assigns the elements and the sorting criterion (otherwise an
assignment would be an easy way to compromise the sorting criterion).

6.6 Maps and Multimaps

The C++ Standard Library

dyne-book 172

Map and multimap containers are containers that manage key/value pairs as elements. They sort
their elements automatically according to a certain sorting criterion that is used for the actual key.
The difference between the two is that multimaps allow duplicates, whereas maps do not (Figure
6.8).

Figure 6.8. Maps and Multimaps

To use a map or multimap, you must include the header file <map>[22] :

[22] In the original STL, the header file for maps was <map.h>, and for multimaps it was <multimap.h>.

 #include <map>

There, the type is defined as a class template inside namespace std:

 namespace std {
 template <class Key, class T,
 class Compare = less<Key>,
 class Allocator = allocator<pair<const Key,T> > >
 class map;

 template <class Key, class T,
 class Compare = less<Key>,
 class Allocator = allocator<pair<const Key,T> > >
 class multimap;
 }

The first template argument is the type of the element's key, and the second template argument is
the type of the element's value. The elements of a map or multimap may have any types Key and
T that meet the following two requirements:

1. The key/value pair must be assignable and copyable.
2. The key must be comparable with the sorting criterion.

The optional third template argument defines the sorting criterion. Like sets, this sorting criterion
must define a "strict weak ordering" (see page 176). The elements are sorted according to their
keys, thus the value doesn't matter for the order of the elements. The sorting criterion is also used
to check equality; that is, two elements are equal if neither key is less than the other. If a special

The C++ Standard Library

dyne-book 173

sorting criterion is not passed, the default criterion less is used. The function object less sorts
the elements by comparing them with operator < (see page 305 for details about less).[23]

[23] In systems without support for default template parameters, the third argument typically is mandatory.

The optional fourth template parameter defines the memory model (see Chapter 15). The
default memory model is the model allocator, which is provided by the C++ standard
library.[24]

[24] In systems without support for default template parameters, the fourth argument typically is missing.

6.6.1 Abilities of Maps and Multimaps

Like all standardized associative container classes, maps and multimaps are usually
implemented as balanced binary trees (Figure 6.9). The standard does not specify this but it
follows from the complexity of the map and multimap operations. In fact, sets, multisets, maps,
and multimaps typically use the same internal data type. So, you could consider sets and
multisets as special maps and multimaps, respectively, for which the value and the key of the
elements are the same objects. Thus, maps and multimaps have all the abilities and operations of
sets and multisets. Some minor differences exist, however. First, their elements are key/value
pairs. In addition, maps can be used as associative arrays.

Figure 6.9. Internal Structure of Maps and Multimaps

Maps and multimaps sort their elements automatically according to the element's keys. Thus they
have good performance when searching for elements that have a certain key. Searching for
elements that have a certain value promotes bad performance. Automatic sorting imposes an
important constraint on maps and multimaps: You may not change the key of an element directly
because this might compromise the correct order. To modify the key of an element, you must
remove the element that has the old key and insert a new element that has the new key and the
old value (see page 201 for details). As a consequence, from the iterator's point of view, the

The C++ Standard Library

dyne-book 174

element's key is constant. However, a direct modification of the value of the element is still
possible (provided the type of the value is not constant).

6.6.2 Map and Multimap Operations

Create, Copy, and Destroy Operations

Table 6.26 lists the constructors and destructors of maps and multimaps.

Table 6.26. Constructors and Destructors of Maps and Multimaps
Operation Effect
map c Creates an empty map/multimap without any elements
map c(op) Creates an empty map/multimap that uses op as the sorting criterion
map c1(c2) Creates a copy of another map/multimap of the same type (all elements are

copied)
map c(beg,end) Creates a map/multimap initialized by the elements of the range

[beg,end)
map
c(beg,end,op)

Creates a map/multimap with the sorting criterion op initialized by the
elements of the range [beg,end)

c. ~map () Destroys all elements and frees the memory

Here, map may be one of the following:

Map Effect
map<Key,Elem> A map that sorts keys with less<> (operator <)
map<Key,Elem,Op> A map that sorts keys with Op
multimap<Key,Elem> A multimap that sorts keys with less<> (operator <)
multimap<Key,Elem,Op> A multimap that sorts keys with Op

You can define the sorting criterion in two ways:

1. As a template parameter.

For example[25] :

[25] Note that you have to put a space between the two ">" characters. ">>" would be parsed as
shift operator, which would result in a syntax error.

std::map<float,std::string,std::greater<float> > coll;

In this case, the sorting criterion is part of the type. Thus, the type system ensures that
only containers with the same sorting criterion can be combined. This is the usual way to
specify the sorting criterion. To be more precise, the third parameter is the type of the
sorting criterion. The concrete sorting criterion is the function object that gets created with
the container. To do this, the constructor of the container calls the default constructor of
the type of the sorting criterion. See page 294 for an example that uses a user-defined
sorting criterion.

2. As a constructor parameter.

The C++ Standard Library

dyne-book 175

In this case you might have a type for several sorting criteria, and the initial value or state
of the sorting criteria might differ. This is useful when processing the sorting criterion at
runtime, or when sorting criteria are needed that are different but of the same data type.
A typical example is specifying the sorting criterion for string keys at runtime. See page
213 for a complete example.

If no special sorting criterion is passed, the default sorting criterion, function object less<>, is
used. which sorts the elements by using operator <.[26]

[26] In systems without support for default template parameters, you typically must always pass the sorting
criterion as follows:

 map<float,string,less<float> > coll;

You should make a type definition to avoid the boring repetition of the type whenever it is used:

 typedef std::map<std::string,float,std::greater<string> >
 StringFloatMap;
 ...
 StringFloatMap coll;

The constructor for the beginning and the end of a range could be used to initialize the container
with elements from containers that have other types, from arrays, or from the standard input. See
Section 6.1.2, for details. However, the elements are key/value pairs, so you must ensure that
the elements from the source range have or are convertible into type pair<key,value>.

Nonmodifying and Special Search Operations

Maps and multimaps provide the usual nonmodifying operations — those that query size aspects
and make comparisons (Table 6.27).

Table 6.27. Nonmodifying Operations of Maps and Multimaps
Operation Effect
c.size() Returns the actual number of elements
c.empty() Returns whether the container is empty (equivalent to size()==0, but might

be faster)
c.max_size() Returns the maximum number of elements possible
c1 == c2 Returns whether c1 is equal to c2
c1 != c2 Returns whether c1 is not equal to c2 (equivalent to !(c1==c2))
c1 < c2 Returns whether c1 is less than c2
c1 > c2 Returns whether c1 is greater than c2 c2<c1)
c1 <= c2 Returns whether c1 is less than or equal to c2 (equivalent to !(c2<c1))
c1 >= c2 Returns whether c1 is greater than or equal to c2 (equivalent to !(c1<c2))

Comparisons are provided only for containers of the same type. Thus, the key, the value, and the
sorting criterion must be of the same type. Otherwise, a type error occurs at compile time. For
example:

 std::map<float,std::string> c1; // sorting criterion: less<>

The C++ Standard Library

dyne-book 176

 std::map<float,std::string,std::greater<float> > c2;
 ...
 if (c1 == c2) { // ERROR: different types
 ...
 }

To check whether a container is less than another container is done by a lexicographical
comparison (see page 360). To compare containers of different types (different sorting criterion),
you must use the comparing algorithms of Section 9.5.4.

Special Search Operations

Like sets and multisets, maps and multimaps provide special search member functions that
perform better because of their internal tree structure (Table 6.28).

The find() member function searches for the first element that has the appropriate key and
returns its iterator position. If no such element is found, find() returns end() of the container.
You can't use the find() member function to search for an element that has a certain value.
Instead, you have to use a general algorithm such as the find_if() algorithm, or program an
explicit loop. Here is an example of a simple loop that does something with each element that has
a certain value:

 std::multimap<std::string,float> coll;
 ...
 //do something with all elements having a certain value
 std::multimap<std::string,float>::iterator pos;
 for (pos = coll.begin(); pos != coll.end(); ++pos) {
 if (pos->second == value) {
 do_something();
 }
 }

Table 6.28. Special Search Operations of Maps and Multimaps
Operation Effect
count(key) Returns the number of elements with key key
find(key) Returns the position of the first element with key key or end()
lower_bound(key) Returns the first position where an element with key key would get

inserted (the first element with key >= key)
upper_bound(key) Returns the last position where an element with key key would get inserted

(the first element with key > key)
equal_range(key) Returns the first and last positions where elements with key key would get

inserted (the range of elements with key == key)

Be careful when you want to use such a loop to remove elements. It might happen that you saw
off the branch on which you are sitting. See page 204 for details about this issue.

Using the find_if() algorithm to search for an element that has a certain value is even more
complicated than writing a loop because you have to provide a function object that compares the
value of an element with a certain value. See page 211 for an example.

The C++ Standard Library

dyne-book 177

The lower_bound(), upper_bound(), and equal_range() functions behave as they do
for sets (see page 180), except that the elements are key/value pairs.

Assignments

Maps and multimaps provide only the fundamental assignment operations that all containers
provide (Table 6.29). See page 147 for more details.

Table 6.29. Assignment Operations of Maps and Multimaps
Operation Effect
c1 = c2 Assigns all elements of c2 c1
c1.swap(c2) Swaps the data of c1 and c2
swap(c1,c2) Same (as global function)

For these operations both containers must have the same type. In particular, the type of the
comparison criteria must be the same, although the comparison criteria themselves may be
different. See page 213 for an example of different sorting criteria that have the same type. If the
criteria are different, they also get assigned or swapped.

Iterator Functions and Element Access

Maps and multimaps do not provide direct element access, so the usual way to access elements
is via iterators. An exception to that rule is that maps provide the subscript operator to access
elements directly. This is covered in Section 6.6.3. Table 6.30 lists the usual member
functions for iterators that maps and multimaps provide.

Table 6.30. Iterator Operations of Maps and Multimaps
Operation Effect
c.begin() Returns a bidirectional iterator for the first element (keys are considered const)
c.end() Returns a bidirectional iterator for the position after the last element (keys are

considered const)
c.rbegin() Returns a reverse iterator for the first element of a reverse iteration
c.rend() Returns a reverse iterator for the position after the last element of a reverse

iteration

As for all associative container classes, the iterators are bidirectional (see Section 7.2.4,).
Thus, you can't use them in algorithms that are provided only for random access iterators (such
as algorithms for sorting or random shuffling).

More important is the constraint that the key of all elements inside a map and a multimap is
considered to be constant. Thus, the type of the elements is pair<const Key, T>. This is
also necessary to ensure that you can't compromise the order of the elements by changing their
keys. However, you can't call any modifying algorithm if the destination is a map or multimap. For
example, you can't call the remove() algorithm to remove elements because it "removes" only
by overwriting "removed" elements with the following arguments (see Section 5.6.2, for a
detailed discussion of this problem). To remove elements in maps and multimaps, you can use
only member functions provided by the container.

The following is an example of the use of iterators:

 std::map<std::string,float> coll;
 ...

The C++ Standard Library

dyne-book 178

 std::map<std::string,float>::iterator pos;
 for (pos = coll.begin(); pos != coll.end(); ++pos) {
 std::cout << "key: " << pos->first << "\t"
 << "value: " << pos->second << std::endl;
 }

Here, the iterator pos iterates through the sequence of string/float pairs. The expression

 pos->first

yields the key of the actual element, whereas the expression

 pos->second

yields the value of the actual element.[27]

[27] pos->first is a shortcut for (*pos).first. Some old libraries might only provide the latter.

Trying to change the value of the key results in an error:

 pos->first = "hello"; // ERROR at compile time

However, changing the value of the element is no problem (as long as the type of the value is not
constant):

 pos->second = 13.5; // OK

To change the key of an element, you have only one choice: You must replace the old element
with a new element that has the same value. Here is a generic function that does this:

 // cont/newkey.hpp

 namespace MyLib {
 template <class Cont>
 inline
 bool replace_key (Cont& c,
 const typename Cont::key_type& old_key,
 const typename Cont::key_type& new_key)
 {
 typename Cont::iterator pos;
 pos = c.find(old_key);
 if (pos != c.end()) {
 //insert new element with value of old element
 c.insert(typename Cont::value_type(new_key,
 pos->second));
 //remove old element
 c.erase(pos);
 return true;
 }
 else {
 //key not found

The C++ Standard Library

dyne-book 179

 return false;
 }
 }
 }

The insert() and erase() member functions are discussed in the next subsection.
To use this generic function you simply must pass the container the old key and the new key. For
example:

 std::map<std::string,float> coll;
 ...
 MyLib::replace_key(coll,"old key","new key");

It works the same way for multimaps.
Note that maps provide a more convenient way to modify the key of an element. Instead of calling
replace_key(), you can simply write the following:

 //insert new element with value of old element
 coll["new_key"] = coll["old_key"];
 //remove old element
 coll.erase("old_key");

See Section 6.6.3, for details about the use of the subscript operator with maps.

Inserting and Removing Elements

Table 6.31 shows the operations provided for maps and multimaps to insert and remove
elements.

Table 6.31. Insert and Remove Operations of Maps and Multimaps
Operation Effect

c.insert(elem) Inserts a copy of elem and returns the position of the new element and,
for maps, whether it succeeded

c.insert(pos,elem) Inserts a copy of elem and returns the position of the new element (pos
is used as a hint pointing to where the insert should start the search)

c.insert(beg,end) Inserts a copy of all elements of the range [beg,end)(returns nothing)

c.erase(elem) Removes all elements with value elem and returns the number of
removed elements

c.erase(pos) Removes the element at iterator position pos (returns nothing)
c.erase(beg,end) Removes all elements of the range [beg,end)(returns nothing)
c.clear() Removes all elements (makes the container empty)

The remarks on page 182 regarding sets and multisets apply here. In particular, the return types
of these operations have the same differences as they do for sets and multisets. However, note
that the elements here are key/value pairs. So, the use is getting a bit more complicated.

To insert a key/value pair, you must keep in mind that inside maps and multimaps the key is
considered to be constant. You either must provide the correct type or you need to provide
implicit or explicit type conversions. There are three different ways to pass a value into a map:

The C++ Standard Library

dyne-book 180

1. Use value_type

To avoid implicit type conversion, you could pass the correct type explicitly by using
value_type, which is provided as a type definition by the container type. For example:

 std::map<std::string,float> coll;
 ...
 coll.insert(std::map<std::string,float>::value_type("otto",
 22.3));

2. Use pair<>

Another way is to use pair<> directly. For example:

 std::map<std::string,float> coll;
 ...
 //use implicit conversion:
 coll.insert(std::pair<std::string,float>("otto",22.3));
 //use no implicit conversion:
 coll.insert(std::pair<const std::string,float>("otto",22.3));

In the first insert() statement the type is not quite right, so it is converted into the real
element type. For this to happen, the insert() member function is defined as a
member template.[28]

[28] If your system does not provide member templates, you must pass an element with the
correct type. This usually requires that you make the type conversions explicit.

3. Use make_pair()

Probably the most convenient way is to use the make_pair() function (see page 36).
This function produces a pair object that contains the two values passed as arguments:

 std::map<std::string,float> coll;
 ...
 coll.insert(std::make_pair("otto",22.3));

Again, the necessary type conversions are performed by the insert() member
template.

Here is a simple example of the insertion of an element into a map that also checks whether the
insertion was successful:

 std::map<std::string,float> coll;

The C++ Standard Library

dyne-book 181

 ...
 if (coll.insert(std::make_pair("otto",22.3)).second) {
 std::cout << "OK, could insert otto/22.3" << std::endl;
 }
 else {
 std::cout << "Oops, could not insert otto/22.3 "
 << "(key otto already exists)" << std::endl;
 }

See page 182 for a discussion regarding the return values of the insert() functions and more
examples that also apply to maps. Note, again, that maps provide a more convenient way to
insert (and set) elements with the subscript operator. This is discussed in Section 6.6.3.

To remove an element that has a certain value, you simply call erase():

 std::map<std::string,float> coll;
 ...
 //remove all elements with the passed key
 coll.erase(key);

This version of erase() returns the number of removed elements. When called for maps, the
return value of erase() can only be 0 or 1.

If a multimap contains duplicates, you can't use erase() to remove only the first element of
these duplicates. Instead, you could code as follows:

 typedef multimap<string.float> StringFloatMMap;
 StringFloatMMap coll;
 ...
 //remove first element with passed key
 StringFloatMMap::iterator pos;
 pos = coll.find(key);
 if (pos != coll.end()) {
 coll.erase(pos);
 }

You should use the member function find() instead of the find() algorithm here because it is
faster (see an example with the find() algorithm on page 154). However, you can't use the
find() member functions to remove elements that have a certain value (instead of a certain
key). See page 198 for a detailed discussion of this topic.

When removing elements, be careful not to saw off the branch on which you are sitting. There is
a big danger that will you remove an element to which your iterator is referring. For example:

 typedef std::map<std::string,float> StringFloatMap;
 StringFloatMap coll;
 StringFloatMap::iterator pos;
 ...
 for (pos = coll.begin(); pos != coll.end(); ++pos) {
 if (pos->second == value) {
 coll. erase (pos); // RUNTIME ERROR !!!
 }
 }

The C++ Standard Library

dyne-book 182

Calling erase() for the element to which you are referring with pos invalidates pos as an
iterator of coll. Thus, if you use pos after removing its element without any reinitialization, then
all bets are off. In fact, calling ++pos results in undefined behavior.
A solution would be easy if erase() always returned the value of the following element:

 typedef std::map<std::string,float> StringFloatMap;
 StringFloatMap coll;
 StringFloatMap::iterator pos;
 ...
 for (pos = coll.begin(); pos != coll.end();) {
 if (pos->second == value) {
 pos = coll.erase(pos); // would be fine, but COMPILE TIME
ERROR
 }
 else {
 ++pos;
 }
 }

It was a design decision not to provide this trait, because if not needed, it costs unnecessary time.
I don't agree with this decision however, because code is getting more error prone and
complicated (and may cost even more in terms of time).

Here is an example of the correct way to remove elements to which an iterator refers:

 typedef std::map<std::string,float> StringFloatMap;
 StringFloatMap coll;
 StringFloatMap::iterator pos, tmp_pos;
 ...
 //remove all elements having a certain value
 for (pos = c.begin(); pos != c.end();) {
 if (pos->second == value) {
 c.erase(pos++);
 }
 else {
 ++pos;
 }
 }

Note that pos++ increments pos so that it refers to the next element but yields a copy of its
original value. Thus, pos doesn't refer to the element that is removed when erase() is called.

6.6.3 Using Maps as Associative Arrays

Associative containers don't typically provide abilities for direct element access. Instead, you must
use iterators. For maps, however, there is an exception to this rule. Nonconstant maps provide a
subscript operator for direct element access (Table 6.32). However, the index of the subscript
operator is not the integral position of the element. Instead, it is the key that is used to identify the
element. This means that the index may have any type rather than only an integral type. Such an
interface is the interface of a so-called associative array.

The C++ Standard Library

dyne-book 183

Table 6.32. Direct Element Access of Maps with Operator []
Operation Effect
m[key] Returns a reference to the value of the element with key key Inserts an element with

key if it does not yet exist
The type of the index is not the only difference from ordinary arrays. In addition, you can't have a
wrong index. If you use a key as the index, for which no element yet exists, a new element gets
inserted into the map automatically. The value of the new element is initialized by the default
constructor of its type. Thus, to use this feature you can't use a value type that has no default
constructor. Note that the fundamental data types provide a default constructor that initializes
their values to zero (see page 14).

This behavior of an associative array has both advantages and disadvantages:

• The advantage is that you can insert new elements into a map with a more convenient
interface.

For example:

 std::map<std::string,float> coll; // empty collection
 /*insert "otto"/7.7 as key/value pair
 *-first it inserts "otto"/float()
 *-then it assigns 7.7
 */
 coll["otto"] = 7.7;

The statement

 coll["otto"] = 7.7;

is processed here as follows:

1. Process coll["otto"] expression:
� If an element with key "otto" exists, the expression returns the value of

the element by reference.
� If, as in this example, no element with key "otto" exists, the expression

inserts a new element automatically with "otto" as key and the value of
the default constructor of the value type as the element value. It then
returns a reference to that new value of the new element.

2. Assign value 7.7:
� The second part of the statement assigns 7.7 to the value of the new or

existing element.

The map then contains an element with key "otto" and value 7.7.

• The disadvantage is that you might insert new elements by accident or mistake. For
example, the following statement does something you probably hadn't intended or
expected:

The C++ Standard Library

dyne-book 184

 std::cout << coll ["ottto"];

It inserts a new element with key "ottto" and prints its value, which is 0 by default.
However, it should have generated an error message telling you that you wrote "otto"
incorrectly.

Note, too, that this way of inserting elements is slower than the usual way for maps,
which is described on page 202. This is because the new value is first initialized by the
default value of its type, which is then overwritten by the correct value.

6.6.4 Exception Handling

Maps and multimaps provide the same behavior as sets and multisets with respect to exception
safety. This behavior is mentioned on page 185.

6.6.5 Examples of Using Maps and Multimaps

Using a Map as an Associative Array

The following example shows the use of a map as an associative array. The map is used as a
stock chart. The elements of the map are pairs in which the key is the name of the stock and the
value is its price:

 // cont/mapl.cpp

 #include <iostream>
 #include <map>
 #include <string>
 using namespace std;

 int main()
 {
 /*create map/associative array
 *-keys are strings
 *-values are floats
 */
 typedef map<string,float> StringFloatMap;

 StringFloatMap stocks; // create empty container

 //insert some elements
 stocks["BASF"] = 369.50;
 stocks["VW"] = 413.50;
 stocks["Daimler"] = 819.00;
 stocks["BMW"] = 834.00;
 stocks["Siemens"] = 842.20;

 //print all elements
 StringFloatMap::iterator pos;
 for (pos = stocks.begin(); pos != stocks.end(); ++pos) {
 cout << "stock: " << pos->first << "\t"
 << "price: " << pos->second << endl;

The C++ Standard Library

dyne-book 185

 }
 cout << endl;

 //boom (all prices doubled)
 for (pos = stocks.begin(); pos != stocks.end(); ++pos) {
 pos->second *= 2;
 }

 //print all elements
 for (pos = stocks.begin(); pos != stocks.end(); ++pos) {
 cout << "stock: " << pos->first << "\t"
 << "price: " << pos->second << endl;
 }
 cout << endl;

 /*rename key from "VW" to "Volkswagen"
 *-only provided by exchanging element
 */
 stocks["Volkswagen"] = stocks["VW"];
 stocks.erase("VW");

 //print all elements
 for (pos = stocks.begin(); pos != stocks.end(); ++pos) {
 cout << "stock: " << pos->first << "\t"
 << "price: " << pos->second << endl;
 }
 }

The program has the following output:

 stock: BASF price: 369.5
 stock: BMW price: 834
 stock: Daimler price: 819
 stock: Siemens price: 842.2
 stock: VW price: 413.5

 stock: BASF price: 739
 stock: BMW price: 1668
 stock: Daimler price: 1638
 stock: Siemens price: 1684.4
 stock: VW price: 827

 stock: BASF price: 739
 stock: BMW price: 1668
 stock: Daimler price: 1638
 stock: Siemens price: 1684.4
 stock: Volkswagen price: 827

Using a Multimap as a Dictionary

The following example shows how to use a multimap as a dictionary:

 // cont/mmap1.cpp

The C++ Standard Library

dyne-book 186

 #include <iostream>
 #include <map>
 #include <string>
 #include <iomanip>
 using namespace std;

 int main()
 {
 //define multimap type as string/string dictionary
 typedef multimap<string,string> StrStrMMap;

 //create empty dictionary
 StrStrMMap dict;

 //insert some elements in random order
 dict.insert(make_pair("day","Tag"));
 dict.insert(make_pair("strange","fremd"));
 dict.insert(make_pair("car","Auto"));
 dict.insert(make_pair("smart","elegant"));
 dict.insert(make_pair("trait","Merkmal"));
 dict.insert(make_pair("strange","seltsam"));
 dict.insert(make_pair("smart","raffiniert"));
 dict.insert(make_pair("smart","klug"));
 dict.insert(make_pair("clever","raffiniert"));

 //print all elements
 StrStrMMap::iterator pos;
 cout.setf (ios::left, ios::adjustfield);
 cout << ' ' << setw(10) << "english "
 << "german " << endl;
 cout << setfil('-') << setw(20) << ""
 << setfil(' ') << endl;
 for (pos = dict.begin(); pos != dict.end(); ++pos) {
 cout << ' ' << setw(10) << pos>first.c_str()
 << pos->second << endl;
 }
 cout << endl;

 //print all values for key "smart"
 string word("smart");
 cout << word << ": " << endl;

 for (pos = dict.lower_bound(word);
 pos != dict.upper_bound(word); ++pos) {
 cout << " " << pos->second << endl;
 }

 //print all keys for value "raffiniert"
 word = ("raffiniert");
 cout << word << ": " << endl;
 for (pos = dict.begin(); pos != dict.end(); ++pos) {
 if (pos->second == word) {
 cout << " " << pos->first << endl;
 }
 }
 }

The C++ Standard Library

dyne-book 187

The program has the following output:

 english german

 car Auto
 clever raffiniert
 day Tag
 smart elegant
 smart raffiniert
 smart klug
 strange fremd
 strange seltsam
 trait Merkmal

 smart:
 elegant
 raffiniert
 klug
 raffiniert:
 clever
 smart

Find Elements with Certain Values

The following example shows how to use the global find_if() algorithm to find an element with
a certain value:

 // cont/mapfind.cpp

 #include <iostream>
 #include <algorithm>
 #include <map>
 using namespace std;

 /*function object to check the value of a map element
 */
 template <class K, class V>
 class value_equals {
 private:
 V value;
 public:
 //constructor (initialize value to compare with)
 value_equals (const V& v)
 : value(v) {
 }
 //comparison
 bool operator() (pair<const K, V> elem) {
 return elem.second == value;
 }
 };

 int main()

The C++ Standard Library

dyne-book 188

 {
 typedef map<float,float> FloatFloatMap;
 FloatFloatMap coll;
 FloatFloatMap::iterator pos;

 //fill container
 coll[1]=7;
 coll[2]=4;
 coll[3]=2;
 coll[4]=3;
 coll[5]=6;
 coll[6]=1;
 coll[7]=3;

 //search an element with key 3.0
 pos = coll.find (3.0); // logarithmic
complexity
 if (pos != coll.end()) {
 cout << pos->first << ": "
 << pos->second << endl;
 }

 //search an element with value 3.0
 pos = find_if (coll.begin(),coll.end(), // linear complexity
 value_equals<float,float>(3.0));
 if (pos != coll.end()) {
 cout << pos->first << ": "
 << pos->second << endl;
 }
 }

The output of the program is as follows:

 3: 2
 4: 3

6.6.6 Example with Maps, Strings, and Sorting Criterion at Runtime

Here is another example. It is for advanced programmers rather than STL beginners. You can
take it as an example of both the power and the snags of the STL. In particular, this example
demonstrates the following techniques:

• How to use maps
• How to write and use function objects
• How to define a sorting criterion at runtime
• How to compare strings in a case-insensitive way

 // cont/mapcmp.cpp

 #include <iostream>
 #include <iomanip>
 #include <map>

The C++ Standard Library

dyne-book 189

 #include <string>
 #include <algorithm>
 using namespace std;

 /*function object to compare strings
 *-allows you to set the comparison criterion at runtime
 *-allows you to compare case insensitive
 */
 class RuntimeStringCmp {
 public:
 //constants for the comparison criterion
 enum cmp_mode {normal, nocase};
 private:
 //actual comparison mode
 const cmp_mode mode;

 //auxiliary function to compare case insensitive
 static bool nocase_compare (char c1, char c2)
 {
 return toupper(c1) < toupper(c2);
 }

 public:
 //constructor: initializes the comparison criterion
 RuntimeStringCmp (cmp_mode m=normal) : mode(m) {
 }

 //the comparison
 bool operator() (const string& s1, const string& s2) const {
 if (mode == normal) {
 return s1<s2;
 }
 else {
 return lexicographical_compare (s1.begin(), s1.end(),
 s2.begin(), s2.end(),
 nocase_compare);
 }
 }
 };

 /*container type:
 *-map with
 * -string keys
 * -string values
 * -the special comparison object type
 */
 typedef map<string,string,RuntimeStringCmp> StringStringMap;

 //function that fills and prints such containers
 void fillAndPrint(StringStringMap& coll);

 int main()
 {
 //create a container with the default comparison criterion
 StringStringMap coll1;
 fillAndPrint(coll1);

The C++ Standard Library

dyne-book 190

 //create an object for case-insensitive comparisons
 RuntimeStringCmp ignorecase (RuntimeStringCmp::nocase);

 //create a container with the case-insensitive comparisons
criterion
 StringStringMap coll2 (ignorecase);
 fillAndPrint (coll2);
 }

 void fillAndPrint (StringStringMap& coll)
 {
 //fill insert elements in random order
 coll["Deutschland"] = "Germany";
 coll["deutsch"] = "German";
 coll["Haken"] = "snag";
 coll["arbeiten"] = "work";
 coll["Hund"] = "dog";
 coll["gehen"] = "go";
 coll["Unternehmen"] = "enterprise";
 coll["unternehmen"] = "undertake";
 coll["gehen"] = "walk";
 coll["Bestatter"] = "undertaker";

 //print elements
 StringStringMap::iterator pos;
 cout.setf(ios::left, ios::adjustfield);
 for (pos=coll.begin(); pos!=coll.end(); ++pos) {
 cout << setw(15) << pos->first.c_str() << " "
 << pos->second << endl;
 }
 cout << endl;
 }

main() creates two containers and calls fillAndPrint() for them. fillAndPrint() fills the
containers with the same elements and prints the contents of them. However, the containers have
two different sorting criteria:

1. coll1 uses the default function object of type RuntimeStringCmp, which compares
the elements by using operator <.

2. coll2 uses a function object of type RuntimeStringCmp that is initialized by value
nocase of class RuntimeStringCmp. nocase forces this function object to sort
strings in a case-insensitive way.

The program has the following output:

 Bestatter undertaker
 Deutschland Germany
 Haken snag
 Hund dog
 Unternehmen enterprise
 arbeiten work
 deutsch German
 gehen walk
 unternehmen undertake

 arbeiten work

The C++ Standard Library

dyne-book 191

 Bestatter undertaker
 deutsch German
 Deutschland Germany
 gehen walk
 Haken snag
 Hund dog
 Unternehmen undertake

The first block of the output prints the contents of the first container that compares with operator
<. The output starts with all uppercase keys followed by all lowercase keys.

The second block prints all case-insensitive items, so the order changed. But note, the second
block has one item less. This is because the uppercase word "Unternehmen" is, from a case-
insensitive point of view, equal to the lowercase word "unternehmen,"[29] and we use a map
that does not allow duplicates according to its comparison criterion. Unfortunately the result is a
mess because the German key that is the translation for "enterprise" got the value "undertake."
So probably a multimap should be used here. This makes sense because a multimap is the
typical container for dictionaries.

[29] In German all nouns are written with an initial capital letter whereas all verbs are written in lowercase
letters.

6.7 Other STL Containers

The STL is a framework. In addition to the standard container classes it allows you to use other
data structures as containers. You can use strings or ordinary arrays as STL containers, or you
can write and use special containers that meet special needs. Doing this has the advantage that
you can benefit from algorithms, such as sorting or merging, for your own type. Such a framework
is a good example of the Open Closed Principle[30] : open for extension; closed for modification.

[30] I first heard of the Open Closed Principle from Robert C. Martin, who himself heard it from Bertrand
Meyer.

There are three different approaches to making containers "STL-able":

1. The invasive approach[31]

[31] Instead of invasive and noninvasive sometime the terms intrusive and nonintrusive are used.

You simply provide the interface that ah STL container requires. In particular, you need
the usual member functions of containers such as begin() and end(). This approach
is invasive because it requires that a container be written in a certain way.

2. The noninvasive approach[31]

You write or provide special iterators that are used as an interface between the
algorithms and special containers. This approach is noninvasive. All it requires is the
ability to step through all of the elements of a container, an ability that any container
provides in some way.

3. The wrapper approach

The C++ Standard Library

dyne-book 192

Combining the two previous approaches, you write a wrapper class that encapsulates
any data structure with an STL container-like interface.

This subsection first discusses strings as a standard container, which is an example of the
invasive approach. It then covers an important standard container that uses the noninvasive
approach: ordinary arrays. However, you can also use the wrapper approach to access data of an
ordinary array. Finally, this section subdiscusses some aspects of an important container that is
not part of the standard: a hash table.

Whoever wants to write an STL container might also support the ability to get parameterized for
different allocators. The C++ standard library provides some special functions and classes for
programming with allocators and uninitialized memory. See Section 15.2, for details.

6.7.1 Strings as STL Containers

The string classes of the C++ standard library are an example of the invasive approach of writing
STL containers (string classes are introduced and discussed in Chapter 11). Strings can be
considered containers of characters. The characters inside the string build a sequence over
which you can iterate to process the individual characters. Thus, the standard string classes
provide the container interface of the STL. They provide the begin() and end() member
functions, which return random access iterators to iterate over a string. They also provide some
operations for iterators and iterator adapters. For example, push_back() is provided to enable
the use of back inserters.

Note that string processing from the STL's point of view is a bit unusual. This is because normally
you process strings as a whole object (you pass, copy, or assign strings). However, when
individual character processing is of interest, the ability to use STL algorithms might be helpful.
For example, you could read the characters with istream iterators or you could transform string
characters, such as make them uppercase or lowercase. In addition, by using STL algorithms you
can use a special comparison criterion for strings. The standard string interface does not provide
that ability.

Section 11.2.13, which is part of the string chapter, discusses the STL aspects of strings in
more detail and gives examples.

6.7.2 Ordinary Arrays as STL Containers

You can use ordinary arrays as STL containers. However, ordinary arrays are not classes, so
they don't provide member functions such as begin() and end(), and you can't define
member functions for them. Here, either the noninvasive approach or the wrapper approach must
be used.

Using Ordinary Arrays Directly

Using the noninvasive approach is simple. You only need objects that are able to iterate over the
elements of an array by using the STL iterator interface. Actually, such iterators already exist:
ordinary pointers. It was a design decision of the STL to use the pointer interface for iterators so
that you could use ordinary pointers as iterators. This again shows the generic concept of pure
abstraction: Anything that behaves like an iterator is an iterator. In fact, pointers are random
access iterators (see Section 7.2.5,). The following example demonstrates how to use ordinary
arrays as STL containers:

 // cont/array1.cpp

The C++ Standard Library

dyne-book 193

 #include <iostream>
 #include <algorithm>
 #include <functional>
 using namespace std;

 int main()
 {
 int coll[] = { 5, 6, 2, 4, 1, 3 };

 //square all elements
 transform (coll, coll+6, // first source
 coll, // second source
 coll, // destination
 multiplies<int>()); // operation

 //sort beginning with the second element
 sort (coll+1, coll+6);

 //print all elements
 copy (coll, coll+6,
 ostream_iterator<int>(cout," "));
 cout << endl;
 }

You must be careful to pass the correct end of the array, as it is done here by using coll+6.
And, as usual, you have to make sure that the end of the range is the position after the last
element.

The output of the program is as follows:

 25 1 4 9 16 36

Additional examples are on page 382 and page 421.

An Array Wrapper

In his book The C++ Programming Language, 3rd edition, Bjarne Stroustrup introduces a useful
wrapper class for ordinary arrays. It is safer and has no worse performance than an ordinary
array. It also is a good example of a user-defined STL container. This container uses the wrapper
approach because it offers the usual container interface as a wrapper around the array.

The class carray (the name is short for "C array" or for "constant size array") is defined as
follows[32] :

[32] The original array wrapper class by Bjarne Stroustrup is called c_array and is defined in Section 17.5.4
of his book. I have modified it slightly for this book.

 // cont/carray.hpp

 #include <cstddef>

 template<class T, size_t thesize>
 class carray {

The C++ Standard Library

dyne-book 194

 private:
 T v[thesize]; // fixed-size array of elements of type T

 public:
 //type definitions
 typedef T value_type;
 typedef T* iterator;
 typedef const T* const_iterator;
 typedef T& reference;
 typedef const T& const_reference;
 typedef size_t size_type;
 typedef ptrdiff_t difference_type;

 //iterator support
 iterator begin() { return v; }
 const_iterator begin() const { return v; }
 iterator end() { return v+thesize; }
 const_iterator end() const { return v+thesize; }

 //direct element access
 reference operator[](size_t i) { return v[i]; }
 const_reference operator[](size_t i) const { return v[i]; }

 //size is constant
 size_type size() const { return thesize; }
 size_type max_size() const { return thesize; }

 //conversion to ordinary array
 T* as_array() { return v; }
 };

Here is an example of the usage of the carray class:

 // cont/carray1.cpp

 #include <algorithm>
 #include <functional>
 #include "carray.hpp"
 #include "print.hpp"
 using namespace std;

 int main()
 {
 carray<int,10> a;

 for (unsigned i=0; i<a.size(); ++i) {
 a[i] = i+1;
 }
 PRINT_ELEMENTS(a);

 reverse(a.begin(),a.end());
 PRINT_ELEMENTS(a);

 transform (a. begin(),a.end(), // source
 a. begin(), // destination
 negate<int>()); // operation

The C++ Standard Library

dyne-book 195

 PRINT_ELEMENTS(a);
 }

As you can see, you can use the general container interface operations (begin(), end(), and
operator []) to manipulate the container directly. Therefore, you can also use different
operations that call begin() and end(), such as algorithms and the auxiliary function
PRINT_ELEMENTS(), which is introduced on page 118.

The output of the program is as follows:

 1 2 3 4 5 6 7 8 9 10
 10 9 8 7 6 5 4 3 2 1
 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

6.7.3 Hash Tables

One important data structure for collections is not part of the C++ standard library: the hash table.
There were suggestions to incorporate hash tables into the standard; however, they were not part
of the original STL and the committee decided that the proposal for their inclusion came too late.
(At some point you have to stop introducing features and focus on the details. Otherwise, you
never finish the work.)

Nevertheless, inside the C++ community several implementations of hash tables are available.
Libraries typically provide four kinds of hash tables: hash_set, hash_multiset,
hash_map, and hash_multimap. According to the other associative containers, the multi
versions allow duplicates and maps contain key/value pairs. Bjarne Stroustrup discusses
hash_map as an example of a supplemented STL container in detail in Section 17.6 of his book
The C+ + Programming Language, 3rd edition. For a concrete implementation of hash containers,
see, for example, the "STLport" (http://www.stlport.org/). Note that different implementations
may differ in details because hash containers are not yet standardized.

6.8 Implementing Reference Semantics

In general, STL container classes provide value semantics and not reference semantics. Thus,
they create internal copies of the elements they contain and return copies of those elements.
Section 5.10.2, discusses the pros and cons of this approach and touches on its
consequences. To summarize, if you want reference semantics in STL containers (whether
because copying elements is expensive or because identical elements will be shared by different
collections), you should use a smart pointer class that avoids possible errors. Here is one
possible solution to the problem. It uses an auxiliary smart pointer class that enables reference
counting for the objects to which the pointers refer[33] :

[33] Many thanks to Greg Colvin and Beman Dawes for feedback on implementing this class.

 // cont/countptr.hpp

 #ifndef COUNTED_PTR_HPP
 #define COUNTED_PTR_HPP

 /*class for counted reference semantics

The C++ Standard Library

dyne-book 196

 *-deletes the object to which it refers when the last CountedPtr
 * that refers to it is destroyed
 */
 template <class T>
 class CountedPtr {
 private:
 T* ptr; // pointer to the value
 long* count; // shared number of owners

 public:
 //initialize pointer with existing pointer
 //-requires that the pointer p is a return value of new
 explicit CountedPtr (T* p=0)
 : ptr(p), count(new long(1)) {
 }

 //copy pointer (one more owner)
 CountedPtr (const CountedPtr<T>& p) throw()
 : ptr(p.ptr), count(p.count) {
 ++*count;
 }

 //destructor (delete value if this was the last owner)
 ~CountedPtr () throw() {
 dispose();
 }

 //assignment (unshare old and share new value)
 CountedPtr<T>& operator= (const CountedPtr<T>& p) throw() {
 if (this != &p) {
 dispose();
 ptr = p.ptr;
 count = p.count;
 ++*count;
 }
 return *this;
 }

 //access the value to which the pointer refers
 T& operator*() const throw() {
 return *ptr;
 }
 T* operator->() const throw() {
 return ptr;
 }

 private:
 void dispose() {
 if (--*count == 0) {
 delete count;
 delete ptr;
 }
 }
 };

 #endif /*COUNTED_PTR_HPP*/

The C++ Standard Library

dyne-book 197

This class resembles the standard auto_ptr class (see Section 4.2,). It expects that the
values with which the smart pointers are initialized are return values of operator new. However,
unlike auto_ptr, it allows you to copy these smart pointers while retaining the validity of the
original and the copy. Only if the last smart pointer to the object gets destroyed does the value to
which it refers get deleted.

You could improve the class to allow automatic type conversions or the ability to transfer the
ownership away from the smart pointers to the caller.

The following program demonstrates how to use this class:

 // cont/refsem1.cpp

 #include <iostream>
 #include <list>
 #include <deque>
 #include <algorithm>
 #include "countptr.hpp"
 using namespace std;

 void printCountedPtr (CountedPtr<int> elem)
 {
 cout << *elem << ' ';
 }

 int main()
 {
 //array of integers (to share in different containers)
 static int values[] ={3, 5, 9, 1,6,4};

 //two different collections
 typedef CountedPtr<int> IntPtr;
 deque<IntPtr> coll1;
 list<IntPtr> coll2;

 /*insert shared objects into the collections
 *-same order in coll1
 *-reverse order in coll2
 */
 for (int i=0; i<sizeof(values)/sizeof(values[0]); ++i) {
 IntPtr ptr(new int(values[i]));
 coll1.push_back(ptr);
 coll2.push_front(ptr);
 }

 //print contents of both collections
 for_each (coll1.begin(), coll1.end(),
 printCountedPtr);
 cout << endl;
 for_each (coll2.begin(), coll2.end(),
 printCountedPtr);
 cout << endl << endl;

 /*modify values at different places
 *-square third value in coll1

The C++ Standard Library

dyne-book 198

 *-negate first value in coll1
 *-set first value in coll2 to 0
 */
 *coll1[2] *= *coll1[2];
 (**coll1.begin()) *= -1;
 (**coll2.begin()) = 0;

 //print contents of both collections again
 for_each (coll1.begin(), coll1.end(),
 printCountedPtr);
 cout << endl;
 for_each (coll2.begin(), coll2.end(),
 printCountedPtr);
 cout << endl;
 }

The program has the following output:

 3 5 9 1 6 4
 4 6 1 9 5 3

 -3 5 81 1 6 0
 0 6 1 81 5 -3

Note that if you call an auxiliary function that saves one element of the collections (an IntPtr)
somewhere else, the value to which it refers stays valid even if the collections get destroyed or all
of their elements are removed.

See the Boost repository for C++ libraries at http://www.boost.org/ for a collection of different
smart pointer classes as an extension of the C++ standard library. (Class CountedPtr<> will
probably be called shared_ptr<>.)

6.9 When to Use which Container

The C++ standard library provides different container types with different abilities. The question
now is: When do you use which container type? Table 6.9 provides an overview. However, it
contains general statements that might not fit in reality. For example, if you manage only a few
elements you can ignore the complexity because short element processing with linear complexity
is better than long element processing with logarithmic complexity.

As a supplement to the table, the following rules of thumb might help:

• By default, you should use a vector. It has the simplest internal data structure and
provides random access. Thus, data access is convenient and flexible, and data
processing is often fast enough.

• If you insert and/or remove elements often at the beginning and the end of a sequence,
you should use a deque. You should also use a deque if it is important that the amount of
internal memory used by the container shrinks when elements are removed. Also,
because a vector usually uses one block of memory for its elements, a deque might be
able to contain more elements because it uses several blocks.

• If you insert, remove, and move elements often in the middle of a container, consider
using a list. Lists provide special member functions to move elements from one container
to another in constant time. Note, however, that because a list provides no random

The C++ Standard Library

dyne-book 199

access, you might suffer significant performance penalties on access to elements inside
the list if you only have the beginning of the list.

Like all node-based containers, a list doesn't invalidate iterators that refer to elements, as
long as those elements are part of the container. Vectors invalidate all of their iterators,
pointers, and references whenever they exceed their capacity, and part of their iterators,
pointers, and references on insertions and deletions. Deques invalidate iterators,
pointers, and references when they change their size, respectively.

• If you need a container that handles exceptions in a way that each operation either
succeeds or has no effect, you should use either a list (without calling assignment
operations and sort() and, if comparing the elements may throw, without calling merge
(), remove(), remove_if(), and unique(); see page 172) or an associative
container (without calling the multiple-element insert operations and, if copying/assigning
the comparison criterion may throw, without calling swap()). See Section 5.11.2, for a
general discussion of exception handling in the STL and Section 6.10.10, for a table of
all container operations with special guarantees in face of exceptions.

• If you often need to search for elements according to a certain criterion, use a set or a
multiset that sorts elements according to this sorting criterion. Keep in mind that the
logarithmic complexity involved in sorting 1,000 elements is in principle ten times better
than that with linear complexity. In this case, the typical advantages of binary trees apply.

A hash table commonly provides five to ten times faster lookup than a binary tree. So if a
hash container is available, you might consider using it even though hash tables are not
standardized. However, hash containers have no ordering, so if you need to rely on
element order they're no good. Because they are not part of the C++ standard library, you
should have the source code to stay portable.

• To process key/value pairs, use a map or a multimap (or the hash version, if available).
• If you need an associative array, use a map.
• If you need a dictionary, use a multimap.

Table 6.33. Overview of Container Abilities
 Vector Deque List Set Multiset Map Multimap
Typical internal
data structure

Dynamic
array

Array of
arrays

Doubly
linked list

Binary tree Binary tree Binary tree Binary tree

Elements Value Value Value Value Value Key/value
pair

Key/value
pair

Duplicates
allowed

Yes Yes Yes No Yes Not for the
key

Yes

Random access
available

Yes Yes No No No With key No

Iterator category Random
access

Random
access

Bidirectional Bidirectional
(element
constant)

Bidirectional
(element
constant)

Bidirectional
(key
constant)

Bidirectional
(key
constant)

Search/find
elements

Slow Slow Very slow Fast Fast Fast for key Fast for key

Inserting/removing
of elements is fast

At the end At the
beginning
and the
end

Anywhere — — — —

The C++ Standard Library

dyne-book 200

Inserting/removing
invalidates
iterators,
references,
pointers

On
reallocation

Always Never Never Never Never Never

Frees memory for
removed elements

Never Sometimes Always Always Always Always Always

Allows memory
reservation

Yes No — — — — —

Transaction safe
(success or no
effect)

Push/pop
at the end

Push/pop
at the
beginning
and the
end

All except
sort() and
assignments

All except
multiple-
element
insertions

All except
multiple-
element
insertions

All except
multiple-
element
insertions

All except
multiple-
element
insertions

A problem that is not easy to solve is how to sort objects according to two different sorting criteria.
For example, you might have to keep elements in an order provided by the user while providing
search capabilities according to another criterion. And as in databases, you need fast access
regarding two or more different criteria. In this case, you could probably use two sets or two maps
that share the same objects with different sorting criteria. However, having objects in two
collections is a special issue, which is covered in Section 6.8.

The automatic sorting of associative containers does not mean that these containers perform
better when sorting is needed. This is because an associative container sorts each time a new
element gets inserted. An often faster way is to use a sequence container and to sort all elements
after they are all inserted by using one of the several sort algorithms (see Section 9.2.2).

The following are two simple programs that sort all strings read from the standard input and print
them without duplicates by using two different containers:

1. Using a set:

 // cont/sortset.cpp

 #include <iostream>
 #include <string>
 #include <algorithm>
 #include <set>
 using namespace std;

 int main()
 {
 /*create a string set
 *-initialized by all words from standard input
 */
 set<string> coll((istream_iterator<string>(cin)),

 (istream_iterator<string>()));

 //print all elements
 copy (coll.begin(), coll.end(),
 ostream_iterator<string>(cout, "\n"));
 }

The C++ Standard Library

dyne-book 201

2. Using a vector:

 // cont/sortvec.cpp

 #include <iostream>
 #include <string>
 #include <algorithm>
 #include <vector>
 using namespace std;

 int main()
 {
 /*create a string vector
 *-initialized by all words from standard input
 */
 vector<string> coll((istream_iterator<string>(cin)),
 (istream_iterator<string>()));

 //sort elements
 sort (coll.begin(), coll.end());

 //print all elements ignoring subsequent duplicates
 unique_copy (coll.begin(), coll.end(),
 ostream_iterator<string>(cout, "\n"));
 }

When I tried both programs with about 150,000 strings on my system, the vector version was
approximately 10% faster. Inserting a call of reserve() made the vector version 5% faster.
Allowing duplicates (using a multiset instead of a set and calling copy() instead of
unique_copy() respectively) changed things dramatically: The vector version was more than
40% faster! These measurements are not representative; however, they do show that it is often
worth trying different ways of processing elements.

In practice, predicting which container type is the best is often difficult. The big advantage of the
STL is that you can try different versions without much effort. The major work— implementing the
different data structures and algorithms— is done. You have only to combine them in a way that
is best for you.

6.10 Container Types and Members in Detail

This section discusses the different STL containers and presents all of the operations that STL
containers provide. The types and members are grouped by functionality. For each type and
operation this section describes the signature, the behavior, and the container types that provide
it. Possible containers are vector, deques, lists, sets, multisets, maps, multimaps, and strings. In
the following subsections, container means the container type that provides the member.

6.10.1 Type Definitions

container::value_type

• The type of elements.

The C++ Standard Library

dyne-book 202

• For sets and multisets, it is constant.
• For maps and multimaps, it is pair <const key-type, value-type>
• Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

container::reference

• The type of element references.
• Typically: container::value_type&.
• For vector<bool>, it is an auxiliary class (see page 158).
• Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

container::const_reference

• The type of constant element references.
• Typically: const container::value_type&.
• For vector<bool>, it is bool.
• Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

container::iterator

• The type of iterators.
• Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

container::const_iterator

• The type of constant iterators.
• Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

container::reverse_iterator

• The type of reverse iterators.
• Provided by vectors, deques, lists, sets, multisets, maps, and multimaps.

container::const_reverse_iterator

• The type of constant reverse iterators.
• Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

container::size_type

• The unsigned integral type for size values.
• Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

container::difference_type

• The signed integral type for difference values.
• Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

container::key_type

The C++ Standard Library

dyne-book 203

• The type of the key of the elements for associative containers.
• For sets and multisets, it is equivalent to value_type.
• Provided by sets, multisets, maps, and multimaps.

container::mapped_type

• The type of the value of the elements of associative containers.
• Provided by maps and multimaps.

container::key_compare

• The type of the comparison criterion of associative containers.
• Provided by sets, multisets, maps, and multimaps.

container::value_compare

• The type of the comparison criterion for the whole element type.
• For sets and multisets, it is equivalent to key_compare.
• For maps and multimaps, it is an auxiliary class for a comparison criterion that compares

only the key part of two elements.
• Provided by sets, multisets, maps, and multimaps.

container::allocator_type

• The type of the allocator.
• Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

6.10.2 Create, Copy, and Destroy Operations

Containers provide the following constructors and destructors. Also, most constructors allow you
to pass an allocator as an additional argument (see Section 6.10.9).
container::container ()

• The default constructor.
• Creates a new empty container.
• Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

explicit container::container (const CompFunc& op)

• Creates a new empty container with op used as the sorting criterion (see page 191 and
page 213 for examples).

• The sorting criterion must define a "strict weak ordering" (see page 176).
• Provided by sets, multisets, maps, and multimaps.

explicit container::container (const container&, c)

• The copy constructor.
• Creates a new container as a copy of the existing container c.
• Calls the copy constructor for every element in c.
• Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

The C++ Standard Library

dyne-book 204

explicit container::container (size_type num)

• Creates a container with num elements.
• The elements are created with their default constructor.
• Provided by vectors, deques, and lists.

container::container (size_type num, const T& value)

• Creates a container with num elements.
• The elements are created as copies of value.
• T is the type of the container elements.
• For strings, value is not passed by reference.
• Provided by vectors, deques, lists, and strings.

container::container (InputIterator beg, InputIterator end)

• Creates a container that is initialized by all elements of the range [beg,end).
• This function is a member template (see page 11). Thus, the elements of the source

range may have any type that is convertible to the element type of the container.
• Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

container::container (InputIterator beg, InputIterator end, const CompFunc& op)

• Creates a container that has the sorting criterion op and is initialized by all elements of
the range [beg,end).

• This function is a member template (see page 11). Thus, the elements of the source
range may have any type that is convertible to the element type of the container.

• The sorting criterion must define a "strict weak ordering" (see page 176).
• Provided by sets, multisets, maps, and multimaps.

container::~container ()

• The destructor.
• Removes all elements and frees the memory.
• Calls the destructor for every element.
• Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

6.10.3 Nonmodifying Operations

Size Operations

size_type container::size () const

• Returns the actual number of elements.
• To check whether the container is empty (contains no elements), you should use

empty() because it may be faster.
• Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

bool container::empty () const

The C++ Standard Library

dyne-book 205

• Returns whether the container is empty (contains no elements).
• It is equivalent to container:: size()==0, but it may be faster (especially for lists).
• Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

size_type container::max_size () const

• Returns the maximum number of elements a container may contain.
• This is a technical value that may depend on the memory model of the container. In

particular, because vectors usually use one memory segment, this value may be less
than for other containers.

• Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

Capacity Operations

size_type container::capacity () const

• Returns the number of elements the container may contain without reallocation.
• Provided by vectors and strings.

void container::reserve (size_type num)

• Reserves internal memory for at least num elements.
• If num is less than the actual capacity, this call has no effect on vectors and is a

nonbinding shrink request for strings.
• To shrink the capacity of vectors, see the example on page 149.
• Each reallocation invalidates all references, pointers, and iterators, and takes some time.

Thus reserve() can increase speed and keep references, pointers, and iterators valid
(see page 149 for details).

• Provided by vectors and strings.

Comparison Operations

bool comparison (const container& c1, const container&, c2)

• Returns the result of the comparison of two containers of same type.
• comparison might be any of the following:

 operator ==
 operator !=
 operator <
 operator >
 operator <=
 operator >=

• Two containers are equal if they have the same number of elements and contain the
same elements in the same order (all comparisons of two corresponding elements have
to yield true).

• To check whether a container is less than another container, the containers are
compared lexicographically. See the description of the lexicographical_compare()
algorithm on page 360 for a description of lexicographical comparison.

The C++ Standard Library

dyne-book 206

• Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

Special Nonmodifying Operations for Associative Containers

The member functions mentioned here are special implementations of corresponding STL
algorithms that are discussed in Section 9.5 and Section 9.9. They provide better performance
because they rely on the fact that the elements of associative containers are sorted. In fact, they
provide logarithmic complexity instead of linear complexity. For example, to search for one of
1,000 elements, no more than ten comparisons on average are needed (see Section 2.3).

size_type container::count (const T& value) const

• Returns the number of elements that are equal to value.
• This is the special version of the count() algorithm discussed on page 338.
• T is the type of the sorted value:

o For sets and multisets, it is the type of the elements.
o For maps and multimaps, it is the type of the keys.

• Complexity: linear.
• Provided by sets, multisets, maps, and multimaps.

iterator container::find (const T& value)
const_iterator container::find (const T& value) const

• Both return the position of the first element that has a value equal to value.
• They return end() if no element is found.
• These are the special versions of the find() algorithm discussed on page 341.
• T is the type of the sorted value:

o For sets and multisets, it is the type of the elements.
o For maps and multimaps, it is the type of the keys.

• Complexity: logarithmic.
• Provided by sets, multisets, maps, and multimaps.

iterator container::lower_bound (const T& value)
const_iterator container::lower_bound (const T& value) const

• Both return the first position where a copy of value would get inserted according to the
sorting criterion.

• They return end() if no such element is found.
• The return value is the position of the first element that has a value less than or equal to

value (which might be end()).
• These are the special versions of the lower_bound() algorithm discussed on page

413.
• T is the type of the sorted value:

o For sets and multisets, it is the type of the elements.
o For maps and multimaps, it is the type of the keys.

• Complexity: logarithmic.
• Provided by sets, multisets, maps, and multimaps.

iterator container::upper_bound (const T& value)
const_iterator container::upper_bound (const T& value) const

The C++ Standard Library

dyne-book 207

• Both return the last position where a copy of value would get inserted according to the
sorting criterion.

• They return end() if no such element is found.
• The return value is the position of the first element that has a value greater than value

(which might be end()).
• These are the special versions of the upper_bound() algorithm discussed on page

413.
• T is the type of the sorted value:

o For sets and multisets, it is the type of the elements.
o For maps and multimaps, it is the type of the keys.

• Complexity: logarithmic.
• Provided by sets, multisets, maps, and multimaps.

pair<iterator,iterator> container::equal_range (const T& value)
pair<const_iterator,const_iterator> container::equal_range (const T& value)
const

• Both return a pair with the first and last positions where a copy of value would get
inserted according to the sorting criterion.

• The return value is the range of elements equal to value.
• They are equivalent to:
• make_pair (lower_bound(value),upper_bound(value))

• These are the special versions of the equal_range() algorithm discussed on page
415.

• T is the type of the sorted value:
o For sets and multisets, it is the type of the elements.
o For maps and multimaps, it is the type of the keys.

• Complexity: logarithmic.
• Provided by sets, multisets, maps, and multimaps.

key_compare container::key_comp ()

• Returns the comparison criterion.
• Provided by sets, multisets, maps, and multimaps.

value_compare container::value_comp ()

• Returns the object that is used as the comparison criterion.
• For sets and multisets, it is equivalent to key_comp ().
• For maps and multimaps, it is an auxiliary class for a comparison criterion that compares

only the key part of two elements.
• Provided by sets, multisets, maps, and multimaps.

6.10.4 Assignments

container& container::operator= (const container& c)

• Assigns all elements of c; that is, it replaces all existing elements with copies of the
elements of c.

The C++ Standard Library

dyne-book 208

• The operator may call the assignment operator for elements that have been overwritten,
the copy constructor for appended elements, and the destructor of the element type for
removed elements.

• Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

void container::assign (size_type num, const T& value)

• Assigns num occurrences of value; that is, it replaces all existing elements by num copies
of value.

• T has to be the element type.
• Provided by vectors, deques, lists, and strings.

void container::assign (InputIterator beg, Inputlterator end)

• Assigns all elements of the range [beg,end); that is, it replaces all existing elements with
copies of the elements of [beg,end).

• This function is a member template (see page 11). Thus, the elements of the source
range may have any type that is convertible to the element type of the container.

• Provided by vectors, deques, lists, and strings.

void container::swap (container& c)

• Swaps the contents with c.
• Both containers swap

o their elements and
o their sorting criterion if any.

• This function has a constant complexity. You should always prefer it over an assignment
when you no longer need the assigned object (see Section 6.1.2).

• For associative containers, the function may only throw if copying or assigning the
comparison criterion may throw. For all other containers, the function does not throw.

• Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

void swap (container& c1, container&, c2)

• It is equivalent to c1. swap(c2) (see the previous description).
• For associative containers, the function may only throw if copying or assigning the

comparison criterion may throw. For all other containers, the function does not throw.
• Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

6.10.5 Direct Element Access

reference container::at (size_type idx)
const_reference container::at (size_type idx) const

• Both return the element with the index idx (the first element has index 0).
• Passing an invalid index (less than 0 or equal to size() or greater than size()) throws

an out_of _range exception.
• Note that the returned reference may get invalidated due to later modifications or

reallocations.
• If you are sure that the index is valid, you can use operator [], which is faster.
• Provided by vectors, deques, and strings.

The C++ Standard Library

dyne-book 209

reference container::operator [] (size_type idx)
const_reference container::operator [] (size_type idx) const

• Both return the element with the index idx (the first element has index 0).
• Passing an invalid index (less than 0 or equal to size() or greater than size()) results

in undefined behavior. Thus, the caller must ensure that the index is valid; otherwise,
at() should be used.

• The reference returned for the nonconstant string may get invalidated due to string
modifications or reallocations (see page 487 for details).

• Provided by vectors, deques, and strings.

T& map::operator [] (const key_type& key)

• Operator [] for associative arrays.
• Returns the corresponding value to key in a map.
• Note: If no element with a key equal to key exists, this operation creates a new element

automatically with a value that is initialized by the default constructor of the value type.
Thus, you can't have an invalid index (only wrong behavior). For example:

•
• map<int,string> coll;
• coll [77] = "hello"; // insert key 77 with value "hello"
• cout << coll [42]; // Oops, inserts key 42 with value ""

and prints the value
•

See Section 6.6.3, for details.

• T is the type of the element value.
• It is equivalent to:
•
• (*((insert(make_pair(x,T()))).first)).second
•

• Provided by maps.

reference container::front ()
const_reference container::front () const

• Both return the first element (the element with index 0).
• The caller must ensure that the container contains an element (size ()>0); otherwise,

the behavior is undefined.
• Provided by vectors, deques, and lists.

reference container::back ()
const_reference container::back () const

• Both return the last element (the element with index size()-l).

The C++ Standard Library

dyne-book 210

• The caller must ensure that the container contains an element (size()>0); otherwise,
the behavior is undefined.

• Provided by vectors, deques, and lists.

6.10.6 Operations to Generate Iterators

The following member functions return iterators to iterate over the elements of the containers.
Table 6.34 lists the iterator category (see Section 7.2,) according to the different container
types.

Table 6.34. Iterator Categories According to Container Types
Container Iterator Category

Vector Random access
Deque Random access
List Bidirectional
Set Bidirectional, element is constant
Multiset Bidirectional, element is constant
Map Bidirectional, key is constant
Multimap Bidirectional, key is constant
String Random access
iterator container::begin ()
const_iterator container:: begin () const

• Both return an iterator for the beginning of the container (the position of the first element).
• If the container is empty, the calls are equivalent to container::end().
• Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

iterator container::end ()
const_iterator container::end () const

• Both return an iterator for the end of the container (the position after the last element).
• If the container is empty, the calls are equivalent to container: : begin().
• Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

reverse_iterator container::rbegin ()
const_reverse_iterator container::rbegin () const

• Both return a reverse iterator for the beginning of a reverse iteration over the elements of
the container (the position of the last element).

• If the container is empty, the calls are equivalent to container:: rend().
• For details about reverse iterators, see Section 7.4.1.
• Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

reverse_iterator container::rend ()
const_reverse_iterator container::rend () const

• Both return a reverse iterator for the end of a reverse iteration over the elements of the
container (the position before the first element).

• If the container is empty, the calls are equivalent to container:: rbegin().
• For details about reverse iterators, see Section 7.4.1.

The C++ Standard Library

dyne-book 211

• Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

6.10.7 Inserting and Removing Elements

iterator container::insert (const T& value)
pair<iterator,bool> container::insert (const T& value)

• Both insert a copy of value into an associative container.
• Containers that allow duplicates (multisets and multimaps) have the first signature. They

return the position of the new element.
• Containers that do not allow duplicates (sets and maps) have the second signature. If

they can't insert the value because an element with an equal value or key exists, they
return the position of the existing element and false. If they can insert the value, they
return the position of the new element and true.

• T is the type of the container elements. Thus, for maps and multimaps it is a key/value
pair.

• The functions either succeed or have no effect.
• Provided by sets, multisets, maps, and multimaps.

iterator container::insert (iterator pos, const T& value)

• Inserts a copy of value at the position of iterator pos.
• Returns the position of the new element.
• For associative containers (sets, multisets, maps, and multimaps), the position is only

used as hint, pointing to where the insert should start to search. If value is inserted right
behind pos the function has amortized constant complexity; otherwise, it has logarithmic
complexity.

• If the container is a set or a map that already contains an element equal to (the key of)
value, then the call has no effect and the return value is the position of the existing
element.

• For vectors and deques, this operation might invalidate iterators and references to other
elements.

• T is the type of the container elements. Thus, for maps and multimaps it is a key/value
pair.

• For strings, value is not passed by reference.
• For vectors and deques, if the copy operations (copy constructor and assignment

operator) of the elements don't throw, the function either succeeds or has no effect. For
all other standard containers, the function either succeeds or has no effect.

• Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

void container::insert (iterator pos, size_type num, const T& value)

• Inserts num copies of value at the position of iterator pos.
• For vectors and deques, this operation might invalidate iterators and references to other

elements.
• T is the type of the container elements. Thus, for maps and multimaps it is a key/value

pair.
• For strings, value is not passed by reference.
• For vectors and deques, if the copy operations (copy constructor and assignment

operator) of the elements don't throw, the function either succeeds or has no effect. For
lists, the function either succeeds or has no effect.

• Provided by vectors, deques, lists, and strings.

The C++ Standard Library

dyne-book 212

void container::insert (InputIterator beg, InputIterator end)

• Inserts copies of all elements of the range [beg,end) into the associative container.
• This function is a member template (see page 11). Thus, the elements of the source

range may have any type that is convertible to the element type of the container.
• Provided by sets, multisets, maps, and multimaps.

void container::insert (iterator pos, InputIterator beg, InputIterator end)

• Inserts copies of all elements of the range [beg,end) at the position of iterator pos.
• This function is a member template (see page 11). Thus, the elements of the source

range may have any type that is convertible to the element type of the container.
• For vectors and deques, this operation might invalidate iterators and references to other

elements.
• For lists, the function either succeeds or has no effect.
• Provided by vectors, deques, lists, and strings.

void container::push_front (const T& value)

• Inserts a copy of value as the new first element.
• T is the type of the container elements.
• It is equivalent to insert(begin(), value).
• For deques, this operation invalidates iterators to other elements. References to other

elements stay valid.
• This function either succeeds or has no effect.
• Provided by deques and lists.

void container::push_back (const T& value)

• Appends a copy of value as the new last element.
• T is the type of the container elements.
• It is equivalent to insert(end() ,value).
• For vectors, this operation invalidates iterators and references to other elements when

reallocation takes place.
• For deques, this operation invalidates iterators to other elements. References to other

elements stay valid.
• This function either succeeds or has no effect.
• Provided by vectors, deques, lists, and strings.

void list::remove (const T& value)
void list::remove_if (UnaryPredicate op)

• remove() removes all elements with value value.
• remove_if() removes all elements for which the unary predicate
•
• op(elem)

yields true.

The C++ Standard Library

dyne-book 213

• Note that op should not change its state during a function call. See Section 8.1.4, for
details.

• Both call the destructors of the removed elements.
• The order of the remaining arguments remains stable.
• This is the special version of the remove() algorithm, which is discussed on page 378,

for lists.
• T is the type of the container elements.
• For further details and examples, see page 170.
• The functions may only throw if the comparison of the elements may throw.
• Provided by lists.

size_type container::erase (const T& value)

• Removes all elements equal to value from an associative container.
• Returns the number of removed elements.
• Calls the destructors of the removed elements.
• T is the type of the sorted value:

o For sets and multisets, it is the type of the elements.
o For maps and multimaps, it is the type of the keys.

• The function does not throw.
• Provided by sets, multisets, maps, and multimaps.

void container::erase (iterator pos)
iterator container::erase (iterator pos)

• Both remove the element at the position of iterator pos.
• Sequence containers (vectors, deques, lists, and strings) have the second signature.

They return the position of the following element (or end()).
• Associative containers (sets, multisets, maps, and multimaps) have the first signature.

They return nothing.
• Both call the destructors of the removed elements.
• Note that the caller must ensure that the iterator pos is valid. For example:
• coll. erase (coll. end()); // ERROR ? undefined behavior

• For vectors and deques, this operation might invalidate iterators and references to other
elements.

• For vectors and deques, the function may only throw if the copy constructor or
assignment operator of the elements may throw. For all other containers, the function
does not throw.

• Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

void container::erase (iterator beg, iterator end)
iterator container::erase (iterator beg, iterator end)

• Both remove the elements of the range [beg,end).
• Sequence containers (vectors, deques, lists, and strings) have the second signature.

They return the position of the element that was behind the last removed element on
entry (or end()).

• Associative containers (sets, multisets, maps, and multimaps) have the first signature.
They return nothing.

• As always for ranges, all elements including beg but excluding end are removed.

The C++ Standard Library

dyne-book 214

• Both call the destructors of the removed elements.
• Note that the caller must ensure that beg and end define a valid range that is part of the

container.
• For vectors and deques, this operation might invalidate iterators and references to other

elements.
• For vectors and deques, the function may only throw if the copy constructor or the

assignment operator of the elements may throw. For all other containers, the function
does not throw.

• Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

void container::pop_front ()

• Removes the first element of the container.
• It is equivalent to container. erase (container.begin()).
• Note: If the container is empty, the behavior is undefined. Thus, the caller must ensure

that the container contains at least one element (size () >0).
• The function does not throw.
• Provided by deques and lists.

void container::pop_back ()

• Removes the last element of the container.
• It is equivalent to container.erase(--container.end()), provided this expression is valid,

which might not be the case for vectors (see page 258).
• Note: If the container is empty, the behavior is undefined. Thus, the caller must ensure

that the container contains at least one element (size()>0).
• The function does not throw.
• Provided by vectors, deques, and lists.

void container::resize (size_type num)
void container::resize (size_type num, T value)

• Both change the number of elements to num.
• If size() is num on entry, they have no effect.
• If num is greater than size() on entry, additional elements are created and appended to

the end of the container. The first form creates the new elements by calling their default
constructor; the second form creates the new elements as copies of value.

• If num is less than size() on entry, elements are removed at the end to get the new
size. In this case, they call the destructor of the removed elements.

• For vectors and deques, these functions might invalidate iterators and references to other
elements.

• For vectors and deques, these functions either succeed or have no effect, provided the
copy constructor or the assignment operator of the elements don't throw. For lists, the
functions either succeed or have no effect.

• Provided by vectors, deques, lists, and strings.

void container::clear ()

• Removes all elements (makes the container empty).
• Calls the destructors of the removed elements.
• Invalidates all iterators and references to the container.

The C++ Standard Library

dyne-book 215

• For vectors and deques, the function may only throw if the copy constructor or the
assignment operator of the elements may throw. For all other containers, the function
does not throw.

• Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

6.10.8 Special Member Functions for Lists

void list:: unique ()
void list::unique (BinaryPredicate op)

• Both remove subsequent duplicates of list elements so that each element contains a
different value than the following element.

• The first form removes all elements for which the previous values are equal.
• The second form removes all elements that follow an element e and for which the binary

predicate
•
• op(elem,e)

yields true.[34] In other words, the predicate is not used to compare an element with its
predecessor; the element is compared with the previous element that was not removed.

[34] The second version of unique() is available only in systems that support member templates
(see page 11).

• Note that op should not change its state during a function call. See Section 8.1.4, for
details.

• Both call the destructors of the removed elements.
• These are the special versions of the unique() algorithms, which are discussed on

page 381, for lists.
• The functions do not throw if the comparisons of the elements do not throw.

void list::splice (iterator pos, list& source)

• Moves all elements of source into *this and inserts them at the position of iterator pos.
• source is empty after the call.
• If source and *this are identical, the behavior is undefined. Thus, the caller must

ensure that source is a different list. To move elements inside the same list you must use
the following form of splice().

• The caller must ensure that pos is a valid position of *this; otherwise, the behavior is
undefined.

• This function does not throw.

void list::splice (iterator pos, list& source, iterator sourcePos)

• Moves the element at the position sourcePos of the list source into *this and inserts it
at the position of iterator pos.

• source and *this may be identical. In this case, the element is moved inside the list.
• If source is a different list, it contains one element less after the operation.
• The caller must ensure that pos is a valid position of *this, sourcePos is a valid iterator

of source, and sourcePos is not source. end(); otherwise, the behavior is undefined.

The C++ Standard Library

dyne-book 216

• This function does not throw.

void list::splice (iterator pos, list& source, iterator sourceBeg, iterator sourceEnd)

• Moves the elements of the range [sourceBeg,sourceEnd) of the list source to *this and
inserts it at the position of iterator pos.

• source and *this may be identical. In this case, pos must not be part of the moved
range, and the elements are moved inside the list.

• If source is a different list, it contains less elements after the operation.
• The caller must ensure that pos is a valid position of *this, and that sourceBeg and

sourceEnd define a valid range that is part of source; otherwise, the behavior is
undefined.

• This function does not throw.

void list::sort ()
void list::sort (CompFunc op)

• Both sort the elements in the list.
• The first form sorts all elements in the list with operator <.
• The second form sorts all elements in the list by calling op to compare two elements[35] :

[35] The second form of sort() is available only in systems that support member templates (see
page 11).

op(elem1,elem2)

• The order of elements that have an equal value remains stable (unless an exception is
thrown).

• These are the special versions of the sort() and stable_sort() algorithms, which
are discussed on page 397.

void list::merge (list& source)
void list::merge (list& source, CompFunc op)

• Both merge all elements of the list source into *this.
• source is empty after the call.
• If *this and source are sorted on entry according to the sorting criterion < or op, the

resulting list is also sorted. Strictly speaking, the standard requires that both lists be
sorted on entry. In practice, however, merging is also possible for unsorted lists.
However, you should check this before you rely on it.

• The first form uses operator < as the sorting criterion.
• The second form uses op as the optional sorting criterion and is used to compare two

elements[36] :

[36] The second form of merge() is available only in systems that support member templates
(see page 11).

op (elem, sourceElem)

The C++ Standard Library

dyne-book 217

• This is the special version of the merge() algorithm, which is discussed on page 416.
• If the comparisons of the elements do not throw, the functions either succeed or have no

effect.

void list::reverse ()

• Reverses the order of the elements in a list.
• This is the special version of the reverse() algorithm, which is discussed on page 386.
• This function does not throw.

6.10.9 Allocator Support

All STL containers can be used with a special memory model that is defined by an allocator
object (see Chapter 15 for details). This subsection describes the members for allocator
support.
Standard containers require that all instances of an allocator type are interchangeable. Thus,
storage allocated from one container can be deallocated via another that has the same type.
Therefore, it is no problem when elements (and their storage) are moved between containers of
the same type.

Fundamental Allocator Members

container::allocator_type

• The type of the allocator.
• Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

allocator_type container::get_allocator () const

• Returns the memory model of the container.
• Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

Constructors with Optional Allocator Parameters

explicit container container (const Allocator& alloc)

• Creates a new empty container that uses the memory model alloc.
• Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

container::container (const CompFunc& op, const Allocator& alloc)

• Creates a new empty container with op used as the sorting criterion that uses the
memory model alloc.

• The sorting criterion must define a "strict weak ordering" (see page 176).
• Provided by sets, multisets, maps, and multimaps.

container::container (size.type num, const T& value, const Allocator& alloc)

The C++ Standard Library

dyne-book 218

• Creates a container with num elements that uses the memory model alloc.
• The elements are created as copies of value.
• T is the type of the container elements. Note that for strings, value is passed by value.
• Provided by vectors, deques, lists, and strings.

container::container (InputIterator beg, InputIterator end, const Allocator& alloc)

• Creates a container that is initialized by all elements of the range [beg,end) and uses the
memory model alloc.

• This function is a member template (see page 11). Thus, the elements of the source
range may have any type that is convertible to the element type of the container.

• Provided by vectors, deques, lists, sets, multisets, maps, multimaps, and strings.

container::container (InputIterator beg, InputIterator end, const CompFunc& op,
const Allocator& alloc)

• Creates a container that has the sorting criterion op, is initialized by all elements of the
range [beg,end), and uses the memory model alloc.

• This function is a member template (see page 11). Thus, the elements of the source
range may have any type that is convertible to the element type of the container.

• The sorting criterion must define a "strict weak ordering" (see page 176).
• Provided by sets, multisets, maps, and multimaps.

6.10.10 Overview of Exception Handling in STL Containers

As mentioned in Section 5.11.2, containers provide different guarantees in the face of
exceptions. In general, the C++ standard library will not leak resources or violate container
invariants in the face of exceptions. However, some operations give stronger guarantees
(provided the arguments meet some requirements): They may guarantee commit-or-rollback
behavior, or they may even guarantee that they will never throw at all. Table 6.35 lists all
operations that give these stronger guarantees.[37]

[37] Many thanks to Greg Colvin and Dave Abrahams for providing this table.

For vectors, deques, and lists, you also have guarantees for resize(). It is defined as having
the effect of either calling erase() or calling insert() or doing nothing:

 void container::resize (size_type num, T value = T())
 {
 if (num > size()) {
 insert (end(), num-size(), value);
 }
 else if (num < size()) {
 erase (begin()+num, end());
 }
 }

Thus, its guarantees are a combination of the guarantees of erase() and insert() (see page
244).

Table 6.35. Container operations with Special Guarantees in Face of Exceptions
Operation Page Guarantee

The C++ Standard Library

dyne-book 219

vector::push_back() 241 Either succeeds or has no effect
vector::insert() 240 Either succeeds or has no effect if copying/assigning elements

doesn't throw
vector::pop_back() 243 Doesn't throw
vector::erase() 242 Doesn't throw if copying/assigning elements doesn't throw
vector::clear() 244 Doesn't throw if copying/assigning elements doesn't throw
vector::swap() 237 Doesn't throw
deque::push_back() 241 Either succeeds or has no effect
deque::push_front() 241 Either succeeds or has no effect
deque::insert() 240 Either succeeds or has no effect if copying/assigning elements

doesn't throw
deque::pop_back() 243 Doesn't throw
deque::pop_front() 243 Doesn't throw
deque::erase() 242 Doesn't throw if copying/assigning elements doesn't throw
deque::clear() 244 Doesn't throw if copying/assigning elements doesn't throw
deque::swap() 237 Doesn't throw
list::push_back() 241 Either succeeds or has no effect
list::push_front() 241 Either succeeds or has no effect
list::insert() 240 Either succeeds or has no effect
list::pop_back() 243 Doesn't throw
list::pop_front() 243 Doesn't throw
list::erase() 242 Doesn't throw
list:: clear() 244 Doesn't throw
list:: remove() 242 Doesn't throw if comparing the elements doesn't throw
list::remove_if() 242 Doesn't throw if the predicate doesn't throw
list::unique() 244 Doesn't throw if comparing the elements doesn't throw
list::splice() 245 Doesn't throw
list::merge() 246 Either succeeds or has no effect if comparing the elements

doesn't throw
list::reverse() 246 Doesn't throw
list::swap() 237 Doesn't throw
[multi]set::insert() 240 For single elements either succeeds or has no effect
[multi]set::erase() 242 Doesn't throw
[multi]set::clear() 244 Doesn't throw
[multi]set::swap() 237 Doesn't throw if copying/assigning the comparison criterion

doesn't throw
[multi]map::insert() 240 For single elements either succeeds or has no effect
[multi]map::erase() 242 Doesn't throw
[multi]map::clear() 244 Doesn't throw
[multi]map::swap() 237 Doesn't throw if copying/assigning the comparison criterion

doesn't throw

The C++ Standard Library

dyne-book 220

Chapter 7. STL Iterators
7.1 Header Files for Iterators

All containers define their own iterator types, so you don't need a special header file for using
iterators of containers. However, there are several definitions for special iterators, such as
reverse iterators. These are introduced by the <iterator> header file,[1] although you don't
need to include this file in your program often. It is needed by containers to define their reverse
iterator types and thus it is included by them.

[1] In the original STL, the header file for iterators was called <iterator.h>.

7.2 Iterator Categories

Iterators are objects that can iterate over elements of a sequence. They do this via a common
interface that is adapted from ordinary pointers (see the introduction in Section 5.3). Iterators
follow the concept of pure abstraction: Anything that behaves like an iterator is an iterator.
However, iterators have different abilities. These abilities are important because some algorithms
require special iterator abilities. For example, sorting algorithms require iterators that can perform
random access because otherwise the runtime would be poor. For this reasen, iterators have
different categories (Figure 7.1). The abilities of these categories are listed in Table 7.1, and
discussed in the following subsections.

Figure 7.1. Iterator Categories

Table 7.1. Abilities of Iterator Categories
Iterator Category Ability Providers

Input iterator Reads forward istream
Output iterator Writes forward ostream, inserter
Forward iterator Reads and writes forward
Bidirectional iterator Reads and writes forward and list, set, multiset, map,

The C++ Standard Library

dyne-book 221

backward multimap
Random access iterator Reads and writes with random access vector, deque string, array

7.2.1 Input Iterators

Input iterators can only step forward element-by-element with read access. Thus, they return
values elementwise. Table 7.2 lists the operations of input iterators.

Note that input iterators can read elements only once. Thus, if you copy an input iterator and let
the original and the copy read forward, they might iterate over different values.

Almost all iterators have the abilities of input iterators. However, usually they can have more. A
typical example of a pure input iterator is an iterator that reads from the standard input (typically
the keyboard). The same value can't be read twice. After a word is read from an input stream (out
of the input buffer), the next read access returns another word.

Two input iterators are equal if they occupy the same position. However, as stated previously, this
does not mean that they return the same value on element access.

Table 7.2. Operations of Input Iterators
Expression Effect

*iter Provides read access to the actual element
iter ->member Provides read access to a member (if any) of the actual element
++iter Steps forward (returns new position)
iter++ Steps forward (returns old position)
Iter1 == iter2 Returns whether two iterators are equal
Iter1 != iter2 Returns whether two iterators are not equal
TYPE(iter) Copies iterator (copy constructor)

You should always prefer the preincrement operator over the postincrement operator because it
might perform better. This is because the preincrement operator does not have to return an old
value that must be stored in a temporary object. So, for any iterator pos (and any abstract data
type), you should prefer

 ++pos //OK and fast

rather than

 pos++ //OK, but not so fast

The same applies to decrement operators, as long as they are defined (they aren't for input
iterators).

7.2.2 Output Iterators

Output iterators are the counterparts of input iterators. They can only step forward with write
access. Thus, you can assign new values only element-by-element. You can't use an output
iterator to iterate twice over the same range. The goal is to write a value into a "black hole"
(whatever that means). So, if you write something for the second time at the same position into
the same black hole, it is not guaranteed that you will overwrite a previous value. Table 7.3 lists

The C++ Standard Library

dyne-book 222

the valid operations for output iterators. The only valid use of operator * is on the left side of an
assignment statement.

Table 7.3. Operations of Output Iterators
Expression Effect

*iter = value Writes value to where the iterator refers
++iter Steps forward (returns new position)
iter++ Steps forward (returns old position)
TYPE (iter) Copies iterator (copy constructor)

Note that no comparison operations are required for output iterators. You can't check whether an
output iterator is valid or whether a "writing" was successful. The only thing you can do is to write,
and write, and write values.

Usually iterators can read and write values. So, as for input iterators, almost all iterators also
have the abilities of output iterators. A typical example of a pure output iterator is an iterator that
writes to the standard output (for example, to the screen or a printer). If you use two output
iterators to write to the screen, the second word follows the first rather than overwriting it. Another
typical example of output iterators are inserters. Inserters are iterators that insert values into
containers. If you assign a value, you insert it. If you then write a second value, you don't
overwrite the first value; you just also insert it. Inserters are discussed in Section 7.4.2.

7.2.3 Forward Iterators

Forward iterators are combinations of input and output iterators. They have all the abilities of
input iterators and most of those of output iterators. Table 7.4 summarizes the operations of
forward iterators.

Table 7.4. Operations of Forward Iterators
Expression Effect

*iter Provides access to the actual element
iter-> member Provides access to a member of the actual element
++iter Steps forward (returns new position)
iter++ Steps forward (returns old position)
iter1 == iter2 Returns whether two iterators are equal
iter1 != iter2 Returns whether two iterators are not equal
TYPE() Creates iterator (default constructor)
TYPE(iter) Copies iterator (copy constructor)
iter1 = iter2 Assigns an iterator

Unlike input iterators and output iterators, forward iterators can refer to the same element in the
same collection and process the same element more than once.

You might wonder why a forward iterator does not have all of the abilities of an output iterator.
One restriction applies that prohibits valid code for output iterators from being valid for forward
iterators:

• For output iterators, writing data without checking for the end of a sequence is correct.
In fact, you can't compare an output iterator with an end iterator because output iterators

The C++ Standard Library

dyne-book 223

do not have to provide a comparison operation. Thus, the following loop is correct for
output iterator pos:

 //OK for output iterators
 //ERROR for forward iterators
 while (true) {
 *pos = foo();
 ++pos;
 }

• For forward iterators, you must ensure that it is correct to dereference (access the data)
before you do this. Thus, the previous loop is not correct for forward iterators. This is
because it would result in dereferencing the end() of a collection, which results in
undefined behavior. For forward iterators, the loop must be changed in the following
manner:

 //OK for forward iterators
 //IMPOSSIBLE for output iterators
 while (pos != coll.end()) {
 *pos = foo();
 ++pos;
 }

This loop does not compile for output iterators because operator ! = is not defined for them.

7.2.4 Bidirectional Iterators

Bidirectional iterators are forward iterators that provide the additional ability to iterate backward
over the elements. Thus, they provide the decrement operator to step backward (Table 7.5).

Table 7.5. Additional Operations of Bidirectional Iterators
Expression Effect

-- iter Steps backward (returns new position)
iter-- Steps backward (returns old position)

7.2.5 Random Access Iterators

Random access iterators are bidirectional iterators that can perform random access. Thus, they
provide operators for "iterator arithmetic" (in accordance with the "pointer arithmetic" of ordinary
pointers). That is, they can add and subtract offsets, process differences, and compare iterators
with relational operators such as < and >. Table 7.6 lists the additional operations of random
access iterators.

Random access iterators are provided by the following objects and types:

• Containers with random access (vector, deque)
• Strings (string, wstring)
• Ordinary arrays (pointers)

The C++ Standard Library

dyne-book 224

Table 7.6. Additional Operations of Random Access Iterators
Expression Effect

iter[n] Provides access to the element that has index n
iter+=n Steps n elements forward (or backward, if n is negative)
iter-=n Steps n elements backward (or forward, if n is negative)
iter+n Returns the iterator of the nth next element
n+iter Returns the iterator of the nth next element
iter-n Returns the iterator of the nth previous element
iter1-iter2 Returns the distance between iter1 and iter2
iter1<iter2 Returns whether iter1 is before iter2
iter1>iter2 Returns whether iter1 is after iter2
iter1<=iter2 Returns whether iter1 is not after iter2
iter1>=iter2 Returns whether iter1 is not before iter2
The following program demonstrates the special abilities of random access iterators:

 // iter/itercat.cpp

 #include <vector>
 #include <iostream>
 using namespace std;

 int main()
 {
 vector<int> coll;

 //insert elements from -3 to 9
 for (int i=-3; i<=9; ++i) {
 coll.push_back (i);
 }

 /* print number of elements by processing the distance between
beginning and end
 * - NOTE: uses operator -for iterators
 */
 cout << "number/distance: " << coll.end()-coll.begin() << endl;

 /* print all elements
 * - NOTE: uses operator < instead of operator ! =
 */
 vector<int>::iterator pos;
 for (pos=coll.begin(); pos<coll.end(); ++pos) {
 cout << *pos << ' ';
 }
 cout << endl;

 /* print all elements
 * - NOTE: uses operator [] instead of operator *
 */

The C++ Standard Library

dyne-book 225

 for (int i=0; i<coll.size(); ++i) {
 cout << coll.begin() [i] << ' ';
 }
 cout << endl;

 /* print every second element
 * - NOTE: uses operator +=
 */
 for (pos = coll.begin(); pos < coll.end()-1; pos += 2) {
 cout << *pos << ' ';
 }
 cout << endl;
 }

The output of the program is as follows:

 number/distance: 13
 -3 -2 -1 0 1 2 3 4 5 6 7 8 9
 -3 -2 -1 0 1 2 3 4 5 6 7 8 9
 -3 -1 1 3 5 7

This example won't work with lists, sets, and maps because all operations that are marked with
NOTE: are provided only for random access iterators. In particular, keep in mind that you can use
operator < as an end criterion in loops for random access iterators only.
Note that in the last loop the expression

 pos < coll.end()-1

requires that coll contains at least one element. If the collection was empty, coll.end() -1
would be the position before coll.begin(). The comparison might still work; but, strictly
speaking, moving an iterator to before the beginning results in undefined behavior. Similarly, the
expression pos += 2 might result in undefined behavior if it moves the iterator beyond the
end() of the collection. Therefore, changing the final loop to the following is very dangerous
because it results in undefined behavior if the collection contains an even number of elements
(Figure 7.2):

Figure 7.2. Incrementing Iterators by More than One Element

The C++ Standard Library

dyne-book 226

 for (pos = coll.begin(); pos < coll.end(); pos += 2) {
 cout << *pos << ' ';
 }

7.2.6 The Increment and Decrement Problem of Vector Iterators

The use of the increment and decrement operators of iterators includes a strange problem. In
general, you can increment and decrement temporary iterators. However, for vectors and strings,
you typically can't. Consider the following vector example:

 std::vector<int> coll;
 ...
 //sort, starting with the second element
 // - NONPORTABLE version
 if (coll.size() > 1) {
 coll.sort (++coll.begin(), coll.end());
 }

Typically, the compilation of sort() fails. However, if you use, for example, a deque rather than
a vector, it will compile. It might compile even with vectors, depending on the implementation of
class vector.

The reason for this strange problem lies in the fact that vector iterators are typically implemented
as ordinary pointers. And for all fundamental data types, such as pointers, you are not allowed to
modify temporary values. For structures and classes, however, it is allowed. Thus, if the iterator is
implemented as an ordinary pointer, the compilation fails; if implemented as a class, it succeeds.
It always works with deques, lists, sets, and maps because you can't implement iterators as
ordinary pointers for them. But for vectors, whether it works depends on the implementation.
Usually, ordinary pointers are used. But if, for example, you use a "safe version" of the STL, the
iterators are implemented as classes. To make your code portable you should not code as the
previous example, using vectors. Instead, you should use an auxiliary object:

 std::vector<int> coll;
 ...
 //sort, starting with the second element
 // - PORTABLE version
 if (coll.size() > 1) {
 std::vector<int>::iterator beg = coll.begin();
 coll.sort (++beg, coll.end());
 }

The problem is not as bad as it sounds. You can't get unexpected behavior because it is detected
at compile time. But it is tricky enough to spend time solving it. This problem also applies to
strings. String iterators are usually also implemented as ordinary character pointers, although this
is not required.

7.3 Auxiliary Iterator Functions

The C++ standard library provides three auxiliary functions for iterators: advance(),
distance(), and iter_swap(). The first two give all iterators some abilities usually only
provided for random access iterators: to step more than one element forward (or backward) and

The C++ Standard Library

dyne-book 227

to process the difference between iterators. The third auxiliary function allows you to swap the
values of two iterators.

7.3.1 Stepping Iterators Using advance()

The function advance() increments the position of an iterator passed as the argument. Thus, it
lets the iterator step forward (or backward) more than one element:

#include <iterator>
void advance (InputIterator& pos, Dist n)

• Lets the input iterator pos step n elements forward (or backward).
• For bidirectional and random access iterators n may be negative to step backward.
• Dist is a template type. Normally, it must be an integral type because operations such

as <, ++, --, and comparisons with 0 are called.
• Note that advance() does not check whether it crosses the end() of a sequence (it

can't check because iterators in general do not know the containers on which they
operate). Thus, calling this function might result in undefined behavior because calling
operator ++ for the end of a sequence is not defined.

Due to the use of iterator traits (introduced in Section 7.5), the function always uses the best
implementation, depending on the iterator category. For random access iterators, it simply calls
pos+=n. Thus, for such iterators advance() has constant complexity. For all other iterators, it
calls ++pos n times (or --pos, if n is negative). Thus, for all other iterator categories advance()
has linear complexity.
To be able to change container and iterator types, you should use advance() rather than
operator +=. However, in doing so be aware that you risk unintended worse performance. This is
because you don't recognize that the performance is worsening when you use other containers
that don't provide random access iterators (bad runtime is the reason why operator += is provided
only for random access iterators). Note also that advance() does not return anything. Operator
+= returns the new position, so it might be part of a larger expression. Here is an example of the
use of advance():

 // iter/advance1.cpp

 #include <iostream>
 #include <list>
 #include <algorithm>
 using namespace std;

 int main()
 {
 list<int> coll;

 //insert elements from 1 to 9
 for (int i=1; i<=9; ++i) {
 coll.push_back(i);
 }

The C++ Standard Library

dyne-book 228

 list<int>::iterator pos = coll.begin();

 //print actual element
 cout << *pos << endl;

 //step three elements forward
 advance (pos, 3);

 //print actual element
 cout << *pos << endl;

 //step three elements backward
 advance (pos, -1);

 //print actual element
 cout << *pos << endl;
 }

In this program, advance() lets the iterator pos step three elements forward and one element
backward. Thus, the output is as follows:

 1
 4
 3

Another way to use advance() is to ignore some input for iterators that read from an input
stream. See the example on page 282.

7.3.2 Processing Iterator Distance Using distance()

The distance() function is provided to process the difference between two iterators:

#include <iterator>
Dist distance (InputIterator pos1, InputIterator pos2)

• Returns the distance between the input iterators pos1 and pos2.
• Both iterators have to refer to elements of the same container.
• If the iterators are not random access iterators, pos2 must be reachable from pos1; that

is, it must have the same position or a later position.
• The return type, Dist, is the difference type according to the iterator type:
•
• iterator_traits<InputIterator>::difference_type
•

The C++ Standard Library

dyne-book 229

See Section 7.5, for details.

By using iterator tags, this function uses the best implementation according to the iterator
category. For random access iterators, it simply returns pos2-pos1. Thus, for such iterators
distance() has constant complexity. For all other iterator categories, pos1 is incremented until
it reaches pos2 and the number of incrementations is returned. Thus, for all other iterator
categories distance() has linear complexity. Therefore, distance() has bad performance for
other than random access iterators. You should consider avoiding it.
The implementation of distance() is described in Section 7.5.1. The following example
demonstrates its use:

 // iter/distance.cpp

 #include <iostream>
 #include <list>
 #include <algorithm>
 using namespace std;

 int main()
 {
 list<int> coll;

 //insert elements from -3 to 9
 for (int i=-3; i<=9; ++i) {
 coll.push_back(i);
 }

 //search element with value 5
 list<int>::iterator pos;
 pos = find (coll.begin(), coll.end(), //range
 5); //value

 if (pos != coll.end()) {
 //process and print difference from the beginning
 cout << "difference between beginning and 5: "
 << distance(coll.begin(),pos) << endl;
 }
 else {
 cout << "5 not found" << endl;
 }
 }

find() assigns the position of the element with value 5 to pos. distance() uses this position
to process the difference between this position and the beginning. The output of the program is
as follows:

 difference between beginning and 5: 8

The C++ Standard Library

dyne-book 230

To be able to change iterator and container types, you should use distance() instead of
operator-. However, if you use distance() you don't recognize that the performance is getting
worse when you switch from random access iterators to other iterators.
To process the difference between two iterators that are not random access iterators, you must
be careful. The first iterator must refer to an element that is not after the element of the second
iterator. Otherwise, the behavior is undefined. If you don't know which iterator position comes
first, you have to process the distance between both iterators to the beginning of the container
and process the difference of these distances. However, you must then know to which container
the iterators refer. If you don't, you have no chance of processing the difference of the two
iterators without running into undefined behavior. See the remarks about subranges on page 99
for additional aspects of this problem.
In older versions of the STL, the signature of distance() was different. Instead of the difference
being returned, it was added to a third argument. This version was very inconvenient because
you could not use the difference directly in an expression. If you are using an old version, you
should define this simple workaround:

 // iter/distance.hpp

 template <class Iterator>
 inline long distance (Iterator pos1, Iterator pos2)
 {
 long d = 0;
 distance (pos1, pos2, d);
 return d;
 }

Here, the return type does not depend on the iterator; it is hard coded as long. Type long
normally should be big enough to fit all possible values, however this is not guaranteed.

7.3.3 Swapping Iterator Values Using iter_swap()

The following simple auxiliary function is provided to swap the values to which two iterators refer:

#include <algorithm>
void iter_swap (ForwardIterator1 pos1, ForwardIterator2 pos2)

• Swaps the values to which iterators pos1 and pos2 refer.
• The iterators don't need to have the same type. However, the values must be assignable.

Here is a simple example (function PRINT_ELEMENTS() is introduced in Section 5.7):

 // iter/swap1.cpp

 #include <iostream>
 #include <list>
 #include <algorithm>
 #include "print.hpp"
 using namespace std;

 int main()
 {

The C++ Standard Library

dyne-book 231

 list<int> coll;

 //insert elements from 1 to 9
 for (int i=1; i<=9; ++i) {
 coll.push_back(i);
 }

 PRINT_ELEMENTS(coll);

 //swap first and second value
 iter_swap (coll.begin(), ++coll.begin());

 PRINT_ELEMENTS(coll);

 //swap first and last value
 iter_swap (coll.begin(), --coll.end());

 PRINT_ELEMENTS(coll);
 }

The output of the program is as follows:

 1 2 3 4 5 6 7 8 9
 2 1 3 4 5 6 7 8 9
 9 1 3 4 5 6 7 8 2

Note that this program normally does not work if you use a vector as a container. This is because
++coll.begin() and --coll.end() yield temporary pointers (see Section 7.2.6, for details
regarding this problem).

7.4 Iterator Adapters

This section covers iterator adapters. These special iterators allow algorithms to operate in
reverse, in insert mode, and with streams.

7.4.1 Reverse Iterators

Reverse iterators are adapters that redefine increment and decrement operators so that they
behave in reverse. Thus, if you use these iterators instead of ordinary iterators, algorithms
process elements in reverse order. All standard container classes provide the ability to use
reverse iterators to iterate over their elements. Consider the following example:

 // iter/reviter1.cpp

 #include <iostream>
 #include <list>
 #include <algorithm>
 using namespace std;

The C++ Standard Library

dyne-book 232

 void print (int elem)
 {
 cout << elem << ' ';
 }

 int main()
 {
 list<int> coll;

 //insert elements from 1 to 9
 for (int i=1; i<=9; ++i) {
 coll.push_back(i);
 }

 //print all elements in normal order
 for_each (coll.begin(), coll.end(), //range
 print); //operation
 cout << endl;

 //print all elements in reverse order
 for_each (coll.rbegin(), coll.rend(), //range
 print); //operations
 cout << endl;
 }

The rbegin() and rend() member functions return a reverse iterator. According to begin()
and end(), these iterators define the elements to process as a half-open range. However, they
operate in a reverse direction:

• rbegin() returns the position of the first element of a reverse iteration. Thus, it returns
the position of the last element.

• rend() returns the position after the last element of a reverse iteration. Thus, it returns
the position before the first element.

Iterators and Reverse Iterators

You can convert normal iterators to reverse iterators. Naturally, the iterators must be bidirectional
iterators, but note that the logical position of an iterator is moved during the conversion. Consider
the following program:

 // iter/reviter2.cpp

 #include <iostream>
 #include <vector>
 #include <algorithm>
 using namespace std;

The C++ Standard Library

dyne-book 233

 int main()
 {
 vector<int> coll;

 //insert elements from 1 to 9
 for (int i=1; i<=9; ++i) {
 coll.push_back(i);
 }

 //find position of element with value 5
 vector<int>::iterator pos;
 pos = find (coll.begin(), coll.end(),
 5);

 //print value to which iterator pos refers
 cout << "pos: " << *pos << endl;

 //convert iterator to reverse iterator rpos
 vector<int>::reverse_iterator rpos(pos);

 //print value to which reverse iterator rpos refers
 cout << "rpos: " << *rpos <<endl;
 }

This program has the following output:

 pos: 5
 rpos: 4

Thus, if you print the value of an iterator and convert the iterator into a reverse iterator, the value
has changed. This is not a bug; it's a feature! This behavior is a consequence of the fact that
ranges are half-open. To specify all elements of a container, you must use the position after the
last argument. However, for a reverse iterator this is the position before the first element.
Unfortunately, such a position may not exist. Containers are not required to guarantee that the
position before their first element is valid. Consider that ordinary strings and arrays might also be
containers, and the language does not guarantee that arrays don't start at address zero.
As a result, the designers of reverse iterators use a trick: They "physically" reverse the "half-open
principle." Physically, in a range defined by reverse iterators, the beginning is not included,
whereas the end is. However, logically, they behave as usual. Thus, there is a distinction
between the physical position that defines to which element the iterator refers and the logical
position that defines to which value the iterator refers (Figure 7.3). The question is, what
happens on a conversion from an iterator to a reverse iterator? Does the iterator keep its logical
position (the value) or its physical position (the element)? As the previous example shows, the
latter is the case. Thus the value is moved to the previous element (Figure 7.4).

Figure 7.3. Position and value of Reverse Iterators

The C++ Standard Library

dyne-book 234

Figure 7.4. Conversion Between Iterator pos and Reverse Iterator rpos

You can't understand this decision? Well, it has its advantages: You have nothing to do when you
convert a range that is specified by two iterators rather than a single iterator. All elements stay
valid. Consider the following example:

 // iter/reviter3.cpp

 #include <iostream>
 #include <deque>
 #include <algorithm>
 using namespace std;

 void print (int elem)
 {
 cout << elem << ' ';
 }

 int main()
 {
 deque<int> coll;

 //insert elements from 1 to 9
 for (int i=1; i<=9; ++i) {
 coll.push_back(i);

The C++ Standard Library

dyne-book 235

 }

 //find position of element with value 2
 deque<int>::iterator pos1;
 pos1 = find (coll.begin(), coll.end(), //range
 2); //value

 //find position of element with value 7
 deque<int>::iterator pos2;
 pos2 = find (coll.begin(), coll.end(), //range
 7); //value

 //print all elements in range [pos1,pos2)
 for_each (pos1, pos2, //range
 print); //operation
 cout << endl;

 //convert iterators to reverse iterators
 deque<int>::reverse_iterator rpos1(pos1);
 deque<int>::reverse_iterator rpos2(pos2);

 //print all elements in range [pos1,pos2) in reverse order
 for.each (rpos2, rpos1, //range
 print); //operation
 cout << endl;
 }

The iterators pos1 and pos2 specify the half-open range, including the element with value 2 but
excluding the element with value 7. When the iterators describing that range are converted to
reverse iterators, the range stays valid and can be processed in reverse order. Thus, the output
of the program is as follows:

 2 3 4 5 6
 6 5 4 3 2

Thus, rbegin() is simply:

 container::reverse_iterator(end())

and rend() is simply:

 container::reverse_iterator(begin())

Of course, constant iterators are converted into type const_reverse_iterator.

Converting Reverse Iterators Back Using base()

The C++ Standard Library

dyne-book 236

You can convert reverse iterators back to normal iterators. To do this, reverse iterators provide
the base() member function:

 namespace std {
 template <class Iterator>
 class reverse_iterator ... {
 ...
 Iterator base() const;
 ...
 };
 }

Here is an example of the use of base():

 // iter/reviter4.cpp

 #include <iostream>
 #include <list>
 #include <algorithm>
 using namespace std;

 int main()
 {
 list<int> coll;

 //insert elements from 1 to 9
 for (int i=1; i<=9; ++i) {
 coll.push_back(i);
 }

 //find position of element with value 5
 list<int>::iterator pos;
 pos = find (coll.begin(), coll.end(), //range
 5); //value

 //print value of the element
 cout << "pos: " << *pos << endl;

 //convert iterator to reverse iterator
 list<int>::reverse_iterator rpos(pos);

 //print value of the element to which the reverse iterator refers
 cout << "rpos: " << *rpos << endl;

 //convert reverse iterator back to normal iterator
 list<int>::iterator rrpos;
 rrpos = rpos.base();

The C++ Standard Library

dyne-book 237

 //print value of the element to which the normal iterator refers
 cout << "rrpos: " << *rrpos << endl;
 }

The program has the following output:

 pos: 5
 rpos: 4
 rrpos: 5

Thus, the conversion with base()

 *rpos.base()

is equivalent to the conversion in a reverse iterator. That is, the physical position (the element of
the iterator) is retained, but the logical position (the value of the element) is moved. You can find
another example of the use of base() on page 353.

7.4.2 Insert Iterators

Insert iterators, also called inserters, are iterator adapters that transform an assignment of a new
value into an insertion of that new value. By using insert iterators, algorithms can insert rather
than overwrite. All insert iterators are in the output iterator category. Thus, they provide only the
ability to assign new values (see Section 7.2.2).

Functionality of Insert Iterators

Usually an algorithm assigns values to a destination iterator. For example, consider the copy()
algorithm (described on page 363):

 namespace std {
 template <class InputIterator, class OutputIterator>
 OutputIterator copy (InputIterator from_pos, //beginning of
source
 InputIterator from_end, //end of source
 OutputIterator to_pos) //beginning of
dest.
 {
 while (from_pos != from_end) {
 *to_pos = *from_pos; //copy values
 ++from_pos; //increment iterators
 ++to_pos;
 }
 return to_pos;
 }
 }

The loop runs until the actual position of the source iterator has reached the end. Inside the loop,
the source iterator, from_pos, is assigned to the destination iterator, to_pos, and both
iterators get incremented. The interesting part is the assignment of the new value:

The C++ Standard Library

dyne-book 238

 *to_pos = value

An insert iterator transforms such an assignment into an insertion. However, there actually are
two operations involved: First, operator * returns the actual element of the iterator, and second,
operator = assigns the new value. Implementations of insert iterators usually use the following
two-step trick:
Step 1. Operator * is implemented as a no-op that simply returns *this. Thus, for insert
iterators, *pos is equivalent to pos.
Step 2. The assignment operator is implemented so that it gets transferred into an insertion. In
fact, the insert iterator calls the push_back(), push_front(), or insert() member
function of the container.
Thus, for insert iterators, you could write pos=value instead of *pos=value to insert a new value.
However, I'm talking about implementation details of input iterators. The correct expression to
assign a new value is *pos=value.
Similarly, the increment operator is implemented as a no-op that simply returns *this. Thus,
you can't modify the position of an insert iterator. Table 7.7 lists all operations of insert iterators.

Table 7.7. Operations of Insert Iterators
Expression Effect
*iter No-op (returns iter)
iter = value Inserts value
++iter No-op (returns iter)
iter++ No-op (returns iter)

Kinds of Insert Iterators

The C++ standard library provides three kinds of insert iterators: back inserters, front inserters,
and general inserters. They differ in their handling of the position at which to insert a value. In
fact, each uses a different member function, which it calls for the container to which it belongs.
Thus, an insert iterator must be always initialized with its container.
Each kind of insert iterator has a convenience function for its creation and initialization. Table 7.8
lists the different kinds of insert iterators and their abilities.

Table 7.8. Kinds of Insert Iterators
Name Class Called Function Creation

Back inserter back_insert_iterator push_back (value) back_inserter (cont)
Front inserter front_insert_iterator push_front (value) front_inserter (cont)
General inserter insert_iterator insert (pos, value) inserter (cont, pos)
Of course, the container must provide the member function that the insert iterator calls; otherwise,
that kind of insert iterator can't be used. For this reason, back inserters are available only for
vectors, deques, lists, and strings; front inserters are available only for deques and lists. The
following subsections describe the insert iterators in detail.

Back Inserters

A back inserter (or back insert iterator) appends a value at the end of a container by calling the
push_back() member function (see page 241 for details about push_back()). push_back()
is available only for vectors, deques, lists, and strings, so these are the only containers in the C++
standard library for which back inserters are usable.
A back inserter must be initialized with its container at creation time. The back_inserter()
function provides a convenient way of doing this. The following example demonstrates the use of
back inserters:

The C++ Standard Library

dyne-book 239

 // iter/backins.cpp

 #include <iostream>
 #include <vector>
 #include <algorithm>
 #include "print.hpp"
 using namespace std;

 int main()
 {
 vector<int> coll;

 //create, back inserter for coll
 // - inconvenient way
 back_insert_iterator<vector<int> > iter(coll);

 //insert elements with the usual iterator interface
 *iter = 1;
 iter++;
 *iter = 2;
 iter++;
 *iter = 3;

 PRINT_ELEMENTS(coll);

 //create back inserter and insert elements
 // - convenient way
 back_inserter(coll) = 44;
 back_inserter(coll) = 55;

 PRINT_ELEMENTS(coll);

 //use back inserter to append all elements again
 copy (coll .begin(), coll.end(), //source
 back_inserter(coll));
//destination
 PRINT_ELEMENTS(coll);
 }

The output of the program is as follows:

 1 2 3
 1 2 3 44 55
 1 2 3 44 55 1 2 3 44 55

Note that you must not forget to reserve enough space before calling copy(). This is because
the back inserter inserts elements, which might invalidate all other iterators referring to the same

The C++ Standard Library

dyne-book 240

vector.Thus, the algorithm invalidates the passed source iterators while running, if not enough
space is reserved.
Strings also provide an STL container interface, including push_back(). Therefore, you could
use back inserters to append characters in a string. See page 502 for an example.

Front Inserters

A front inserter (or front insert iterator) inserts a value at the beginning of a container by calling
the push_front() member function (see page 241 for details about push_front()).
push_front() is available only for deques and lists, so these are the only containers in the C++
standard library for which front inserters are usable.
A front inserter must be initialized with its container at creation time. The front_inserter()
function provides a convenient way of doing this. The following example demonstrates the use of
front inserters:

 // iter/frontins.cpp

 #include <iostream>
 #include <list>
 #include <algorithm>
 #include "print.hpp"
 using namespace std;

 int main()
 {
 list<int> coll;

 //create front inserter for coll
 // - inconvenient way
 front_insert_iterator<list<int> > iter(coll);

 //insert elements with the usual iterator interface
 *iter = 1;
 iter++;
 *iter = 2;
 iter++;
 *iter = 3;

 PRINT_ELEMENTS(coll);

 //create front inserter and insert elements
 // - convenient way
 front_inserter(coll) = 44;
 front_inserter(coll) = 55;

 PRINT_ELEMENTS(coll);

 //use front inserter to insert all elements again
 copy (coll.begin(), coll.end(), //source

The C++ Standard Library

dyne-book 241

 front_inserter(coll)); //destination

 PRINT_ELEMENTS(coll);
 }

The output of the program is as follows:

 3 2 1
 55 44 3 2 1
 1 2 3 44 55 55 44 3 2 1

Note that the front inserter inserts multiple elements in reverse order. This happens because it
always inserts the next element in front of the previous one.

General Inserters

A general inserter (or general insert iterator)[2] is initialized with two values: the container and the
position that is used for the insertions. Using both, it calls the insert() member function with
the specified position as argument. The inserter() function provides a convenient way of
creating and initializing a general inserter.

[2] A general inserter is often simply called insert iterator or inserter. This means that the words insert iterator
and inserter have different meanings: They are a general term for all kinds of insert iterators. They are also
used as names for a special insert iterator that inserts at a specified position rather than in the front or in the
back. To avoid this ambiguity, I use the term general inserter in this book.

A general inserter is available for all standard containers because all containers provide the
needed insert() member function. However, for associative containers (set and maps) the
position is used only as a hint because the value of the element defines the correct position. See
the description of insert() on page 240 for details.
After an insertion, the general inserter gets the position of the new inserted element. In particular,
the following statements are called:

 pos = container. insert (pos, value);
 ++pos;

The assignment of the return value of insert() ensures that the iterator's position is always
valid. Without the assignment of the new position for deques, vectors, and strings, the general
inserter would invalidate itself. This is because each insertion does, or at least might, invalidate
all iterators that refer to the container.
The following example demonstrates the use of general inserters:

 // iter/inserter.cpp

 #include <iostream>
 #include <set>
 #include <list>
 #include <algorithm>
 #include "print.hpp"
 using namespace std;

 int main()

The C++ Standard Library

dyne-book 242

 {
 set<int> coll;

 //create insert iterator for coll
 // - inconvenient way
 insert_iterator<set<int> > iter(coll,coll.begin());

 //insert elements with the usual iterator interface
 *iter = 1;
 iter++;
 *iter = 2;
 iter++;
 *iter = 3;

 PRINT.ELEMENTS(coll,"set: ");

 //create inserter and insert elements
 // - convenient way
 inserter(coll,coll.end()) = 44;
 inserter(coll,coll.end()) = 55;

 PRINT_ELEMENTS(coll,"set: ");

 //use inserter to insert all elements into a list
 list<int> coll2;
 copy (coll.begin(), coll.end(),
//source
 inserter(coll2,coll2.begin()));
//destination

 PRINT_ELEMENTS(coll2,"list: ");

 //use inserter to reinsert all elements into the list before the
second element
 copy (coll.begin(), coll.end(),
//source
 inserter(coll2,++coll2.begin()));
//destination

 PRINT_ELEMENTS(coll2,"list: ");
 }

The output of the program is as follows:

 set: 1 2 3
 set: 1 2 3 44 55
 list: 1 2 3 44 55

The C++ Standard Library

dyne-book 243

 list: 1 1 2 3 44 55 2 3 44 55

The calls of copy() demonstrate that the general inserter maintains the order of the elements.
The second call of copy() uses a certain position inside the range that is passed as argument.

A User-Defined Inserter for Associative Containers

As mentioned previously, for associative containers the position argument of general inserters is
only used as a hint. This hint might help to improve speed, however it also might cause bad
performance. For example, if the inserted elements are in reverse order, the hint may slow down
programs a bit. This is because the search for the correct insertion point always starts at a wrong
position. Thus, a bad hint might even be worse than no hint. This is a good example of a useful
supplementation of the C++ standard library. See Section 7.5.2, for such an extension.

7.4.3 Stream Iterators

A stream iterator is an iterator adapter that allows you to use a stream as source or destination of
algorithms. In particular, an streams iterator can be used to read elements from an input stream
and an ostream iterator can be used to write values to an output stream.
A special form of a stream iterator is a stream buffer iterator, which can be used to read from or
write to a stream buffer directly. Stream buffer iterators are discussed in Section 13.13.2.

Ostream Iterators

Ostream iterators write assigned values to an output stream. By using ostream iterators,
algorithms can write directly to streams. The implementation of an ostream iterator uses the same
concept as the implementation of insert iterators (see page 271). The only difference is that they
transform the assignment of a new value into an output operation by using operator >>. Thus,
algorithms can write directly to streams using the usual iterator interface. Table 7.9 lists the
operations of ostream iterators.

Table 7.9. Operations of ostream Iterators
Expression Effect

Ostream_iterator<T>
(ostream)

Creates an ostream iterator for ostream

ostream_iterator<T>
(ostream,delim)

Creates an ostream iterator for ostream with the string delim as
the delimiter between the values (note that delim has type
const char*)

*iter No-op (returns iter)
iter = value Writes value to ostream: ostream<<value (followed by delim if

set)
++iter No-op (returns iter)
iter++ No-op (returns iter)
At creation time of the ostream iterator you must pass the output stream on which the values are
written. An optional string can be passed, which is written as a separator between single values.
Without the delimiter, the elements directly follow each other.
Ostream iterators are defined for a certain element type T:

 namespace std {
 template <class T,
 class charT = char,
 class traits = char_traits<charT> >

The C++ Standard Library

dyne-book 244

 class ostream_iterator;
 }

The optional second and third template arguments specify the type of stream that is used (see
Section 13.2.1, for their meaning).[3]

[3] In older systems, the optional template arguments for the stream type are missing.

The following example demonstrates the use of ostream iterators:

 // iter/ostriter.cpp

 #include <iostream>
 #include <vector>
 #include <algorithm>
 using namespace std;

 int main()
 {
 //create ostream iterator for stream cout
 // - values are separated by a newline character
 ostream_iterator<int> intWriter(cout,"\n");

 //write elements with the usual iterator interface
 *intWriter = 42;
 intWriter++;
 *intWriter = 77;
 intWriter++;
 *intWriter = -5;

 //create collection with elements from 1 to 9
 vector<int> coll;
 for (int i=1; i<=9; ++i) {
 coll.push_back(i);
 }

 //write all elements without any delimiter
 copy (coll.begin(), coll.end(),
 ostream_iterator<int>(cout));
 cout << endl;

 //write all elements with " < " as delimiter
 copy (coll.gin(), coll.end(),
 ostream_iterator<int>(cout," < "));
 cout << endl;
 }

The output of the program is as follows:

The C++ Standard Library

dyne-book 245

 42
 77
 -5
 123456789
 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9 <

Note that the delimiter has type const char*. Thus, if you pass an object of type string you
must call its member function c_str() (see Section 11.3.6) to get the correct type. For
example:

 string delim;
 ...
 ostream_iterator<int>(cout,delim.c_str());

Istream Iterators

Istream iterators are the counterparts of ostream iterators. An istream iterator reads elements
from an input stream. By using istream iterators, algorithms can read from streams directly.
However, istream iterators are a bit more complicated than ostream iterators (as usual, reading is
more complicated than writing).
At creation time the istream iterator is initialized by the input stream from which it reads. Then, by
using the usual interface of input iterators (see Section 7.2.1), it reads element-by-element
using operator >>. However, reading might fail (due to end-of-file or an error), and source ranges
of algorithms need an "end position." To handle both problems, you can use an end-of-stream
iterator. An end-of-stream iterator is created with the default constructor for istream iterators. If a
read fails, every istream iterator becomes an end-of-stream iterator. Thus, after any read access,
you should compare an istream iterator with an end-of-stream iterator to check whether the
iterator has a valid value. Table 7.10 lists all operations of istream iterators.
Note that the constructor of an istream iterator opens the stream and usually reads the first
element. It has to read the first value because otherwise it could not return the first element when
operator * is called after the initialization. However, implementations may defer the first read until
the first call of operator *. So, you should not define an istream iterator before you really need it.
Istream iterators are defined for a certain element type T:

 namespace std {
 template <class T,
 class charT = char,
 class traits = char_traits<charT>,
 class Distance = ptrdiff_t>
 class istream_iterator;
 }

Table 7.10. Operations of istream Iterators
Expression Effect

istream_iterator<T>() Creates an end-of-stream iterator
istream_iterator<T>
(istream)

Creates an istream iterator for istream (and might read the first
value)

*iter Returns the actual value, read before (reads first value if not
done by the constructor)

The C++ Standard Library

dyne-book 246

iter->member Returns a member (if any) of the actual value, read before
++iter Reads next value and returns its position
iter++ Reads next value but returns an iterator for the previous value
Iter1==iter2 Tests iter1 and iter2 for equality
Iter1!= iter2 Tests iter1 and iter2 for inequality
The optional second and third template arguments specify the type of stream that is used (see
Section 13.2.1, for their meaning). The optional fourth template argument specifies the
difference type for the iterators.[4]

[4] In older systems without default template parameters, the optional fourth template argument is required
as the second argument, and the arguments for the stream type are missing.

Two istream iterators are equal if

• both are end-of-stream iterators and thus can no longer read, or
• both can read and use the same stream.

The following example demonstrates the operations provided for istream iterators:

 // iter/istriter.cpp

 #include <iostream>
 #include <iterator>
 using namespace std;

 int main()
 {
 //create istream iterator that reads integers from cin
 istream_iterator<int> intReader(cin);

 //create end-of-stream iterator
 istream_iterator<int> intReaderEOF;

 /* while able to read tokens with istream iterator
 * - write them twice
 */
 while (intReader != intReaderEOF) {
 cout << "once: " << *intReader << endl;
 cout << "once again: " << *intReader << endl;
 ++intReader;
 }
 }

If you start the program with the following input:

 1 2 3 f 4

the output of the program is as follows:

The C++ Standard Library

dyne-book 247

 once: 1
 once again: 1
 once: 2
 once again: 2
 once: 3
 once again: 3

As you can see, the input of character f ends the program. Due to a format error, the stream is
no longer in a good state. Therefore, the istream iterator intReader is equal to the end-of-
stream iterator intReaderEOF. So, the condition of the loop yields false,

Another Example of Stream Iterators

Here is an example that uses both kinds of stream iterators as well as the advance() iterator
function:

 // iter/advance2.cpp

 #include <iostream>
 #include <string>
 #include <algorithm>
 using namespace std;

 int main()
 {
 istream_iterator<string> cinPos(cin);
 ostream_iterator<string> coutPos(cout," ");

 /* while input is not at the end of the file
 * - write every third string
 */
 while (cinPos != istream_iterator<string>()) {
 //ignore the following two strings
 advance (cinPos, 2);

 //read and write the third string
 if (cinPos != istream_iterator<string>()) {
 *coutPos++ = *cinPos++;
 }
 }
 cout << endl;
 }

The advance() iterator function is provided to advance the iterator to another position (see
Section 7.3.1). Used with istream iterators, it skips input tokens. For example, if you have the
following input[5] :

[5] Thanks to Andrew Koenig for the nice input of this example.

The C++ Standard Library

dyne-book 248

 No one objects if you are doing
 a good programming job for
 someone who you respect.

the output is as follows:

 objects are good for you

Don't forget to check whether the istream iterator is still valid after calling advance() and before
accessing its value with *cinPos. Calling operator * for an end-of-stream iterator results in
undefined behavior.
See pages 107, 366, and 385 for other examples that demonstrate how algorithms use stream
iterators to read from and write to streams.

7.5 Iterator Traits

Iterators have different categories (see Section 7.2) that represent special iterator abilities. It
might be useful or even necessary to be able to overload behavior for different iterator categories.
By using iterator tags and iterator traits (both provided in <iterator>) such an overloading can
be performed.
For each iterator category, the C++ standard library provides an iterator tag that can be used as a
"label" for iterators:

 namespace std {
 struct output_iterator_tag {
 };
 struct input_iterator_tag {
 };
 struct forward_iterator_tag
 : public input_iterator_tag {
 };
 struct bidirectional_iterator_tag
 : public forward_iterator_tag {
 };
 struct random_access_iterator_tag
 : public bidirectional_iterator_tag {
 };
 }

Note that inheritance is used. So, for example, any forward iterator is a kind of input iterator.
However, note that the tag for forward iterators is only derived from the tag for input iterators, not
from the tag for output iterators. Thus, any forward iterator is not a kind of output iterator. In fact,
forward iterators have requirements that keep them from being output iterators.
If you write generic code, you might not only be interested in the iterator category. For example,
you may need the type of the elements to which the iterator refers. Therefore, the C++ standard
library provides a special template structure to define the iterator traits. This structure contains all
relevant information regarding an iterator. It is used as a common interface for all the type
definitions an iterator should have (the category, the type of the elements, and so on):

 namespace std {
 template <class T>
 struct iterator_traits {

The C++ Standard Library

dyne-book 249

 typedef typename T::value_type value_type;
 typedef typename T::difference_type difference_type;
 typedef typename T::iterator_category iterator_category;
 typedef typename T::pointer pointer;
 typedef typename T::reference reference;
 };
 }

In this template, T stands for the type of the iterator. Thus, you can write code that uses for any
iterator its category, the type of its elements, and so on. For example, the following expression
yields the value type of iterator type T:

 typename std::iterator_traits<T>::value_type

This structure has two advantages:

1. It ensures that an iterator provides all type definitions.
2. It can be (partially) specialized for (sets of) special iterators. The latter is done for

ordinary pointers that also can be used as iterators:

 namespace std {
 template <class T>
 struct iterator_traits<T*> {
 typedef T value_type;
 typedef ptrdiff_t difference_type;
 typedef random_access_iterator_tag iterator_category;
 typedef T* pointer;
 typedef T& reference;
 };
 }

Thus, for any type "pointer to" "T", it is defined that it has the random access iterator category.
A corresponding partial specialization exists for constant pointers (const T*).

7.5.1 Writing Generic Functions for Iterators

Using iterator traits, you can write generic functions that derive type definitions or use different
implementation code depending on the iterator category.

Using Iterator Types

A simple example of the use of iterator traits is an algorithm that needs a temporary variable for
the elements. Such a temporary value is declared simply like this

 typename std::iterator_traits<T>::value_type tmp;

whereby T is the type of the iterator.
Another example is an algorithm that shifts elements cyclically:

The C++ Standard Library

dyne-book 250

 template <class ForwardIterator>
 void shift_left (ForwardIterator beg, ForwardIterator end)
 {
 //temporary variable for first element
 typedef typename
 std::iterator_traits<ForwardIterator>::value_type value_type;

 if (beg != end) {
 //save value of first element
 value_type tmp(*beg);

 //shift following values
 ...
 }
 }

Using Iterator Categories

To use different implementations for different iterator categories you must follow these two steps:
Step 1. Let your template function call another function with the iterator category as an additional
argument. For example:

 template <class Iterator>
 inline void foo (Iterator beg, Iterator end)
 {
 foo (beg, end,
 std::iterator_traits<Iterator>::iterator_category());
 }

Step 2. Implement that other function for any iterator category that provides a special
implementation that is not derived from another iterator category. For example:

 //foo() for bidirectional iterators
 template <class BiIterator>
 void foo (BiIterator beg, BiIterator end,
 std::bidirectional_iterator_tag)
 {
 ...
 }

 //foo() for random access iterators
 template <class RaIterator>
 void foo (RaIterator beg, RaIterator end,
 std::random_access_iterator_tag)
 {

 }

The C++ Standard Library

dyne-book 251

The version for random access iterators could, for example, use random access operations,
whereas the version for bidirectional iterators would not. Due to the hierarchy of iterator tags (see
page 283) you could provide one implementation for more than one iterator category.

Implementation of distance()

An example of following the steps in the previous subsection is the implementation of the auxiliary
distance() iterator function. This function returns the distance between two iterator positions
and their elements (see Section 7.3.2). The implementation for random access iterators only
uses the operator -. For all other iterator categories, the number of increments to reach the end
of the range is returned.

 //general distance()
 template <class Iterator>
 typename std::iterator_traits<Iterator>::difference_type
 distance (Iterator pos1, Iterator pos2)
 {
 return distance (pos1, pos2,
 std::iterator_traits<Iterator>
 ::iterator_category());
 }

 //distance() for random access iterators
 template <class RaIterator>
 typename std::iterator_traits<RaIterator>::difference_type
 distance (RaIterator pos1, RaIterator pos2,
 std::random_access_iterator_tag)
 {
 return pos2 - pos1;
 }

 //distance() for input, forward, and bidirectional iterators
 template <class InIterator>
 typename std::iterator_traits<lnIterator>::difference_type
 distance (Inlterator pos1, InIterator pos2,
 std::input_iterator_tag)
 {
 typename std::iterator_traits<lnIterator>::difference_type d;
 for (d=0; pos1 != pos2; ++pos1, ++d) {
 ;
 }
 return d;
 }

The difference type of the iterator is used as the return type. Note that the second version uses
the tag for input iterators, so this implementation is also used by forward and bidirectional
iterators because their tags are derived from input_iterator_tag.

7.5.2 User-Defined Iterators

Let's write an iterator. As mentioned in the previous section, you need iterator traits provided for
the user-defined iterator. You can provide them in one of two ways:

The C++ Standard Library

dyne-book 252

1. Provide the necessary five type definitions for the general iterator_traits structure
(see page 284).

2. Provide a (partial) specialization of the iterator_traits structure.

For the first way, the C++ standard library provides a special base class, iterator<>, that does
the type definitions. You need only to pass the types[6] :

[6] In older STL versions, the auxiliary types input_iterator, output_iterator,
forward_iterator, bidirectional_iterator, and random_access_iterator were provided
instead of iterator.

 class MyIterator
 : public std::iterator <std::bidirectional_iterator_tag,
 type, ptrdiff_t, type*, type&> {
 ...
 };

The first template parameter defines the iterator category, the second defines the element type
type, the third defines the difference type, the fourth defines the pointer type, and the fifth defines
the reference type. The last three arguments are optional and have the default values
ptrdif_f_t, type*, and type&. Often it is enough to use the following definition:

 class MyIterator
 : public std::iterator <std::bidirectional_iterator_tag, type> {
 ...
 };

The following example demonstrates how to write a user-defined iterator. It is an insert iterator for
associative containers. Unlike insert iterators of the C++ standard library (see Section 7.4.2), no
insert position is used.
Here is the implementation of the iterator class:

 // iter/assoiter.hpp

 #include <iterator>

 /* template class for insert iterator for associative containers
 */
 template <class Container>
 class asso_insert_iterator
 : public std::iterator <std::output_iterator_tag,
 void, void, void, void>
 {
 protected:
 Container& container; //container in which elements are
inserted

 public:
 //constructor
 explicit asso_insert_iterator (Container& c) : container(c) {
 }

The C++ Standard Library

dyne-book 253

 //assignment operator
 // - inserts a value into the container
 asso_insert_iterator<Container>&
 operator= (const typename Container::value_type& value) {
 container.insert(value);
 return *this;
 }

 //dereferencing is a no-op that returns the iterator itself
 asso_insert_iterator<Container>& operator* () {
 return *this;
 }

 //increment operation is a no-op that returns the iterator itself
 asso_insert_iterator<Container>& operator++ () {
 return *this;
 }
 asso_insert_iterator<Container>& operator++ (int) {
 return *this;
 }
 };

 /* convenience function to create the inserter
 */
 template <class Container>
 inline asso_insert_iterator<Container> asso_inserter (Container& c)
 {
 return asso_insert_iterator<Container>(c);
 }

The asso_insert_iterator class is derived from the iterator class. The first template
argument output_iterator_tag is passed to iterator to specify the iterator category.
Output iterators can only be used to write something. Thus, as for all output iterators, element
and difference types are void.[7]

[7] For older STL versions, the asso_insert_iterator class must be derived from class
output_iterator without any template parameter.

At creation time the iterator stores its container in its container member. Any value that gets
assigned is inserted into the container by insert(). Operators * and ++ are no-ops that simply
return the iterator itself. Thus, the iterator maintains control. If the usual iterator interface is used

 *pos = value

the *pos expression returns *this to which the new value is assigned. That assignment is
transfered into a call of insert (value) for the container.
After the definition of the inserter class, the usual convenient function asso_inserter is defined
as convenience function to create and initialize an inserter. The following program uses such an
inserter to insert some elements into a set:

The C++ Standard Library

dyne-book 254

 // iter/assoiter.cpp

 #include <iostream>
 #include <set>
 #include <algorithm>
 using namespace std;

 #include "print.hpp"

 #include "assoiter.hpp"

 int main()
 {
 set<int> coll;

 //create inserter for coll
 // - inconvenient way
 asso_insert_iterator<set<int> > iter(coll);

 //insert elements with the usual iterator interface
 *iter = 1;
 iter++;
 *iter = 2;
 iter++;
 *iter = 3;

 PRINT_ELEMENTS(coll);

 //create inserter for coll and insert elements
 // - convenient way
 asso_inserter(coll) = 44;
 asso_inserter(coll) = 55;

 PRINT_ELEMENTS(coll);

 //use inserter with an algorithm
 int vals[] = { 33, 67, -4, 13, 5, 2 };
 copy (vals, vals+(sizeof(vals)/sizeof(vals[0])), //source
 asso_inserter(coll)); //destination

 PRINT_ELEMENTS(coll);
 }

The output of the program is as follows:

The C++ Standard Library

dyne-book 255

 1 2 3
 1 2 3 44 55
 -4 1 2 3 5 13 33 44 55 67

Chapter 8. STL Function Objects
This chapter discusses in detail function objects, or functors for short, which were introduced in
Section 5.9. It covers the full set of predefined function objects and function adapters, and the
concept of functional composition, and provides examples of self-written function objects.

8.1 The Concept of Function Objects

A function object (or functor), is an object that has operator () defined so that in the following
example

 FunctionObjectType fo;
 ...
 fo(...);

the expression fo() is a call of operator () for the function object fo instead of a call of the
function fo().
At first, you could consider a function object as an ordinary function that is written in a more
complicated way: Instead of writing all the function statements inside the function body,

 void fo() {
 statements
 }

you write them inside the body of operator () of the function object class:

 class FunctionObjectType {
 public:
 void operator() {
 statements
 }
 };

This kind of definition is more complicated; however, it has three important advantages:

1. A function object might be smarter because it may have a state. In fact, you can have two
instances of the same function, represented by a function object, which may have
different states at the same time. This is not possible for ordinary functions.

2. Each function object has its own type. Thus, you can pass the type of a function object to
a template to specify a certain behavior, and you have the advantage that container types
with different function objects differ.

3. A function object is usually faster than a function pointer.

See page 126 for more details about these advantages and page 127 for an example that shows
how function objects can be smarter than ordinary functions.

The C++ Standard Library

dyne-book 256

In the next two subsections I present two other examples that go into more detail about function
objects. The first example demonstrates how to benefit from the fact that each function object
usually has its own type. The second example demonstrates how to benefit from the state of
function objects, and leads to an interesting property of the for_each() algorithm, which is
covered in another subsection.

8.1.1 Function Objects as Sorting Criteria

Programmers often need a sorted collection of elements that have a special class (for example, a
collection of persons). However, you either don't want to use or you can't use the usual operator
< to sort the objects. Instead, you sort the objects according to a special sorting criterion based
on some member function. In this regard, a function object can help. Consider the following
example:

 // fo/sortl.cpp

 #include <iostream>
 #include <string>
 #include <set>
 #include <algorithm>
 using namespace std;

 class Person {
 public:
 string firstname() const;
 string lastname() const;
 ...
 };

 /* class for function predicate
 * - operator() returns whether a person is less than another person
 */
 class PersonSortCriterion {
 public:
 bool operator() (const Person& p1, const Person& p2) const {
 /* a person is less than another person
 * - if the last name is less
 * - if the last name is equal and the first name is less
 */
 return p1.lastname()<p2.1astname() ||
 (! (p2.1astname()<p1.lastname()) &&
 p1.firstname()<p2.firstname());
 }
 };

 int main()
 {

 //declare set type with special sorting criterion
 typedef set<Person,PersonSortCriterion> PersonSet;

 //create such a collection
 PersonSet coll;

The C++ Standard Library

dyne-book 257

 ...

 //do something with the elements
 PersonSet::iterator pos;
 for (pos = coll.begin(); pos != coll.end();++pos) {
 ...
 }
 ...
 }

The set coll uses the special sorting criterion PersonSortCriterion, which is defined as a
function object class. PersonSortCriterion defines operator () in such a way that it
compares two Persons according to their last name and (if they are equal) to their first name.
The constructor of coll creates an instance of class PersonSortCriterion automatically so
that the elements are sorted according to this sorting criterion.
Note that the sorting criterion PersonSortCriterion is a type. Thus, you can use it as a
template argument for the set. This would not be possible, if you implement the sorting criterion
as a plain function (as was done on page 123).
All sets with this sorting criterion have their own type (which is called PersonSet in this
example). You can't combine or assign a set that has a "normal" or another user-defined sorting
criterion. Thus, you can't compromise the automatic sorting of the set by any operation; however,
you can design function objects that represent different sorting criteria with the same type (see
the next subsection). See page 178 for more details about sets and their sorting criteria.

8.1.2 Function Objects with Internal State

The following example shows how function objects can be used to behave as a function that may
have more than one state at the same time:

 // fo/genera1.cpp

 #include <iostream>
 #include <list>
 #include <algorithm>
 #include "print.hpp"
 using namespace std;

 class IntSequence {
 private:
 int value;
 public:
 //constructor
 IntSequence (int initialValue)
 : value(initialValue) {
 }

 //''function call''
 int operator() () {
 return value++;
 }
 };

The C++ Standard Library

dyne-book 258

 int main()
 {
 list<int> coll;

 //insert values from 1 to 9
 generate_n (back_inserter(coll), //start
 9, //number of
elements
 IntSequence (1)); //generates
values

 PRINT_ELEMENTS(coll);

 //replace second to last element but one with values starting
at 42
 generate (++coll.begin(), //start
 --coll.end(), //end
 IntSequence (42)); //generates
values

 PRINT_ELEMENTS(coll);
 }

In this example, a function object is used that generates a sequence of integral values. Each time
operator () is called, it returns its actual value and increments it. You can pass the start value as
a constructor argument.
Two such function objects are then used by the generate() and generate_n() algorithms.
These algorithms use generated values to write them into a collection: The expression

 IntSequence(1)

in the statement

 generate_n (back_inserter(coll),
 9,
 IntSequence(1));

creates such a function object initialized with 1. The generate_n() algorithm uses it nine times
to write an element, so it generates values 1 to 9 Similarly, the expression

 IntSequence(42)

generates a sequence beginning with value 42. The generate() algorithm replaces the
elements beginning with ++coll.begin() up to --coll.end().[1] The output of the program
is as follows:

The C++ Standard Library

dyne-book 259

[1] The expressions

 ++coll.begin()

and

 --coll.end()

might not work with vectors. This nasty problem is discussed in Section 7.2.6.

 1 2 3 4 5 6 7 8 9
 1 42 43 44 45 46 47 48 9

Using other versions of operator (), you can produce more complicated sequences easily.
Function objects are passed by value rather than by reference. Thus, the algorithm does not
change the state of the function object. For example, the following code generates the sequence
starting with value 1 twice:

 IntSequence seq(1); //integral sequence starting with value
1

 //insert sequence beginning with 1
 generate_n (back_inserter(coll), 9, seq);

 //insert sequence beginning with 1 again
 generate_n (back_inserter(coll), 9, seq);

Passing function objects by value instead of by reference has the advantage that you can pass
constant and temporary expressions. Otherwise, passing IntSequence(1) would not be
possible.
The disadvantage of passing the function object by value is that you can't benefit from
modifications of the state of the function objects. Algorithms can modify the state of the function
objects, but you can't access and process their final states because they make internal copies of
the function objects. However, access to the final state might be necessary, so the question is
how to get a "result" from an algorithm.
There are two ways to get a "result" or "feedback" from using function objects with algorithms:

1. You can pass the function objects by reference.
2. You can use the return value of the for_each() algorithm.

The latter is discussed in the next subsection.
To pass a function object by reference you simply have to qualify the call of the algorithm so that
the function object type is a reference.[2] For example:

The C++ Standard Library

dyne-book 260

[2] Thanks to Philip Köster for pointing this out.

 // fo/genera2.cpp

 #include <iostream>
 #include <list>
 #include <algorithm>
 #include "print.hpp"
 using namespace std;

 class IntSequence {
 private:
 int value;
 public:
 //constructor
 IntSequence (int initialValue)
 : value(initialValue) {
 }

 //"function call"
 int operator() () {
 return value++;
 }
 };

 int main()
 {
 list<int> coll;
 IntSequence seq(1); //integral sequence starting with
1

 //insert values from 1 to 4
 // - pass function object by reference
 //so that it will continue with 5
 generate_n<back_insert_iterator<list<int> >,
 int, IntSequence&>(back_inserter(coll),
//start
 4, //number of elements
 seq); //generates values
 PRINT_ELEMENTS(coll);

 //insert values from 42 to 45
 generate_n (back_inserter(coll), //start
 4, //number of elements
 IntSequence (42)) ; //generates values
 PRINT_ELEMENTS(coll);

 //continue with first sequence
 // - pass function object by value
 //so that it will continue with 5 again

The C++ Standard Library

dyne-book 261

 generate_n (back_inserter(coll), //start
 4, //number of elements
 seq) ; //generates values
 PRINT_ELEMENTS(coll);

 //continue with first sequence again
 generate_n (back_inserter(coll), //start
 4, //number of elements
 seq); //generates values
 PRINT_ELEMENTS(coll);
 }

The program has the following output:

 1 2 3 4
 1 2 3 4 42 43 44 45
 1 2 3 4 42 43 44 45 5 6 7 8
 1 2 3 4 42 43 44 45 5 6 7 8 5 6 7 8

In the first call of generate_n() the function object seq is passed by reference. To do this, the
template arguments are qualified explicitly:

 generate_n<back_insert_iterator<list<int> >,
 int, IntSequence&>(back_inserter(coll), //start
 4, //number of elements
 seq); //generates values

As a result, the internal value of seq is modified after the call and the second use of seq by the
third call of generate_n() continues the sequence of the first call. However, this call passes
seq by value:

 generate_n (back_inserter(coll), //start
 4, //number of elements
 seq); //generates values

Thus, the call does not change the state of seq. As a result, the last call of generate_n()
continues the sequence with value 5 again.

8.1.3 The Return Value of for_each()

The effort involved with a reference-counted implementation of a function object to access its final
state is not necessary if you use the for_each() algorithm. for_each() has the unique ability
to return its function object (no other algorithm can do this). Thus you can query the state of your
function object by checking the return value of for_each().
The following program is a nice example of the use of the return value of for_each(). It shows
how to process the mean value of a sequence:

 //fo/foreach3.cpp

 #include <iostream>
 #include <vector>

The C++ Standard Library

dyne-book 262

 #include <algorithm>
 using namespace std;

 //function object to process the mean value
 class MeanValue {
 private:
 long num; //number of elements
 long sum; //sum of all element values
 public:
 //constructor
 MeanValue() : num(0), sum(0) {
 }

 //"function call"
 //-process one more element of the sequence
 void operator() (int elem) {
 num++; //increment count
 sum += elem; //add value
 }

 //return mean value
 double value() {
 return static_cast<double>(sum) / static_cast<double>(num);
 }
 };

 int main()
 {
 vector<int> coll;

 //insert elments from 1 to 8
 for (int i=1; i<=8; ++i) {
 coll.push_back(i);
 }

 //process and print mean value
 MeanValue mv = for_each (coll.begin(), coll.end(), //range
 MeanValue()); //operation
 cout << "mean value: " << mv.value() << endl;
 }

The expression

 MeanValue()

creates a function object that counts the number of elements and processes the sum of all
element values. By passing it to for_each(), it is called for each element of the container
coll:

The C++ Standard Library

dyne-book 263

 MeanValue mv = for_each (coll.begin(), coll.end(),
 MeanValue());

The function object is returned and assigned to mv, so you can query its state after the statement
by calling: mv.value(). Therefore, the program has the following output:

 mean value: 4.5

You could even make the class MeanValue a bit smarter by defining an automatic type
conversion to double. Then you could use the mean value that is processed by for_each()
directly. See page 336 for such an example.

8.1.4 Predicates versus Function Objects

Predicates are functions or function objects that return a Boolean value (a value that is
convertible to bool). However, not every function that returns a Boolean value is a valid
predicate for the STL. This may lead to surprising behavior. Consider the following example:

 // fo/removeif.cpp

 #include <iostream>
 #include <list>
 #include <algorithm>
 #include "print.hpp"
 using namespace std;

 class Nth { //function object that returns true for the nth call
 private:
 int nth; //call for which to return true
 int count; //call counter
 public:
 Nth (int n) : nth (n), count (0) {
 }
 bool operator() (int) {
 return ++count == nth;
 }
 };

 int main()
 {
 list<int> coll;

 //insert elements from 1 to 9
 for (int i=1; i<=9; ++i) {
 coll.push_back(i);
 }
 PRINT_ELEMENTS(coll,"coll: ");

 //remove third element
 list<int>::iterator pos;

The C++ Standard Library

dyne-book 264

 pos = remove_if (coll.begin(),coll.end(), //range
 Nth(3)), //remove criterion
 coll.erase (pos,coll.end());

 PRINT_ELEMENTS (coll, "nth removed: ");
 }

This program defines a function object Nth that yields true for the nth call. However, when
passing it to remove_if() (an algorithm that removes all elements for which a unary predicate
yields true, see page 378), the result is a big surprise:

 coll: 1 2 3 4 5 6 7 8 9
 nth removed: 1 2 4 5 7 8 9

Two elements, namely the third and sixth elements are removed. This happens because the
usual implementation of the algorithm copies the predicate internally during the algorithm:

 template <class ForwIter, class Predicate>
 ForwIter std::remove_if(ForwIter beg, ForwIter end,
 Predicate op)
 {
 beg = find_if(beg, end, op);
 if (beg == end) {
 return beg;
 }
 else {
 ForwIter next = beg;
 return remove_copy_if(++next, end, beg, op);
 }
 }

The algorithm uses find_if() to find the first element that should be removed. However, it then
uses a copy of the passed predicate op to process the remaining elements if any. Here, Nth in its
original state is used again and it also removes the third element of the remaining elements,
which is in fact the sixth element.
This behavior is not a bug. The standard does not specify how often a predicate might be copied
internally by an algorithm. Thus, to get the guaranteed behavior of the C++ standard library you
should not pass a function object for which the behavior depends on how often it is copied or
called. Thus, if you call a unary predicate for two arguments and both arguments are equal, then
the predicate should always yield the same result. That is, a predicate should not change its state
due to a call, and a copy of a predicate should have the same state as the original. To ensure that
you can't change the state of a predicate due to a function call, you should declare operator () as
constant member function.
It is possible to avoid this surprising behavior and to guarantee that this algorithm works as
expected even for a function object such as Nth, without any performance penalties. You could
implement remove_if() in such a way that the call of find_if() is replaced by its contents:

 template <class ForwIter, class Predicate>
 ForwIter std::remove_if(ForwIter beg, ForwIter end,
 Predicate op)
 {
 while (beg != end && !op(*beg)) {

The C++ Standard Library

dyne-book 265

 ++beg;
 }
 if (beg == end) {
 return beg;
 }
 else {
 ForwIter next = beg;
 return remove_copy_if(++next, end, beg, op);
 }
 }

So, it might be a good idea to change the implementation of remove_if() (or submit a change
request to the implementor of the library). To my knowledge, in current implementations this
problem only arises with the remove_if() algorithm. If you use remove_copy_if(), all works
as expected.[3] However, to be portable, you should never rely on this implementation detail. You
should always declare the function call operator of predicates as being a constant member
function.

[3] Whether the C++ standard library should guarantee the expected behavior in cases such as those
presented in this example is currently under discussion.

8.2 Predefined Function Objects

As mentioned in Section 5.9.2, the C++ standard library provides many predefined function
objects. Table 8.1 lists all predefined function objects.[4]

[4] In earlier versions of the STL, the function object for multiplication had the name times. This was
changed due to a name clash with a function of the operating system standards (X/Open, POSIX) and
because multiplies was clearer.

Table 8.1. Predefined Function Objects
Expression Effect

negate<type>() - param
plus<type>() param1 + param2
minus<type>() param 1 - param2
multiplies<type>()[4] param1 * param2
divides<type>() param1 / param2
modulus <type>() param1 % param2
equal_to<type>() param1 == param2
not_equal_to<type>() param1 ! = param2
less<type>() param1 < param2
greater<type>() param1 > param2
less_equal<type>() param1 <= param2
greater_equal<type>() param1 >= param2
logical_not<type>() ! param
logical_and<type>() param1 && param2
logical_or<type> () param1 | | param2

The C++ Standard Library

dyne-book 266

less<> is the default criterion whenever objects are sorted or compared, so it is used often.
Default sorting operations always produce an ascending order (element < nextElement). To use
these function objects, you must include the header file <functional>[5] :

[5] In the original STL, the header file for function objects was called <function.h>.

 #include <functional>

To compare internationalized strings, the C++ standard library provides another function object
that can be used as a sorting criterion for strings. See page 703 for details.

8.2.1 Function Adapters

A function adapter is a function object that enables the combining of function objects with each
other, with certain values, or with special functions. Function adapters are also declared in
<functional>. For example, in the following statement:

 find_if (coll.begin(),coll.end(), //range
 bind2nd (greater<int>(),42)) //criterion

the expression

 bind2nd(greater<int>(),42)

produces a combined function object that checks whether an int value is greater than 42. In
fact, bind2nd transforms a binary function object, such as greater<>, into a unary function
object. It always uses its second parameter as the second argument of the binary function object
that is passed as the first parameter. Thus, in this example it always calls greater<> with 42 as
the second argument. Section 5.9.2, offers some other examples of the use of function
adapters.
Table 8.2 lists the predefined function adapter classes provided by the C++ standard library.

Table 8.2. Predefined Function Adapters
Expression Effect

bind1st (op,value) op(value,param)
bind2nd (op, value) op(param,value)
not 1(op) !op(param)
not2(op) !op(param1 ,param2)
Function adapters are function objects themselves, so you can combine function adapters and
function objects to form more powerful (and more complicated) expressions. For example, the
following statement returns the first even element of a collection:

 pos = find_if (coll.begin() , coll.end(), //range
 not1 (bind2nd(modulus<int>(),2))); //criterion

In this statement, the expression

 bind2nd(modulus<int>(),2)

The C++ Standard Library

dyne-book 267

returns 1 for all odd values. So this expression as a criterion finds the first element that has an
odd value because 1 is equivalent to true not1() negates the result, so the whole statement
searches for the first element that has an even value.
By using function adapters you can combine different function objects to form very powerful
expressions. This kind of programming is called functional composition. However, the C++
standard library lacks some function adapters that are necessary and useful for functional
composition. For example, some function adapters are missing that allow you to combine two
predicates with "and" or "or" (such as, "greater than 4 and less than 7"). If you extend the
standard function adapters by some composing function adapters you get a lot more power. See
Section 8.3, for a description of such extensions.

8.2.2 Function Adapters for Member Functions

The C++ standard library provides some additional function adapters that enable you to call a
member function for each element of a collection (Table 8.3).

Table 8.3. Function Adapters for Member Functions
Expression Effect

mem_fun_ref (op) Calls op() as a constant member function for an object
mem_fun (op) Calls op() as a constant member function for an object
For example, in the following code mem_fun_ref is used to call a member function for objects of
a vector:

 // fo/memfunla.cpp

 class Person {
 private:
 std::string name;
 public:
 ...
 void print() const {
 std::cout << name << std::endl;
 }
 void printWithPrefix (std::string prefix) const {
 std::cout << prefix << name << std::endl;
 }
 };

 void foo (const std::vector<Person>& coll)
 {
 using std::for_each;
 using std::bind2nd;
 using std::mem_fun_ref;

 //call member function print() for each element
 for_each (coll.begin(), coll.end(),
 mem_fun_ref(&Person::print));

 //call member function printWithPrefix() for each element
 //-"person: " is passed as an argument to the member function
 for_each (coll.begin(), coll.end(),

The C++ Standard Library

dyne-book 268

 bind2nd (mem_fun_ref (&Person::printWithPrefix),
 "person: "));
 }

In foo(), two different member functions of class Person are called for each element in the
vector coll: (1)Person::print(), which has no parameter, and
(2)Person::printWithPrefix(), which has an additional parameter. To call the
Person::print() member function, the function object

 mem_fun_ref (&Person::print)

is passed to the for_each() algorithm:

 for_each (coll.begin(), coll.end(),
 mem_fun_ref(&Person::print));

The mem_fun_ref adapter transforms the function call for the element into a call of the passed
member function.
The adapter is necessary because you can't pass a member function directly to an algorithm.
Doing so would cause a compile-time error:

 for_each (coll.begin(), coll.end (),
 &Person:: print); //ERROR: can't call operator()
 // for a member function pointer

The problem is that for_each() would call operator() for the pointer passed as the third
argument instead of calling the member function to which it points. The mem_fun_ref adapter
solves this problem by transforming the call of operator().
By using bind2nd it is also possible to pass one argument to the called member function, as the
second call of for_each() shows[6] :

[6] In older versions of the STL and the C++ standard library, the member function adapters for one
argument were called mem_fun1 and mem_fun1_ref instead of mem_fun and mem_fun_ref.

 for_each (coll.begin(), coll.end(),
 bind2nd(mem_fun_ref (&Person::printWithPrefix),
 "person: "));

You might wonder why the adapter is called mem_fun_ref instead of simply mem_fun. The
reason is historical: Another version of member function adapters was introduced first and got the
name mem_fun. Those mem_fun adapters are for sequences that contain pointers to elements.
Probably mem_fun_ptr would have been a less confusing name for them. So, if you have a
sequence of pointers to objects, you can also call member functions for them. For example:

 // fo/memfun1b.cpp

 void ptrfoo (const std::vector<Person*>& coll)
 //^^^ pointer!
 {

The C++ Standard Library

dyne-book 269

 using std::for_each;
 using std::bind2nd;
 using std::mem_fun;

 //call member function print() for each referred object
 for_each (coll.begin() , coll.end(),
 mem_fun(&Person::print));

 //call member function printWithPrefix()for each referred object
 //-"person: " is passed as an argument to the member function
 for_each (coll.begin() , coll.end(),
 bind2nd(mem_fun(&Person::printWithPrefix),
 "person: "));
 }

Both mem_fun_ref and mem_fun can call member functions with zero or one argument.
However, you can't call member functions with two or more arguments in this way. This is
because for the implementation of these adapters you need auxiliary function objects that are
provided for each kind of member function. For example, the auxiliary classes for mem_fun and
mem_fun_ref are mem_fun_t, mem_fun_ref_t, const_mem_fun_t,
const_mem_fun_ref_t, mem_fun1_t, mem_fun1_ref_t, const_mem_fun1_t, and
const_mem_fun1_ref_t.
Note that the member functions called by mem_fun_ref and mem_fun must be constant
member functions. Unfortunately, the C++ standard library does not provide function adapters for
nonconstant member functions (I discovered this while writing this book). It seems to have been
simply an oversight because nobody knew that this was not possible, and it is possible to solve
this problem without much effort. Hopefully, implementations (and the standard) will fix this
problem in the future.

8.2.3 Function Adapters for Ordinary Functions

Another function adapter enables ordinary functions to be used from other function adapters:
ptr_fun (Table 8.4).
For example, suppose you have a global function such as the following that checks something for
each parameter:

 bool check(int elem);

Table 8.4. Functions Adapters for Ordinary Functions
Expression Effect

ptr_fun(op) *op(param)
 *op(param1 ,param2)
If you want to find the first element for which the check does not succeed you could call the
following statement:

 pos = find_if (coll.begin(), coll.end(), //range
 not1(ptr_fun(check))); //search criterion

The C++ Standard Library

dyne-book 270

You could not use not1(check) because not1() uses special type members that function
objects provide. See Section 8.2.4 for more details.
The second form is used when you have a global function for two parameters and, for example,
you want to use it as a unary function:

 //find first string that is not empty
 pos = find_if (coll.begin(), coll.end(), //range
 bind2nd(ptr_fun(strcmp),"")); //search criterion

Here, the strcmp() C function is used to compare each element with the empty C-string.
strcmp() returns 0, which is equivalent to false, when both strings match. So, this call of
find_if() returns the position of the first element that is not the empty string. See another
example of the use of ptr_fun on page 319.

8.2.4 User-Defined Function Objects for Function Adapters

You can write your own function objects, but to use them in combination with function adapters
they must meet certain requirements: They must provide type members for the type of their
arguments and the result. The C++ standard library provides structures to make this more
convenient:

 template <class Arg, class Result>
 struct unary_function {
 typedef Arg argument_type;
 typedef Result result_type;
 };

 template <class Argl, class Arg2, class Result>
 struct binary_function {
 typedef Argl first_argument_type;
 typedef Arg2 second_argument_type;
 typedef Result result_type;
 };

Thus, by deriving your function object from one of these types you meet the requirements easily
so that your function object becomes "adapter-able."
The following example shows a complete definition for a function object that processes the first
argument raised to the power of the second argument:

 // fo/fopow.hpp

 #include <functional>
 #include <cmath>

 template <class T1, class T2>
 struct fopow : public std::binary_function<T1, T2, T1>
 {
 T1 operator() (T1 base, T2 exp) const {
 return std::pow(base,exp);
 }
 };

The C++ Standard Library

dyne-book 271

Here, the first argument and the return value have the same type, T1, and the exponent may
have a different type T2. These types are passed to binary_function to make the required
type definitions. However, instead of passing them to binary_function you could make the
type definition directly. As usual in the STL, the concept of function adapters is pure abstraction:
Anything that behaves like a function object for function adapters is a function object for function
adapters.
The following program shows how to use the user-defined function object fopow. In particular, it
uses fopow with the bind1st and bind2nd function adapters:

 // fo/fopow1. cpp

 #include <iostream>
 #include <vector>
 #include <algorithm>
 using namespace std;

 //include self-defined fopow<>
 #include "fopow.hpp"

 int main()
 {
 vector<int> coll;

 //insert elements from 1 to 9
 for (int i=1; i<=9; ++i) {
 coll.push_back(i);
 }

 //print 3 raised to the power of all elements
 transform (coll.begin(), coll.end(), //source
 ostream_iterator<int>(cout," "), //destination
 bind1st(fopow<float ,int>() ,3)); //operation
 cout << endl;

 //print all elements raised to the power of 3
 transform (coll.begin(), coll.end(), //source
 ostream_iterator<int> (cout," "), //destination
 bind2nd(fopow<float,int>(),3)) ; //operation
 cout << endl;
 }

The program has the following output:

 3 9 27 81 243 729 2187 6561 19683
 1 8 27 64 125 216 343 512 729

The C++ Standard Library

dyne-book 272

Note that fopow is realized for types float and int. If you use int for both base and
exponent, you'd call pow() with two arguments of type int, but this isn't portable because
according to the standard pow() is overloaded for more than one but not all fundamental types:

 transform (coll.begin(), coll.end(),
 ostream_iterator<int>(cout," "),
 bind1st(fopow<int,int>() ,3)); //ERROR:ambiguous

See page 581 for details about this problem

8.3 Supplementary Composing Function Objects

The ability to compose function objects is important for building software components from other
components. It enables you to construct very complicated function objects from simple ones. So
in general it should be possible to define almost every functional behavior as a combination of
function objects. However, the C++ standard library does not provide enough adapters to support
this. For example, it is not possible to combine the result of two unary operations to formulate a
criterion such as "this and that."
In principal, the following compose adapters are useful:

• f (g(elem))

This is the general form of a unary compose function. It allows nested calls of unary
predicates such that the result of calling predicate g() for elem is used as input for
predicate f(). The whole expression operates as a unary predicate.

• f (g(elem1,elem2))

This is a form in which two elements, elem1 and elem2, are passed as arguments to a
binary predicate g(). Again the result is used as input for the unary predicate f(). The
whole expression operates as a binary predicate.

• f (g(elem),h(elem))

This is a form in which elem is passed as an argument to two different unary predicates
g() and h(), and the result of both is processed by the binary predicate f(). In a way,
this form "injects" a single argument into a composed function. The whole expression
operates as a unary predicate.

• f (g(elem1) ,h(elem2))

This is a form in which two elements, elem1 and elem2, are passed as an argument to
two different unary predicates g() and h(), and the result of both is processed by the
binary predicate f(). In a way, this form "distributes" a composed function over two
arguments. The whole expression operates as a binary predicate.

Unfortunately, these compose adapters were not standardized, so we don't have standard names
for them. SGI's implementation of the STL has names for two of them, however the community is
currently looking for general names for all these adapters. See Table 8.5 for some possible
names and the names I chose to use in this book.

Table 8.5. Possible Names of Compose Function Object Adapters

The C++ Standard Library

dyne-book 273

Functionality This Book SGI STL
f (g(elem)) compose_f_gx compose1
f (g(elem1,elem2)) compose_f_gxy
f (g(elem),h(elem)) compose_f_gx_hx compose2
f (g(elem1),h(elem2)) compose_f_gx_hy
Look at the Boost repository for C++ libraries at http://www.boost.org/ for the names that
should be used in the future and for a complete implementation of all of them. In the next few
subsections I discuss three of them — those that I need most often.

8.3.1 Unary Compose Function Object Adapters

This subsection describes the most fundamental compose function object adapters. They are
also part of SGI's STL implementation.

Nested Computations by Using compose_f_gx

The simplest and most fundamental compose function adapter uses the result of a unary
operation as input to another unary operation. Thus, it is simply a nested call of two unary
function objects. You need this function adapter to formulate something like "add 10 and multiply
by 4."
I use the name compose_f_gx for this function object adapter. SGI's implementation of the STL
uses the name compose1. You can implement compose_f_gx as follows:

 // fo/compose11.hpp

 #include <functional>

 /* class for the compose_f_gx adapter
 */
 template <class 0P1, class 0P2>
 class compose_f_gx_t
 : public std::unary_function<typename 0P2::argument_type,
 typename 0P1::result_type>
 {
 private:
 0P1 op1; //process: op1(op2(x))
 0P2 op2;
 public:
 //constructor
 compose_f_gx_t(const 0P1& o1, const 0P2& o2)
 : 0p1(o1), op2(o2) {
 }

 //function call
 typename 0P1::result_type
 operator() (const typename 0P2::argument_type& x) const {
 return op1 (op2(x));
 }
 };

The C++ Standard Library

dyne-book 274

 /*convenience functions for the compose _f_gx adapter
 */
 template <class 0P1, class 0P2>
 inline compose_f_gx_t<0Pl,0P2>
 compose_f_gx (const 0P1& o1, const OP2& o2) {
 return compose_f_gx_t<0Pl,OP2>(ol,o2);
 }

Here is a complete example that demonstrates the use of compose_f_gx:

 // fo/compose1. cpp

 #include <iostream>
 #include <vector>
 #include <algorithm>
 #include <functional>
 #include "print.hpp"
 #include "composell.hpp"
 using namespace std;

 int main()
 {
 vector<int> coll;

 //insert elements from 1 to 9
 for (int i=1; i<=9; ++i) {
 coll.push_back(i);
 }
 PRINT_ELEMENTS(coll);

 //for each element add 10 and multiply by 5
 transform (coll.begin(),coll.end(),
 ostream_iterator<int>(cout," "),
 compose_f_gx (bind2nd (multiplies<int>(),5),
 bind2nd (plus<int>(),10)));
 cout << endl;
 }

Note that the second operation passed to compose_f_gx is performed first. Thus,

 compose_f_gx(bind2nd(multiplies<int>(),5),
 bind2nd (plus<int>(),10))

yields a unary function object that first adds ten and then multiplies the result by five. The
program has the following output:

 1 2 3 4 5 6 7 8 9
 55 60 65 70 75 80 85 90 95

The C++ Standard Library

dyne-book 275

Combining Two Criteria by Using compose_f_gx_hx

Probably the most important supplementary function adapter is one that allows you to combine
two criteria logically to formulate a single criterion. You need this function adapter' to formulate
something like "greater than 4 and less than 7."
I use the name compose_f_gx_hx for this function object adapter. In SGI's implementation of
the STL it is called compose2. You can implement compose_f_gx_hx as follows:

 // fo/compose21.hpp

 #include <functional>

 /*class for the compose_f_gx_hx adapter
 */
 template <class 0P1, class 0P2, class 0P3>
 class compose_f_gx_hx_t
 : public std::unary_function<typename 0P2::argument_type,
 typename 0P1::result_type>
 {
 private:
 0P1 op1; //process: op1 (op2(x), op3(x))
 0P2 op2;
 0P3 op3;
 public:
 //constructor
 compose_f_gx_hx_t (const 0P1& o1, const 0P2& o2, const 0P3& o3)
 : op1(o1), op2(o2), op3(o3) {
 }

 //function call
 typename 0P1::result_type
 operator()(const typename 0P2::argument_type& x) const {
 return op1(op2(x),op3(x));
 }
 };

 /*convenience functions for the compose f_gx_hx adapter
 */
 template <class 0P1, class 0P2, class 0P3>
 inline compose_f_gx_hx_t<0Pl,0P2,0P3>
 compose_f_gx_hx (const 0P1& o1, const 0P2& o2, const 0P3& o3) {
 return compose_f_gx_hx_t<0Pl,0P2,0P3>(ol,o2,o3);
 }

compose_f _gx_hx uses the first operation to combine the results of two unary operations for
the same object. Thus, the expression

 compose_f_gx_hx(opl,op2,op3)

results in the unary predicate that calls for each value x:

The C++ Standard Library

dyne-book 276

 op1(op2(x),op3(x))

Here is a complete example that demonstrates the use of compose_f _gx_hx:

 // fo/compose2.cpp

 #include <iostream>
 #include <vector>
 #include <algorithm>
 #include <functional>
 #include "print.hpp"
 #include "compose21.hpp"
 using namespace std;

 int main()
 {
 vector<int> coll;

 //insert elements from 1 to 9
 for (jnt i=1; i<=9; ++i) {
 coll.push_back(i);
 }
 PRINT_ELEMENTS(coll);

 //remove all elements that are greater than four and less than
seven
 // - retain new end
 vector<int>::iterator pos;
 pos = remove_if (coll.begin(),coll.end(),
 compose_f_gx_hx(logical_and<bool>(),
 bind2nd(greater<int>(),4),
 bind2nd(less<int>(),7)));

 //remove "removed" elements in coll
 coll.erase(pos,coll.end());

 PRINT_ELEMENTS(coll);
 }

The expression

 compose_f_gx_hx(logical_and<bool>(),
 bind2nd(greater<int>(),4),
 bind2nd(less<int>(),7))

yields a unary predicate that returns whether a value is greater than four and less than seven.
The program has the following output:

 1 2 3 4 5 6 7 8 9

The C++ Standard Library

dyne-book 277

 1 2 3 4 7 8 9

8.3.2 Binary Compose Function Object Adapters

One of the binary compose function object adapters processes the result of two unary operations
that use different elements as parameters. I use the name compose_f_gx_hy for this function
object adapter. Here is a possible implementation:

 // fo/compose22.hpp

 #include <functional>

 /*class for the compose_ f_gx_hy adapter
 */
 template <class 0P1, class 0P2, class 0P3>
 class compose_f_gx_hy_t
 : public std::binary_function<typename 0P2::argument_type,
 typename 0P3::argument_type,
 typename 0P1::result_type>
 {
 private:
 0P1 op1; //process: op1 (op2(x) ,op3(y))
 0P2 op2;
 0P3 op3;
 public:
 //constructor
 compose_f_gx_hy_t (const 0P1& o1, const 0P2& o2, const 0P3& o3)
 : op1(o1), op2(o2), op3(o3) {
 }

 //function call
 typename 0P1::result_type
 operator()(const typename 0P2::argument_type& x,
 const typename 0P3::argument_type& y) const {
 return op1(op2(x),op3(y));
 }
 };

 /*convenience function for the compose _f_gx_hy adapter
 */
 template <class 0P1, class OP2, class 0P3>
 inline compose.f_gx_hy_t<0Pl,0P2,0P3>
 compose_f_gx_hy (const 0P1& o1, const 0P2& o2, const 0P3& o3) {
 return compose_f_gx_hy_t<0Pl,0P2,0P3>(ol,o2,o3);
 }

The following example shows the use of compose_f _gx_hy. It searches for a substring in a
string in a case-insensitive way:

 // fo/compose3.cpp

The C++ Standard Library

dyne-book 278

 #include <iostream>
 #include <algorithm>
 #include <functional>
 #include <string>
 #include "compose22.hpp"
 using namespace std;

 int main()
 {
 string s("Internationalization");
 string sub("Nation");

 //search substring case insensitive
 string::iterator pos;
 pos = search (s .begin(), s. end(), //string to search in
 sub.begin() ,sub.end() , //substring to search
 compose_f _gx_hy(equal_to<int>(), //compar.
criterion
 ptr_fun(toupper),
 ptr_fun(toupper)));

 if (pos != s.end()) {
 cout << "\"" << sub << "\" is part of \"" << s << "\""
 << end1;
 }
 }

The program has the following output:

 "Nation" is part of "Internationalization"

On page 499 you will find an example program that searches a substring in a case-insensitive
way without using compose_f _gx_hy.

The C++ Standard Library

dyne-book 279

Chapter 9. STL Algorithms
This chapter describes all of the algorithms of the C++ standard library. It begins with an overview
of all algorithms and some general remarks about the algorithms. It then presents the exact
signature of each algorithm and one or more examples of its use.

9.1 Algorithm Header Files

To use the algorithms of the C++ standard library you must include the header file
<algorithm>[1] :

[1] In the original STL the header file for all algorithms was <algo.h>.

 #include <algorithm>

This header file also includes some auxiliary functions. min(), max(). and swap() were
presented in Section 4.4.1, and Section 4.4.2. The iter_swap() iterator function was
discussed in Section 7.3.3.
Some of the STL algorithms are provided for numeric processing. Thus, they are defined in
<numeric>[1]:

 #include <numeric>

In general, Chapter 12 discusses the numeric components of the C++ standard library.
However, I decided to discuss the numeric algorithms here because, in my opinion, the fact that
they are STL algorithms is more important than the fact that they are used for numeric
processing.
When you use algorithms, you often also need function objects and function adapters. These
were described in Chapter 8 and are defined in <functional>[2] :

[2] In the original STL the header file for function objects and function adapters was <function.h>

 #include <functional>

9.2 Algorithm Overview

This section presents an overview of all of the C++ standard library algorithms. From it you can
get an idea of their abilities and be better able to find the best algorithm to solve a certain
problem.

9.2.1 A Brief Introduction

Algorithms were introduced in Chapter 5 along with the STL. In particular, Section 5.4, and
Section 5.6, discuss the role of algorithms and some important constraints regarding their use.
All STL algorithms process one or more iterator ranges. The first range is usually specified by its

The C++ Standard Library

dyne-book 280

beginning and its end. For additional ranges, in most cases you need to pass only the beginning
because the end follows from the number of elements of the first range. The caller must ensure
that the ranges are valid. That is, the beginning must refer to a previous or the same element of
the same container as the end. Additional ranges must have enough elements.
Algorithms work in overwrite mode rather than in insert mode. Thus, the caller must ensure that
destination ranges have enough elements. You can use special insert iterators (see Section
7.4.2) to switch from overwrite to insert mode.
To increase their flexibility and power, several algorithms allow the user to pass user-defined
operations, which they call internally. These operations might be ordinary functions or function
objects. If these functions return a Boolean value they are called predicates. You can use
predicates for the following tasks:

• You can pass a function or function objects that specify a unary predicate as the search
criterion for a search algorithm. The unary predicate is used to check whether an element
fits the criterion. For example, you could search the first element that is less than 50.

• You can pass a function or function objects that specify a binary predicate as the sorting
criterion for a sort algorithm. The binary predicate is used to compare two elements. For
example, you could pass a criterion that lets objects that represent a person sort
according to their last name (see page 294 for an example).

• You can pass a unary predicate as the criterion that specifies for which elements an
operation should apply. For example, you could specify that only elements with an odd
value should be removed.

• You can specify the numeric operation of numeric algorithms. For example, you could
use accumulate(), which normally processes the sum of elements, to process the
product of all elements.

Note that predicates should not modify their state due to a function call (see Section 8.1.4).
See Section 5.8, Section 5.9, and Chapter 8 for examples and details about functions and
function objects that are used as algorithm parameters.

9.2.2 C1assification of Algorithms

Different algorithms meet different needs. Thus, they can be c1assified by their main purposes.
For example, some algorithms operate as read only, some modify elements, and some change
the order of elements. This subsection gives you a brief idea of the functionality of each algorithm
and in which aspect it differs from similar algorithms.
The name of an algorithm gives you a first impression of its purpose. The designers of the STL
introduced two special suffixes:

1. The _if suffix

The _if suffix is used when you can call two forms of an algorithm that have the same
number of parameters either by passing a value or by passing a function or function
object. In this case, the version without the suffix is used for values, and the version with
the _if suffix is used for functions and function objects. For example, find() searches
for an element that has a certain value, whereas find_if() searches for an element
that meets the criterion passed as a function or function object.

However, not all algorithms that have a parameter for functions and function objects have
the _if suffix. When the function or function object version of an algorithm has an
additional argument, it has the same name. For example, min_element() called with
two arguments returns the minimum element in the range according to a comparison with
operator <. If you pass a third element, it is used as comparison criterion.

The C++ Standard Library

dyne-book 281

2. The _copy suffix

The _copy suffix is used as an indication that elements are not only manipulated but also
copied into a destination range. For example, reverse() reverses the order of elements
inside a range, whereas reverse_copy() copies the elements into another range in
reverse order.

The following subsections and sections describe the algorithms according to the following
c1assification:

• Nonmodifying algorithms
• Modifying algorithms
• Removing algorithms
• Mutating algorithms
• Sorting algorithms
• Sorted range algorithms
• Numeric algorithms

If algorithms belong to more than one category I describe them in the category that I consider to
be the most important.

Nonmodifying Algorithms

Nonmodifying algorithms neither change the order nor the value of the elements they process.
They operate with input and forward iterators; therefore, you can call them for all standard
containers. Table 9.1 lists the nonmodifying algorithms of the C++ standard library. See page
330 for nonmodifying algorithms that are provided especially for sorted input ranges.

Table 9.1. Nonmodifying Algorithms
Name Effect Page

for_each() Performs an operation for each element 334
count() Returns the number of elements 338
count()_if() Returns the number of elements that match a criterion 338
min_element() Returns the element with the smallest value 340
max_element() Returns the element with the largest value 340
find() Searches for the first element with the passed value 341
find_if() Searches for the first element that matches a criterion 341
search_n() Searches for the first n consecutive elements with

certain properties
344

search() Searches for the first occurrence of a subrange 347
find_end() Searches for the last occurrence of a subrange 350
find_first_of() Searches the first of several possible elements 352
adjacent_find() Searches for two adjacent elements that are equal(by

some criterion)
354

equal() Returns whether two ranges are equal 356
mismatch() Returns the first elements of two sequences that differ 358
lexicographical_compare() Returns whether a range is lexicographically less than

another range
360

One of the most important algorithms is for_each(). for_each() calls an operation provided
by the caller for each element. That operation is usually used to process each element of the

The C++ Standard Library

dyne-book 282

range individually. For example, you can pass for_each() a function that prints each element.
However, for_each() can also call a modifying operation for the elements. So for_each()
can be used as both a nonmodifying and a modifying algorithm. However, you should avoid using
for_each() when possible, and use other algorithms to meet your needs because the other
algorithms are implemented specifically for that purpose.
Several of the nonmodifying algorithms perform searching. Unfortunately, the naming scheme of
searching algorithms is a mess. In addition, the naming schemes of searching algorithms and
searching string functions differ (Table 9.2). As is often the case, there are historical reasons for
this. First, the STL and string c1asses were designed independently. Second, the find_end(),
find_first_of(), and search_n() algorithms were not part of the original STL. So, for
example, by accident the name find_end() instead of search_end() was chosen (it is easy
to forget aspects of the whole picture, such as consistency, when you are caught up in the
details). Also by accident, a form of search_n() breaks the general concept of the original STL.
See page 346 for a description of this problem.

Table 9.2. Comparison of Searching String Operations and Algorithms
Search for String Function STL Algorithm

First occurrence of one element find() find()
Last occurrence of one element rfind() find() with reverse iterators
First occurrence of a subrange find() search()
Last occurrence of a subrange rfind() find_end()
First occurrence of several elements find_first_of() find_first_of()
Last occurrence of several elements find_last_of() find_ first_of() with reverse

iterators
First occurrence of n consecutive
Elements

 search_n()

Modifying Algorithms

Modifying algorithms change the value of elements. They might modify the elements of a range
directly or modify them while they are being copied into another range. If elements are copied into
a destination range, the source range is not changed. Table 9.3 lists the modifying algorithms of
the C++ standard library.
The fundamental modifying algorithms are for_each() (again) and transform(). You can
use both to modify elements of a sequence. However, their behavior differs as follows:

• for_each() accepts an operation that modifies its argument. Thus, the argument has to
be passed by reference. For example:

•
• void square (int& elem) // call-by-reference
• {
•
• elem = elem * elem; // assign processed value directly
• }
• ...
• for_each(coll.begin(),coll.end(), // range
• square) ; // opertion

• transform() uses an operation that returns the modified argument. The trick is that it
can be used to assign the result to the original element. For example:

The C++ Standard Library

dyne-book 283

•
• int square (int elem) // call-by-value
• {
•
• return elem * elem; // return processed value
• }
• ...
• transform (coll.begin(), coll.end(), // source range
• coll.begin(), // destination

range
• square); // operation

Table 9.3. Modifying Algorithms

Name Effect Page
for_each() Performs an operation for each element 334
copy() Copies a range starting with the first element 363
copy _backward() Copies a range starting with the last element 363
transform() Modifies (and copies) elements; combines elements of two ranges 367
merge() Merges two ranges 416
swap_ranges() Swaps elements of two ranges 370
fill() Replaces each element with a given value 372
fill_n() Replaces n elements with a given value 372
generate() Replaces each element with the result of an operation 373
generate_n() Replaces n elements with the result of an operation 373
replace() Replaces elements that have a special value with another value 375
replace()_if() Replaces elements that match a criterion with another value 375
replace_copy() Replaces elements that have a special value while copying the

whole range
376

replace_copy_if() Replaces elements that match a criterion while copying the whole
range

376

The approach of transform() is a bit slower because it returns and assigns the result instead
of modifying the element directly. However, it is more flexible because it can also be used to
modify elements while they are being copied into a different destination sequence, transform()
also has another version, one that can process and combine elements of two source ranges.
Strictly speaking, merge() does not necessarily have to be part of the list of modifying
algorithms. This is because it requires that its input ranges must be sorted. So it should be part of
the algorithms for sorted ranges (see page 330). However, in practice, merge() also merges the
elements of unsorted ranges. Of course, then the result is unsorted. Nevertheless, to be safe you
should call merge() only for sorted ranges.
Note that elements of associative algorithms are constant to ensure that you can't compromise
the sorted order of the elements due to an element modification. Therefore, you can't use
associative containers as a destination for modifying algorithms.
In addition to these modifying algorithms, the C++ standard library provides modifying algorithms
for sorted ranges. See page 330 for details.

Removing Algorithms

Removing algorithms are a special form of modifying algorithms. They can remove the elements
either in a single range or while they are being copied into another range. As with modifying

The C++ Standard Library

dyne-book 284

algorithms, you can't use an associative container as a destination because the elements of the
associative container are considered to be constant. Table 9.4 lists the removing algorithms of
the C++ standard library.

Table 9.4. Removing Algorithms
Name Effect Page

remove() Removes elements with a given value 378
remove_if() Removes elements that match a given criterion 378
remove_copy() Copies elements that do not match a given value 380
remove_copy()_if() Copies elements that do not match a given criterion 380
unique() Removes adjacent duplicates (elements that are equal to their

predecessor)
381

unique_copy() Copies elements while removing adjacent duplicates 384
Note that removing algorithms remove elements logically only by overwriting them with the
following elements that were not removed. Thus, they do not change the number of elements in
the ranges on which they operate. Instead, they return the position of the new "end" of the range.
It's up to the caller to use that new end, such as to remove the elements physically. See Section
5.6.1, for a detailed discussion of this behavior.

Mutating Algorithms

Mutating algorithms are algorithms that change the order of elements (and not their values) by
assigning and swapping their values. Table 9.5 lists the mutating algorithms of the C++ standard
library. As with modifying algorithms, you can't use an associative container as a destination
because the elements of the associative container are considered to be constant.

Table 9.5. Mutating Algorithms
Name Effect Page

reverse() Reverses the order of the elements 386
reverse_copy() Copies the elements while reversing their order 386
rotate() Rotates the order of the elements 388
rotate_copy() Copies the elements while rotating their order 389
next_permutation() Permutates the order of the elements 391
prev_permutation() Permutates the order of the elements 391
random_shuffle() Brings the elements into a random order 393
partition() Changes the order of the elements so that elements that match a

criterion are at the front
395

stable_partition() Same as partition() but preserves the relative order of
matching and nonmatching elements

395

Sorting Algorithms

Sorting algorithms are a special kind of mutating algorithm because they also change the order of
the elements. However, sorting is more complicated and therefore usually takes more time than
simple mutating operations. In fact, these algorithms usually have worse than linear complexity [3]
and require random access iterators (for the destination). Table 9.6 lists the sorting algorithms.

[3] See Section 2.3, for an introduction to and a discussion of complexity.

Table 9.6. Sorting Algorithms
Name Effect Page

The C++ Standard Library

dyne-book 285

sort() Sorts all elements 397
stable_sort() Sorts while preserving order of equal elements 397
partial_sort() Sorts until the first n elements are correct 400
partial_sort_copy() Copies elements in sorted order 402
nth_element() Sorts according to the nth position 404
partition() Changes the order of the elements so that elements that match a

criterion are at the front
395

stable_partition() Same as partition() but preserves the relative order of
matching and nonmatching elements

395

make_heap() Converts a range into a heap 406
push_heap() Adds an element to a heap 406
pop_heap() Removes an element from a heap 407
sort_heap() Sorts the heap (it is no longer a heap after the call) 407
Time often is critical for sorting algorithms. Therefore, the C++ standard library provides more
than one sorting algorithm. The algorithms use different ways of sorting, and some algorithms
don't sort all elements. For example, nth_element() stops when the nth element of the
sequence is correct according to the sorting criterion. For the other elements it guarantees only
that the previous elements have a lesser or equal value and that the following elements have a
greater or equal value. To sort all elements of a sequence, you should consider the following
algorithms:

• sort() is based historically on quicksort. Thus, it guarantees a good runtime (n * log(n)
complexity) on average but may have a very bad runtime (quadratic complexity) in the
worst case:

•
• /*sort all elements
• *-best n*log(n) complexity on average
• *-n*n complexity in worst case
• */
• sort (coll.begin(), coll.end());
•

So if avoiding the worst-case behavior is important, you should use another algorithm,
such as partial_sort() or stable_sort(), which are discussed next.

• partial_sort() is based historically on heapsort. Thus, it guarantees n*log(n)
complexity in any case. However, in most circumstances, heapsort is slower than
quicksort by a factor of two to five. So, provided sort() is implemented as quicksort and
partial_sort() is implemented as heapsort, partial_sort() has the better
complexity, but sort() has the better runtime in most cases. The advantage of
partial_sort() is that it guarantees n * log(n) complexity in any case, so it never
becomes quadratic complexity.

partial_sort() also has the special ability to stop sorting when only the first n
elements need to be sorted. To sort all the elements you have to pass the end of the
sequence as second and last argument:

The C++ Standard Library

dyne-book 286

 /*sort all elements
 *-always n*log(n) complexity
 *-but usually twice as long as sort()
 */
 partial_sort (coll.begin(), coll.end(), coll.end());

• stable_sort() is also based historically on heapsort. It sorts all the elements:
•
• /*sort all elements
• *-n*log(n) or n*log(n)*log(n) complexity
• */
• stable_sort (coll.begin(), coll.end());
•

However, it needs enough additional memory to have n * log(n) complexity. Otherwise, it
has n * log(n) * log(n) complexity. The advantage of stable_sort() is that it preserves
the order of equal elements.

Now you have a brief idea of which sorting algorithm might best meet your needs. But the story
doesn't end here. The standard guarantees complexity, but not how it is implemented. This is an
advantage in that an implementation could benefit from algorithm innovations and use a better
way of sorting without breaking the standard. For example, the sort() algorithm in the SGI
implementation of the STL is implemented by using introsort. Introsort is a new algorithm that, by
default, operates like quicksort, but switches to heapsort when it is going to have quadratic
complexity. The disadvantage of the fact that the standard does not guarantee exact complexity
is that an implementation could use a standard-conforming but very bad algorithm. For example,
using heapsort to implement sort() would be standard conforming. Of course, you simply could
test which algorithm fits best, but be aware that measurements might not be portable.
There are even more algorithms to sort elements. For example, the heap algorithms are provided
to call the functions that implement a heap directly (a heap is a binary tree, which is used
internally by heapsort). The heap algorithms are provided and used as the base for efficient
implementations of priority queues (see Section 10.3). You can use them to sort all elements of
a collection by calling them as follows:

 /*sort all elements
 *-n+n*log(n) complexity
 */
 make_heap (coll.begin(), coll.end());
 sort_heap (coll.begin(), coll.end());

See Section 9.9.4, for details about heaps and heap algorithms.
The nth_element() algorithms are provided if you need only the nth sorted element or the set
of the n highest or n lowest elements (not sorted). Thus, nth_element() is a way to split
elements into two subsets according to a sorting criterion. However, you could also use
partition() or stable_partition() to do this. The difference is as follows:

• For nth_element() you pass the number of elements you want to have in the first part
(and therefore also in the second part). For example:

•

The C++ Standard Library

dyne-book 287

• // move the four lowest elements to the front
• nth_element (coll.begin(), // beginning of range
• coll.begin()+3, // position between

first and second part
• coll.end()) ; // end of range
•

However, after the call you don't know the exact criterion that is the difference between
the first and the second parts. Both parts may, in fact, have elements with the same value
as the nth element.

• For partition() you pass the exact sorting criterion that serves as the difference
between the first and the second parts:

•
• // move all elements less than seven to the front
• vector<int>::iterator pos;
• pos = partition (coll1.begin(), coll1.end(), // range
• bind2nd(less<int>(),7)); //

criterion
•

Here, after the call, you don't know how many elements are owned by the first and the
second parts. The return value pos refers to the first element of the second part that
contains all elements that don't match the criterion, if any.

• stable_partition() behaves similarly to partition(), with an additional ability. It
guarantees that the order of the elements in both parts remains stable according to their
relative positions to the other elements in the same part.

You can always pass the sorting criterion to all sorting algorithms as an optional argument. The
default sorting argument is the function object less<>, so that elements are sorted in ascending
order of their values.
As with modifying algorithms, you can't use an associative container as a destination because the
elements of the associative containers are considered to be constant.
Lists do not provide random access iterators, so you can't call sorting algorithms for them either.
However, lists provide a member function sort() to sort their elements; see page 245.

Sorted Range Algorithms

Sorted range algorithms require that the ranges on which they operate are sorted according to
their sorting criterion. Table 9.7 lists all algorithms of the C++ standard library that are especially
written for sorted ranges. Like associative containers, these algorithms have the advantage of a
better complexity.

Table 9.7. Algorithms for Sorted Ranges
Name Effect Page

The C++ Standard Library

dyne-book 288

binary_search() Returns whether the range contains an element 410
includes() Returns whether each element of a range is also an

element of another range
411

lower_bound() Finds the first element greater than or equal to a given
value

413

upper _bound() Finds the first element greater than a given value 413
equal_range() Returns the range of elements equal to a given value 415
merge() Merges the elements of two ranges 416
set_union() Processes the sorted union of two ranges 418
set.intersection() Processes the sorted intersection of two ranges 419
set_difference() Processes a sorted range that contains all elements of

a range that are not part of another
420

set_symmetric_difference() Processes a sorted range that contains all elements
that are in exactly one of two ranges

421

inplace_merge() Merges two consecutive sorted ranges 423
The first five sorted range algorithms in Table 9.7 are nonmodifying because they search only
according to their purpose. The other algorithms combine two sorted input ranges and write the
result to a destination range. In general, the result of these algorithms is also sorted.

Numeric Algorithms

These algorithms combine numeric elements in different ways. Table 9.8 lists the numeric
algorithms of the C++ standard library. If you understand the names, you get an idea of the
purpose of the algorithms. However, these algorithms are more flexible and more powerful than
they may seem at first. For example, by default, accumulate() processes the sum of all
elements. When you use strings as elements, you concatenate them using this algorithm. When
you switch from operator + to operator *, you get the product of all elements. As another
example, you should know that adjacent_difference() and partial_sum() transfer a
range of absolute values into a range of relative values and vice versa.
accumulate() and inner_product() process and return a single value without modifying the
ranges. The other algorithms write the results to a destination range that has the same number of
elements as the source range.

Table 9.8. Numeric Algorithms
Name Effect Page

accumulate() Combines all element values (processes sum, product, and so
forth)

425

inner_product() Combines all elements of two ranges 427
adjacent_difference() Combines each element with its predecessor 431
partial_sum() Combines each element with all of its predecessors 429

9.3 Auxiliary Functions

The rest of this chapter discusses the algorithms in detail. It includes at least one example of
each algorithm. To simplify the examples, I use some auxiliary functions so that you can
concentrate on the essence of the examples:

 // algo/algostuff.hpp

 #ifndef ALGOSTUFF_HPP
 #define ALGOSTUFF_HPP

The C++ Standard Library

dyne-book 289

 #include <iostream>
 #include <vector>
 #include <deque>
 #include <list>
 #include <set>
 #include <map>
 #include <string>
 #include <algorithm>
 #include <functional>
 #include <numeric>

 /*PRINT_ELEMENTS()
 *-prints optional C-string optcstr followed by
 *-all elements of the collection coll
 *-separated by spaces
 */
 template <c1ass T>
 inline void PRINT_ELEMENTS (const T& coll, const char* optcstr="")
 {
 typename T::const_iterator pos;
 std::cout << optcstr;
 for (pos=coll.begin(); pos!=coll.end(); ++pos) {
 std::cout << *pos << ' ';
 }
 std::cout << std::endl;
 }

 /*INSERT_ELEMENTS (collection, first, last)
 *-fill values from first to last into the collection
 *-NOTE: NO half-open range
 */
 template <c1ass T>
 inline void INSERT_ELEMENTS (T& coll, int first, int last)
 {
 for (int i=first; i<=last; ++i) {
 coll.insert(coll.end(),i);
 }
 }

 #endif /*ALGOSTUFF_HPP*/

First, algostuff.hpp includes all header files that may be necessary to implement the
examples, thus the program doesn't have to do it. Second, it defines two auxiliary functions:

1. PRINT_ELEMENTS() prints all elements of the container that is passed as the first
argument separated by spaces. You can pass a second argument optionally for a string
that is used as a prefix in front of the elements (see page 118).

2. INSERT_ELEMENTS() inserts elements into the container that is passed as the first
argument. These elements get the values from the value passed as the second argument
up to the value passed as the third argument. Both argument values are included (so this
is not a half-open range).

The C++ Standard Library

dyne-book 290

9.4 The for_each() Algorithm

The for_each() algorithm is very flexible because it allows you to access, process, and modify
each element in many different ways.
UnaryProc
for_each (InputIterator beg, InputIterator end, UnaryProc op)

• Calls

op (elem)

for each element in the range [beg,end).

• Returns a copy of the (internally modified) op.
• op might modify the elements. However, see page 325 for a comparison with the

transform() algorithm, which is able to do the same thing in a slightly different way.
• Any return value of op is ignored.
• See page 126 for the implementation of the for_each() algorithm.
• Complexity: linear (numberOfElements calls of op()).

The following example of for_each() calls the print() function, which is passed as the
operation for each element. Thus, the call prints each element:

 // algo/foreach1.cpp

 #include "algostuff.hpp"
 using namespace std;

 // function called for each element
 void print (int elem)
 {
 cout << elem << ' ';
 }

 int main()
 {

 vector<int> coll;

 INSERT_ELEMENTS(coll,1,9);

 // call print() for each element
 for_each (coll.begin(), coll.end(), // range
 print); // operation
 cout << endl;
 }

The program has the following output:

The C++ Standard Library

dyne-book 291

 1 2 3 4 5 6 7 8 9

To call a member function of the elements you can use the mem_fun adapters. See Section
8.2.2, for details and an example.
The following example demonstrates how to modify each element using a function object:

 // algo/foreach2.cpp

 #include "algostuff.hpp"
 using namespace std;

 // function object that adds the value with which it is initialized
 template <c1ass T>
 c1ass AddValue {
 private:
 T theValue; // value to add
 public:
 // constructor initializes the value to add
 AddValue (const T& v) : theValue(v) {
 }

 // the function call for the element adds the value
 void operator() (T& elem) const {
 elem += theValue;
 }
 };

 int main()
 {

 vector<int> coll;

 INSERT_ELEMENTS(coll,1,9);

 // add ten to each element
 for_each (coll.begin(), coll.end(), // range
 AddValue<int>(10)); // operation
 PRINT_ELEMENTS(coll);

 // add value of first element to each element
 for_each (coll.begin(), coll.end(), // range
 AddValue<int>(*coll.begin())); // operation
 PRINT_ELEMENTS(coll);
 }

The AddValue<> c1ass defines function objects that add a value to each element that is passed
to the constructor. Using the function object has the advantage that you can process the added
value at runtime. The program has the following output:

 11 12 13 14 15 16 17 18 19
 22 23 24 25 26 27 28 29 30

The C++ Standard Library

dyne-book 292

See page 128 for more details regarding this example. Note also that you can do the same by
using the transform() algorithm (see page 367) in the following way:

 transform (coll.begin(), coll.end(), // source range
 coll.begin(), // destination
range
 bind2nd(plus<int>(), 10)); // operation

 ...
 transform (coll.begin(), coll.end(), // source range
 coll.begin(), // destination
range
 bind2nd(plus<int>(),*coll.begin())); // operation

See page 325 for a general comparison between for_each() and transform().
A third example demonstrates how to use the return value of the for_each() algorithm.
Because for_each() has the special property that it returns its operation, you can process and
return a result inside the operation:

 // algo/foreach3.cpp

 #include "algostuff.hpp"
 using namespace std;

 // function object to process the mean value
 c1ass MeanValue {
 private:
 long num; // number of elements
 long sum; // sum of all element values
 public:
 // constructor
 MeanValue () : num(0), sum(0) {
 }

 // function call
 // - process one more element of the sequence
 void operator() (int elem) {
 num++; // increment count
 sum += elem; // add value
 }

 // return mean value (implicit type conversion)
 operator double() {
 return static_cast<double>(sum) / static_cast<double>(num);
 }

 };

 int main()
 {

 vector<int> coll;

 INSERT_ELEMENTS(coll,1,8);

The C++ Standard Library

dyne-book 293

 // process and print mean value
 double mv = for_each (coll.begin(), coll.end(), // range
 MeanValue()); // operation
 cout << "mean value: " << mv << endl;
 }

The program has the following output:

 mean value: 4.5

This example, in a slightly different form, is discussed in detail on page 300.

9.5 Nonmodifying Algorithms

The algorithms presented in this section enable you to access elements without modifying their
values or changing their order.

9.5.1 Counting Elements

difference _type
count (InputIterator beg, InputIterator end, const T& value)
difference _type
count_if (InputIterator beg, InputIterator end, UnaryPredicate op)

• The first form counts the elements in the range [beg,end) that are equal to value value.
• The second form counts the elements in the range [beg,end) for which the unary

predicate

op (elem)

yields true.

• The type of the return value, difference_type, is the difference type of the iterator:
•
• typename iterator_traits<lnputIterator>::difference_type
•

(Section 7.5, introduces iterator traits.)[4]

[4] In the original STL the count() and count_if() had a fourth input/output parameter that
was used as a counter and the return type was void.

• Note that op should not change its state during a function call. See Section 8.1.4, for
details.

• op should not modify the passed arguments.
• Associative containers (sets, multisets, maps, and multimaps) provide a similar member

function, count(), to count the number of elements that have a certain value as key
(see page 234).

• Complexity: linear (numberOfElements comparisons or calls of op() respectively).

The C++ Standard Library

dyne-book 294

The following example counts elements according to different criteria:

 // algo/count1.cpp

 #include "algostuff.hpp"
 using namespace std;

 bool isEven (int elem)
 {

 return elem % 2 == 0;
 }

 int main()
 {

 vector<int> coll;
 int num;

 INSERT_ELEMENTS(coll,1,9);
 PRINT_ELEMENTS(coll,"coll: ");

 // count and print elements with value 4
 num = count (coll.begin(), coll.end(), // range
 4); // value
 cout << "number of elements equal to 4: " << num <<
endl;

 // count elements with even value
 num = count_if (coll.begin(), coll.end(), // range
 isEven); // criterion
 cout << "number of elements with even value: " num << endl;

 // count elements that are greater than value 4
 num = count_if (coll.begin(), coll.end(), // range
 bind2nd(greater<int>(),4)); // criterion
 cout << "number of elements greater than 4: " << num <<
endl;
 }

The program has the following output:

 coll: 1 2 3 4 5 6 7 8 9
 number of elements equal to 4: 1
 number of elements with even value: 4
 number of elements greater than 4: 5

Instead of using the self-written isEven() function, you could use the following expression:

 not1(bind2nd(modulus<int>(),2))

See page 306 for more details regarding this expression.

The C++ Standard Library

dyne-book 295

9.5.2 Minimum and Maximum

InputIterator
min_element (InputIterator beg, InputIterator end)
InputIterator
min_element (InputIterator beg, InputIterator end, CompFunc op)
InputIterator
max_element (InputIterator beg, InputIterator end)
InputIterator
max_element (InputIterator beg, InputIterator end, CompFunc op)

• All algorithms return the position of the minimum or maximum element in the range
[beg,end).

• The versions without op compare the elements with operator <.
• op is used to compare two elements:

op(elem1 ,elem2)

It should return true when the first element is less than the second element.

• If more than one minimum or maximum element exists, they return the first found.
• op should not modify the passed arguments.
• Complexity: linear (numberOfElements-1 comparisons or calls of op() respectively).

The following program prints the minimum and the maximum of the elements in coll and, by
using absLess(), prints the minimum and the maximum of the absolute values:

 // algo/minmax1.cpp

 #include <cstdlib>
 #include "algostuff.hpp"
 using namespace std;

 bool absLess (int elem1, int elem2)
 {

 return abs(elem1) < abs (elem2);
 }

 int main()
 {

 deque<int> coll;

 INSERT_ELEMENTS(coll,2,8);
 INSERT_ELEMENTS(coll,-3,5);

 PRINT_ELEMENTS(coll);

 // process and print minimum and maximum
 cout << "minimum: "
 << *min_element(coll.begin(),coll.end())
 << endl;
 cout << "maximum: "

The C++ Standard Library

dyne-book 296

 << *max_element(coll.begin(),coll.end())
 << endl;

 // process and print minimum and maximum of absolute values
 cout << "minimum of absolute values: "
 << *min_element(coll.begin(),coll.end(),
 absLess)
 << endl;
 cout << "maximum of absolute values: "
 << *max_element(coll.begin(),coll.end(),
 absLess)
 << endl;
 }

The program has the following output:

 2 3 4 5 6 7 8 -3 -2 -1 0 1 2 3 4 5
 minimum: -3
 maximum: 8
 minimum of absolute values: 0
 maximum of absolute values: 8

Note that the algorithms return the, position of the maximum or minimum element respectively.
Thus, you must use the unary operator * to print their values.

9.5.3 Searching Elements

Search First Matching Element

InputIterator
find (InputIterator beg, InputIterator end, const T& value)
InputIterator
find_if (InputIterator beg, InputIterator end, UnaryPredicate op)

• The first form returns the position of the first element in the range [beg,end) that has a
value equal to value.

• The second form returns the position of the first element in the range [beg,end) for which
the unary predicate

op(elem)

yields true.

• Both forms return end if no matching elements are found.
• Note that op should not change its state during a function call. See Section 8.1.4, for

details.
• op should not modify the passed arguments.
• If the range is sorted, you should use the lower_bound(), upper_bound(),

equal_range(), or binary_search() algorithms (see Section 9.10).

The C++ Standard Library

dyne-book 297

• Associative containers (sets, multisets, maps, and multimaps) provide an equivalent
member function, find(), that has logarithmic instead of linear complexity (see page
235).

• Complexity: linear (at most, numberOfElements comparisons or calls of op()
respectively).

The following example demonstrates how to use find() to find a subrange starting with the first
element with value 4 and ending after the second 4, if any:

 // algo/find1.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()
 {

 list<int> coll;

 INSERT_ELEMENTS(coll,1,9);
 INSERT_ELEMENTS(coll,1,9);

 PRINT_ELEMENTS(coll,"coll: ");

 // find first element with value 4
 list<int>::iterator pos1;
 pos1 = find (coll.begin(), coll.end(), // range
 4); // value

 /*find second element with value 4
 *- note: continue the search behind the first 4 (if any)
 */
 list<int>::iterator pos2;
 if (pos1 != coll.end()) {
 pos2 = find (++pos1, coll.end(), // range
 4); // value
 }

 /*print all elements from first to second 4 (both included)
 *- note: now we need the position of the first 4 again (if any)
 *- note: we have to pass the position behind the second 4 (if
any)
 */
 if (pos1!=coll.end() && pos2!=coll.end()) {
 copy (--pos1, ++pos2,
 ostream_iterator<int>(cout," "));
 cout << endl;
 }
 }

To find the second 4 you must increment the position of the first 4. However, incrementing the
end() of a collection results in undefined behavior. Thus, if you are not sure, you should check
the return value of find() before you increment it. The program has the following output:

 coll: 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

The C++ Standard Library

dyne-book 298

 4 5 6 7 8 9 1 2 3 4

You can call find() twice for the same range but with two different values. However, you have
to be careful to use the results as the beginning and the end of a subrange of elements;
otherwise, the subrange might not be valid. See page 97 for a discussion of possible problems
and for an example.
The following example demonstrates how to use find_if() to find elements according to very
different search criteria:

 // algo/find2.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()
 {

 vector<int> coll;
 vector<int>::iterator pos;

 INSERT_ELEMENTS(coll,1,9);

 PRINT_ELEMENTS(coll,"coll: ");

 // find first element greater than 3
 pos = find_if (coll.begin(), coll.end(), // range
 bind2nd(greater<int>(),3)); // criterion

 // print its position

 cout << "the "
 << distance(coll.begin(),pos) + 1
 << ". element is the first greater than 3" << endl;

 // find first element divisible by 3
 pos = find_if (coll.begin(), coll.end(),
 not1(bind2nd(modulus<int>(),3)));

 // print its position
 cout << "the "
 << distance(coll.begin(),pos) + 1
 << ". element is the first divisible by 3" << endl;
 }

The first call of find() uses a simple function object combined with the bind2nd adapter to
search for the first element that is greater than 3. The second call uses a more complicated
combination to find the first element that is divisible by 3 without rest.
The program has the following output:

 coll: 1 2 3 4 5 6 7 8 9
 the 4. element is the first greater than 3
 the 3. element is the first divisible by 3

The C++ Standard Library

dyne-book 299

See page 121 for an example that lets find() find the first prime number.

Search First n Matching Consecutive Elements

InputIterator
search_n (InputIterator beg, InputIterator end, Size count, const T& value)
InputIterator
search_n (InputIterator beg, InputIterator end, Size count, const T& value,
BinaryPredicate op)

• The first form returns the position of the first of count consecutive elements in the range
[beg,end) that all have a value equal to value.

• The second form returns the position of the first of count consecutive elements in the
range [beg,end) for which the binary predicate

op(elem, value)

yields true.

• Both forms return end if no matching elements are found.
• Note that op should not change its state during a function call. See Section 8.1.4, for

details.
• op should not modify the passed arguments.
• These algorithms were not part of the original STL and were not introduced very

carefully.

The fact that the second form uses a binary predicate instead of a unary predicate breaks
the consistency of the original STL. See the remarks on page 346.

• Complexity: linear (at most, numberOfElements*count comparisons or calls of op()
respectively).

The following example searches for three consecutive elements that have a value equal to or
greater than 3:

 // algo/searchn1.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()
 {

 deque<int> coll;

 INSERT_ELEMENTS(coll,1,9);
 PRINT_ELEMENTS(coll);

 // find three consecutive elements with value 4
 deque<int>::iterator pos;
 pos = search_n (coll.begin(), coll.end(), // range
 4, // count
 3); // value

The C++ Standard Library

dyne-book 300

 // print result
 if (pos != coll.end()) {
 cout << "four consecutive elements with value 3 "
 << "start with " << distance(coll.begin(),pos) +1
 << ". element" << endl;
 }
 else {
 cout << "no four consecutive elements with value 3 found"
 << endl;
 }

 // find three consecutive elements with value greater than 4
 pos = search_n (coll.begin(), coll.end(), //
range
 4, //
count
 3, //
value
 greater<int>()); //
criterion

 // print result
 if (pos != coll.end()) {
 cout << "four consecutive elements with value > 3 "
 << "start with " << distance(coll.begin(),pos) +1
 << ". element" << endl;

 }
 else {
 cout << "no four consecutive elements with value > 3 found"
 << endl;
 }
 }

The program has the following output:

 1 2 3 4 5 6 7 8 9
 no four consecutive elements with value 3 found
 four consecutive elements with value > 3 start with 4. element

There is a nasty problem with the second form of search_n(). Consider the second call of
search_n():

 pos = search_n (coll.begin(), coll.end(), // range
 4, // count
 3, // value
 greater<int>()); // criterion

This kind of searching for elements that matches a special criterion does not conform with the
rest of the STL. Following the usual concepts of the STL, the call should be as follows:

 pos = search_n_if (coll.begin(), coll.end(), // range
 4, // count

The C++ Standard Library

dyne-book 301

 bind2nd(greater<int>(),3)); // criterion

Unfortunately, nobody noticed this inconsistency when these new algorithms were introduced to
the standard (they were not part of the original STL). You might argue that the version with four
arguments is more convenient. However, it requires a binary predicate even if you only need a
unary predicate. For example, to use a self-written unary predicate function, normally you would
write:

 bool isPrime (int elem);
 ...
 pos = search_n_if (coll.begin(), coll.end(), // range
 4, // count
 isPrime); //criterion

However, with the actual definition you must use a binary predicate. So, either you change the
signature of your function or you write a simple wrapper:

 bool binaryIsPrime (int elem1, int) {
 return isPrime(elem1);
 }
 ...
 pos = search_n (coll.begin(), coll.end(), // range
 4, // count
 0, // required dummy
value
 binaryIsPrime); // binary criterion

Search First Subrange

ForwardIterator1
search (ForwardIterator1 beg, ForwardIterator1 end, ForwardIterator2
searchBeg, ForwardIterator2 searchEnd)
ForwardIterator1
search (ForwardIterator1 beg, ForwardIterator1 end, ForwardIterator2
searchBeg, ForwardIterator2 searchEnd, BinaryPredicate op)

• Both forms return the position of the first element of the first subrange matching the range
[searchBeg,searchEnd) in the range [beg,end).

• In the first form the elements of the subrange have to be equal to the elements of the
whole range.

• In the second form for every comparison between elements, the call of the binary
predicate

op (elem, searchElem)

has to yield true.

• Both forms return end if no matching elements are found.
• Note that op should not change its state during a function call. See Section 8.1.4, for

details.

The C++ Standard Library

dyne-book 302

• op should not modify the passed arguments.
• See page 97 for a discussion of how to find a subrange for which you know only the first

and the last elements.
• Complexity: linear (at most, numberOfElements*numberOfSearchElements comparisons

or calls of op() respectively).

The following example demonstrates how to find a sequence as the first subrange of another
sequence (compare with the example of find_end() on page 351):

 // algo/search1.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()
 {

 deque<int> coll;
 list<int> subcoll;

 INSERT_ELEMENTS(coll,1,7);
 INSERT.ELEMENTS(coll,1,7);

 INSERT_ELEMENTS(subcoll,3,6);

 PRINT_ELEMENTS(coll, "coll: ");
 PRINT_ELEMENTS(subcoll,"subcoll: ");

 // search first occurrence of subcoll in coll
 deque<int>::iterator pos;
 pos = search (coll.begin(), coll.end(), // range
 subcoll.begin(), subcoll.end()); //subrange

 // loop while subcoll found as subrange of coll
 while (pos != coll.end()) {
 // print position of first element
 cout << "subcoll found starting with element "
 << distance (coll.begin(),pos) + 1
 << endl;

 // search next occurrence of subcoll
 ++pos;
 pos = search (pos, coll.end(), // range
 subcoll.begin(), subcoll.end()); // subrange
 }
 }

The program has the following output:

 coll: 1 2 3 4 5 6 7 1 2 3 4 5 6 7
 subcoll: 3 4 5 6
 subcoll found starting with element 3
 subcoll found starting with element 10

The C++ Standard Library

dyne-book 303

The next example demonstrates how to use the second form of the search() algorithm to find a
subsequence that matches a more complicated criterion. Here, the subsequence even, odd, and
even value is searched:

 // algo/search2.cpp

 #include "algostuff.hpp"
 using namespace std;

 // checks whether an element is even or odd
 bool checkEven (int elem, bool even)
 {

 if (even) {
 return elem % 2 == 0;
 }
 else {
 return elem % 2 == 1;
 }
 }

 int main()
 {

 vector<int> coll;

 INSERT_ELEMENTS(coll,1,9);
 PRINT_ELEMENTS(coll,"coll: ");

 /* arguments for checkEven()
 * - check for: "even odd even"
 */
 bool checkEvenArgs[3] = { true, false, true };

 // search first subrange in coll
 vector<int>::iterator pos;
 pos = search (coll.begin(), coll.end(), // range
 checkEvenArgs, checkEvenArgs+3, // subrange values
 checkEven); // subrange
criterion

 // loop while subrange found
 while (pos != coll.end()) {
 // print position of first element
 cout << "subrange found starting with element "
 << distance(coll.begin(),pos) + 1
 << endl;

 // search next subrange in coll
 pos = search (++pos, coll.end(), // range
 checkEvenArgs, checkEvenArgs+3, // subr.
values
 checkEven); // subr.
criterion
 }
 }

The C++ Standard Library

dyne-book 304

The program has the following output:

 coll: 1 2 3 4 5 6 7 8 9
 subrange found starting with element 2
 subrange found starting with element 4
 subrange found starting with element 6

Search Last Subrange

ForwardIterator
find_end (ForwardIterator beg, ForwardIterator end, ForwardIterator searchBeg,
ForwardIterator searchEnd)
ForwardIterator
find_end (ForwardIterator beg, ForwardIterator end, ForwardIterator searchBeg,
ForwardIterator searchEnd, BinaryPredicate op)

• Both forms return the position of the first element of the last subrange matching the range
[saarchBeg,searchEnd) in the range [beg,end).

• In the first form the elements of the subrange have to be equal to the elements of the
whole range.

• In the second form, for every comparison between elements, the call of the binary
predicate

op(elem,searchElem)

has to yield true.

• Both forms return end if no matching elements are found.
• Note that op should not change its state during a function call. See Section 8.1.4, for

details.
• op should not modify the passed arguments.
• See page 97 for a discussion of how to find a subrange for which you only know the first

and the last elements.
• These algorithms were not part of the original STL. Unfortunately they were called

find_end() instead of search_end(), which would be more consistent, because the
algorithm used to search the first subrange is called search().

• Complexity: linear (at most, numberOfElements*numberOfSearchElements comparisons
or calls of op() respectively).

The following example demonstrates how to find a sequence as the last subrange of another
sequence (compare with the example of search() on page 348):

 // algo/findend1.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()
 {

The C++ Standard Library

dyne-book 305

 deque<int> coll;
 list<int> subcoll;

 INSERT_ELEMENTS(coll,1,7);
 INSERT_ELEMENTS(coll,1,7);

 INSERT_ELEMENTS(subcoll,3,6);

 PRINT_ELEMENTS(coll, "coll: ");
 PRINT_ELEMENTS(subcoll,"subcoll: ");

 // search last occurrence of subcoll in coll
 deque<int>::iterator pos;
 pos = find_end (coll.begin(), coll.end(), // range
 subcoll.begin(), subcoll.end()); // subrange

 // loop while subcoll found as subrange of coll
 deque<int>::iterator end(coll.end());
 while (pos != end) {
 // print position of first element
 cout << "subcoll found starting with element "
 << distance(coll.begin(),pos) + 1
 << endl;

 // search next occurrence of subcoll
 end = pos;
 pos = find_end (coll.begin(), end, // range
 subcoll.begin(), subcoll.end()); //
subrange
 }
 }

The program has the following output:

 coll: 1 2 3 4 5 6 7 1 2 3 4 5 6 7
 subcoll: 3 4 5 6
 subcoll found starting with element 10
 subcoll found starting with element 3

For the second form of this algorithm, see the second example of search() on page 349. You
can use find_end() in a similar manner.

Search First of Several Possible Elements

ForwardIterator
find_first_of (ForwardIterator1 beg, ForwardIterator1 end, ForwardIterator2
searchBeg, ForwardIterator2 searchEnd)
ForwardIterator
find_first_of (ForwardIterator1 beg, ForwardIterator1 end, ForwardIterator2
searchBeg, ForwardIterator2 searchEnd, BinaryPredicate op)

• The first form returns the position of the first element in the range [beg,end) that is also in
the range [searchBeg,searchEnd).

The C++ Standard Library

dyne-book 306

• The second form returns the position of the first element in the range [beg,end) for which
any call with all elements of [searchBeg,searchEnd)

op (elem,searchElem)

yields true.

• Both forms return end if no matching elements are found.
• Note that op should not change its state during a function call. See Section 8.1.4, for

details.
• op should not modify the passed arguments.
• By using reverse iterators, you can find the last of several possible values.
• These algorithms were not part of the original STL.
• Complexity: linear (at most, numberOfElements comparisons or calls of op()

respectively).

The following example demonstrates the use of find_first_of():

 // algo/findof1.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()
 {

 vector<int> coll;
 list<int> searchcoll;

 INSERT_ELEMENTS(coll,1,11);
 INSERT_ELEMENTS(searchcoll,3,5);

 PRINT_ELEMENTS(coll, "coll: ");
 PRINT_ELEMENTS(searchcoll,"searchcoll: ");

 // search first occurrence of an element of searchcoll in coll
 vector<int>::iterator pos;
 pos = find_first_of (coll.begin(), coll.end(), // range
 searchcoll.begin(), // beginning of search
set
 searchcoll.end()); // end of search set
 cout << "first element of searchcoll in coll is element "
 << distance(coll.begin(),pos) + 1
 << endl;

 // search last occurrence of an element of searchcoll in coll
 vector<int>::reverse_iterator rpos;
 rpos = find_first_of (coll.rbegin(), coll.rend(), // range
 searchcoll.begin(), // beginning of
search set
 searchcoll.end()); // end of search set
 cout << "last element of searchcoll in coll is element "
 << distance (coll.begin(),rpos.base())
 << endl;
 }

The C++ Standard Library

dyne-book 307

The second call uses reverse iterators to find the last element that has a value equal to one
element in searchcoll. To print the position of the element, base() is called to transform the
reverse iterator into an iterator. Thus, you can process the distance from the beginning. Normally
you would have to add 1 to the result of distance() because the first element has distance 0
but actually is element 1. However, because base() moves the position of the value to which it
refers, you have the same effect (see Section 7.4.1, for the description of base()).
The program has the following output:

 coll: 1 2 3 4 5 6 7 8 9 10 11
 searchcoll: 3 4 5
 first element of searchcoll in coll is element 3
 last element of searchcoll in coll is element 5

Search Two Adjacent, Equal Elements

InputIterator
adjacent_find (InputIterator beg, InputIterator end)
InputIterator
adjacent_find_if (InputIterator beg, InputIterator end, BinaryPredicate op)

• The first algorithm returns the first element in the range [beg,end) that has a value equal
to the value of the following element.

• The second algorithm returns the first element in the range [beg,end) for which the binary
predicate

op(elem,nextElem)

yields true.

• Both algorithms return end if no matching elements are found.
• Note that op should not change its state during a function call. See Section 8.1.4, for

details.
• op should not modify the passed arguments.
• Complexity: linear (at most, numberOfElements comparisons or calls of op()

respectively).

The following program demonstrates both forms of adjacent_find():

 // algo/adjfindl.cpp

 #include "algostuff.hpp"
 using namespace std;

 // return whether the second object has double the value of the
first
 bool doubled (int elem1, int elem2)
 {
 return elem1 * 2 == elem2;
 }

The C++ Standard Library

dyne-book 308

 int main()
 {

 vector<int> coll;

 coll.push_back(l);
 coll.push_back(3);
 coll.push_back(2);
 coll.push_back(4);
 coll.push_back(5);
 coll.push_back(5);
 coll.push_back(0);

 PRINT_ELEMENTS(coll,"coll: ");

 // search first two elements with equal value
 vector<int>::iterator pos;
 pos = adjacent_find (coll.begin(), coll.end());

 if (pos != coll.end()) {
 cout << "first two elements with equal value have position "
 << distance(coll.begin(),pos) + 1
 << endl;
 }

 //search first two elements for which the second has double the
value of the first
 pos = adjacent_find (coll.begin(), coll.end(), // range
 doubled); // criterion

 if (pos != coll.end()) {
 cout << "first two elements with second value twice the "
 << "first have pos. "
 << distance (coll.begin(),pos) + 1
 << endl;
 }
 }

The first call of adjacent_find() searches for equal values. The second form uses
doubled() to find the first element for which the successor has the double value. The program
has the following output:

 coll: 1 3 2 4 5 5 0
 first two elements with equal value have position 5
 first two elements with second value twice the first have pos. 3

9.5.4 Comparing Ranges

Testing Equality

bool
equal (InputIterator1 beg, InputIterator1 end, InputIterator2 cmpBeg)

The C++ Standard Library

dyne-book 309

bool
equal (InputIterator1 beg, InputIterator1 end, InputIterator2 cmpBeg,
BinaryPredicate op)

• The first form returns whether the elements in the range [beg,end) are equal to the
elements in the range starting with cmpBeg.

• The second form returns whether each call of the binary predicate

op (elem, cmpElem)

with the corresponding elements in the range [beg,end) and in the range starting with
cmpBeg yields true.

• Note that op should not change its state during a function call. See Section 8.1.4, for
details.

• op should not modify the passed arguments.
• The caller must ensure that the range starting with cmpBeg contains enough elements.
• To determine the differences when the sequences are not equal, you should use the

mismatch() algorithm (see page 358).
• Complexity: linear (at most, numberOfElements comparisons or calls of op()

respectively).

The following example demonstrates both forms of equal(). The first call checks whether the
elements have values with equal elements. The second call uses an auxiliary predicate function
to check whether the elements of both collections have corresponding even and odd elements:

 // algo/equal1.cpp

 #include "algostuff.hpp"
 using namespace std;
 bool bothEvenOrOdd (int elem1, int elem2)
 {
 return elem1 % 2 == elem2 % 2;
 }

 int main()
 {

 vector<int> coll1;
 list<int> coll2;

 INSERT_ELEMENTS(coll1,1,7);
 INSERT_ELEMENTS(coll2,3,9);

 PRINT_ELEMENTS(coll1,"coll1: ");
 PRINT_ELEMENTS(col12,"col12: ");

 //check whether both collections are equal
 if (equal (coll1. begin(), coll1. end(), //first range
 coll2.begin())) { //second range

The C++ Standard Library

dyne-book 310

 cout << "coll1 == col12" << endl;
 }
 else {
 cout << "coll1 != coll2" << endl;
 }

 //check for corresponding even and odd elements
 if (equal (coll1.begin(), coll1.end(), //first range
 coll2. begin(), //second range
 bothEvenOrOdd)) { //comparison criterion
 cout << "even and odd elements correspond" << endl;
 }
 else {
 cout << "even and odd elements do not correspond" << endl;
 }
 }

The program has the following output:

 coll1: 1 2 3 4 5 6 7
 coll2: 3 4 5 6 7 8 9
 coll1 != coll2
 even and odd elements correspond

Search the First Difference

pair<InputIterator1,InputIterator2>
mismatch (InputIterator1 beg, InputIterator1 end, InputIterator2 cmpBeg)
pair<InputIterator1,InputIterator2>
mismatch (InputIterator1 beg, InputIterator1 end, InputIterator2 cmpBeg,
BinaryPredicate op)

• The first form returns the first two corresponding elements of range [beg,end) and the
range starting with cmpBeg that differ.

• The second form returns the first two corresponding elements of range [beg,end) and the
range starting with cmpBeg for which the binary predicate

op (elem, cmpElem)

yields true.

• If no difference is found, a pair of end and the corresponding element of the second
range is returned. Note that this does not mean that both sequences are equal, because
the second sequence might contain more elements.

• Note that op should not change its state during a function call. See Section 8.1.4, for
details.

• op should not modify the passed arguments.
• The caller must ensure that the range starting with cmpBeg contains enough elements.
• To check whether two ranges are equal, you should use the equal() algorithm (see

page 356).

The C++ Standard Library

dyne-book 311

• Complexity: linear (at most, numberOfElements comparisons or calls of op()
respectively).

The following example demonstrates both forms of mismatch():

 // algo/misma1.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()
 {

 vector<int> coll1;
 list<int> coll2;

 INSERT_ELEMENTS(coll1,1,6);

 for (int i=1; i<=16; i*=2) {
 col12.push_back(i);
 }
 coll2.push_back(3);

 PRINT_ELEMENTS(coll1,"coll1: ");
 PRINT_ELEMENTS(coll2,"coll2: ");

 //find first mismatch
 pair<vector<int>::iterator,list<int>::iterator> values;
 values = mismatch (coll1.begin(), coll1.end(), //first range
 coll2.begin()); //second range
 if (values.first == coll1.end()) {
 cout << "no mismatch" << endl;
 }
 else {
 cout << "first mismatch: "
 << *values.first << " and "
 << *values.second << endl;
 }

 /*find first position where the element of coll1 is not
 *less than the corresponding element of coll2
 */
 values = mismatch (coll1.begin(), coll1.end(), //first range
 col12. begin(), //second range
 less_equal<int>()) //criterion
 if (values.first == coll1.end()) {
 cout << "always less-or-equal" << endl;
 }
 else {
 cout << "not less-or-equal: "
 << *values.first << " and "
 << *values.second << endl;
 }
 }

The C++ Standard Library

dyne-book 312

The first call of mismatch() searches for the first corresponding elements that are not equal. If
such elements exist, their values are written to standard output. The second call searches for the
first pair of elements in which the element of the first collection is greater than the corresponding
element of the second collection, and returns these elements. The program has the following
output:

 coll1: 1 2 3 4 5 6
 coll2: 1 2 4 8 16 3
 first mismatch: 3 and 4
 not less-or-equal: 6 and 3

Testing for "Less Than"

bool
lexicographical_compare (InputIterator1 beg1, Input Iterator1 end1, InputIterator2
beg2, InputIterator2 end2)
bool
lexicographical_compare (InputIterator1 begl, InputIterator1 end1,
InputIterator2 beg2, InputIterator2 end2, CompFunc op)

• Both forms return whether the elements in the range [beg1,end1) are "lexicographically
less than" the elements in the range [beg2,end2).

• The first form compares the elements by using operator <.
• The second form compares the elements by using the binary predicate

op(elem1 ,elem2)

It should return true when elem1 is less than elem2.

• Lexicographical comparison means that sequences are compared element-by-element
until any of the following occurs:

o When two elements are not equal, the result of their comparison is the result of
the whole comparison.

o When one sequence has no more elements, then the sequence that has no more
elements is less than the other. Thus, the comparison yields true if the first
sequence is the one that has no more elements.

o When both sequences have no more elements, then both sequences are equal,
and the result of the comparison is false.

• Note that op should not change its state during a function call. See Section 8.1.4, for
details.

• op should not modify the passed arguments.
• Complexity: linear (at most, 2*min(numberOfElements1,numberOfElements2)

comparisons or calls of op() respectively).

The following example demonstrates the use of a lexicographical sorting of collections:

 // algo/lexico1.cpp

 #include "algostuff.hpp"
 using namespace std;
 void printCollection (const list<int>& l)

The C++ Standard Library

dyne-book 313

 {
 PRINT_ELEMENTS(l);
 }

 bool lessForCollection (const list<int>& l1, const list<int>& 12)
 {
 return lexicographical_compare
 (l1.begin(), l1.end(), // first range
 12.begin(), 12.end()); // second range
 }

 int main()
 {
 list<int> c1, c2, c3, c4;

 //fill all collections with the same starting values
 INSERT_ELEMENTS(c1,1,5);
 c4 = c3 = c2 = c1;

 //and now some differences
 c1.push_back(7);
 c3.push_back(2);
 c3.push_back(0);
 c4.push_back(2);

 //create collection of collections
 vector<list<int> > cc;

 cc.push_back(c1);
 cc.push_back(c2);
 cc.push_back(c3);
 cc.push_back(c4);
 cc.push_back(c3);
 cc.push_back(c1);
 cc.push_back(c4);
 cc.push_back(c2);

 //print all collections
 for_each (cc.begin(), cc.end(),
 printCollection);
 cout << endl;

 //sort collection lexicographically
 sort (cc.begin(), cc.end(), //range
 lessForCollection) ; //sorting criterion

 //print all collections again
 for_each (cc.begin(), cc.end(),
 printCollection);
 }

The vector cc is initialized with several collections (all lists). The call of sort() uses the binary
predicate lessForCollection() to compare two collections (see page 397 for a description of
sort()). In lessForCollection(), the lexicographical_compare() algorithm is used
to compare the collections lexicographically. The program has the following output:

The C++ Standard Library

dyne-book 314

 1 2 3 4 5 7
 1 2 3 4 5
 1 2 3 4 5 2 0
 1 2 3 4 5 2
 1 2 3 4 5 2 0
 1 2 3 4 5 7
 1 2 3 4 5 2
 1 2 3 4 5

 1 2 3 4 5
 1 2 3 4 5
 1 2 3 4 5 2
 1 2 3 4 5 2
 1 2 3 4 5 2 0
 1 2 3 4 5 2 0
 1 2 3 4 5 7
 1 2 3 4 5 7

9.6 Modifying Algorithms

This section describes algorithms that modify the elements of a range. There are two ways to
modify elements:

1. Modify them directly while iterating through a sequence.
2. Modify them while copying them from a source range to a destination range.

Several modifying algorithms provide both ways of modifying the elements of a range. In this
case, the name of the latter uses the _copy suffix.
You can't use an associative container as a destination range because the elements in an
associative container are constant. If you could, it would be possible to compromise the automatic
sorting.
All algorithms that have a separate destination range return the position after the last copied
element of that range.

9.6.1 Copying Elements

OutputIterator
copy (InputIterator sourceBeg, InputIterator sourceEnd, OutputIterator destBeg)
BidirectionalIteratorl
copy_backward (BidirectionalIterator1 sourceBeg, BidirectionalIterator1
source End, BidirectionalIterator2 destEnd)

• Both algorithms copy all elements of the source range [source Beg,sourceEnd) into the
destination range starting with destBeg or ending with destEnd respectively.

• They return the position after the last copied element in the destination range (the first
element that is not overwritten).

• destBeg or destEnd should not be part of [sourceBeg,sourceEnd).
• copy() iterates forward through the sequence, whereas copy_backward() iterates

backward. This difference matters only if the source and destination ranges overlap.
o To copy a range to the front, use copy(). Thus, for copy(), destBeg should

have a position in front of sourceBeg.

The C++ Standard Library

dyne-book 315

o To copy a range to the back, use copy_backward(). Thus, for
copy_backward(), destEnd should have a position after sourceEnd.

So whenever the third argument is an element of the source range specified by the first
two arguments, use the other algorithm. Note that switching to the other algorithm means
that you switch from passing the beginning of the destination range to passing the end.
See page 365 for an example that demonstrates the differences.

• There is no copy_if() algorithm provided. To copy only those elements that meet a
certain criterion, use remove_copy_if() (see page 380).

• Use reverse_copy() to reverse the order of the elements during the copy (see page
386). reverse_copy() may be slightly more efficient than using copy() with reverse
iterators.

• The caller must ensure that the destination range is big enough or that insert iterators are
used.

• See page 271 for the implementation of the copy() algorithm.
• To assign all elements of a container, use the assignment operator (if the containers

have the same type; see page 236) or the assign() member function (if the containers
have different types; see page 237) of the containers.

• To remove elements while they are being copied, use remove_copy() and
remove_copy_if() (see page 380).

• To modify elements while they are being copied, use transform() (see page 367) or
replace_copy() (see page 376).

• Complexity: linear (numberOfElements assignments).

The following example shows some simple calls of copy():

 // algo/copy1.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()
 {
 vector<int> coll1;
 list<int> coll2;

 INSERT_ELEMENTS(coll1,1,9);

 /*copy elements of coll1 into coll2
 *-use back inserter to insert instead of overwrite
 */
 copy (coll1.begin(), coll1.end(), //source range
 back_inserter(coll2)) ; //destination
range

 /*print elements of coll2
 *-copy elements to cout using an ostream iterator
 */
 copy (coll2.begin(), coll2.end(), //source range
 ostream_iterator<int>(cout," ")); //destination
range
 cout << endl;

The C++ Standard Library

dyne-book 316

 /*copy elements of coll1 into coll2 in reverse order
 *-now overwriting
 */
 copy (coll1.rbegin(), coll1.rend(), //source range
 coll2.begin()); //destination
range

 //print elements of coll2 again
 copy (coll2.begin(), coll2.end(), //source range
 ostream_iterator<int>(cout, " ")); //destination
range
 cout << endl;
 }

In this example, back inserters (see Section 7.4.2,) are used to insert the elements in the
destination range. Without using inserters, copy() would overwrite the empty collection coll2,
which results in undefined behavior. Similarly, the example uses ostream iterators (see Section
7.4.3,) to use standard output as the destination.
The program has the following output:

 1 2 3 4 5 6 7 8 9
 9 8 7 6 5 4 3 2 1

The following example demonstrates the difference between copy() and copy_backward():

 // algo/copy2.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()
 {
 /*initialize source collection with ".......... abcdef.........."
 */
 vector<char> source(10,'.');
 for (int c='a'; c<='f'; C++) {
 source.push_back(c);
 }
 source.insert(source.end(),10,'.');
 PRINT_ELEMENTS(source,"source: ");

 //copy all letters three elements in front of the 'a'
 vector<char> c1(source.begin(),source.end());
 copy (c1.begin()+10, c1.begin()+16, //source range
 c1.begin()+7); //destination range
 PRINT_ELEMENTS(c1,"c1: ");

 //copy all letters three elements behind the 'f'
 vector<char> c2(source.begin(),source.end());
 copy_backward (c2.begin()+10, c2.begin()+16, //source range
 c2.begin()+19); //destination
range
 PRINT_ELEMENTS(c2,"c2: ");

The C++ Standard Library

dyne-book 317

 }

Note that in both calls of copy() and copy_backward(), the third argument is not part of the
source range. The program has the following output:

 source: a b c d e f
 c1: a b c d e f d e f
 c2: a b c a b c d e f

A third example demonstrates how to use copy() as a data filter between standard input and
standard output. he program reads strings and prints them, each on one line:

 // algo/copy3.cpp

 #include <iostream>
 #include <algorithm>
 #include <string>
 using namespace std;

 int main()
 {

 copy (istream_iterator<string>(cin), //beginning of
source
 istream_iterator<string>(), //end of source
 ostream_iterator<string>(cout, "\n")); //destination
 }

9.6.2 Transforming and Combining Elements

The transform() algorithms provide two abilities:

1. The first form has four arguments. It transforms elements from a source to a destination
range. Thus, it copies and modifies elements in one step.

2. The second form has five arguments. It combines elements from two source sequences
and writes the result to a destination range.

Transforming Elements

OutputIterator
transform (InputIterator sourceBeg, InputIterator sourceEnd, Output Iterator
destEeg, UnaryFunc op)

• Calls

op(elem)

for each element in the source range [sourceBeg,sourceEnd) and writes each result of op
to the destination range starting with destBeg:

The C++ Standard Library

dyne-book 318

• Returns the position after the last transformed element in the destination range (the first
element that is not overwritten with a result).

• The caller must ensure that the destination range is big enough or that insert iterators are
used.

• sourceBeg and destBeg may be identical. Thus, as with for_each() you can use this
algorithm to modify elements inside a sequence. See the comparison with the
for_each() algorithm on page 325 for this kind of usage.

• To replace elements matching a criterion with a particular value, use the replace()
algorithms (see page 375).

• Complexity: linear (numberOfElements calls of op()).

The following program demonstrates how to use this kind of transform():

 // algo/transf1.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()
 {
 vector<int> coll1;
 list<int> coll2;

 INSERT_ELEMENTS(coll1,1,9);
 PRINT_ELEMENTS(coll1,"coll1: ");

 //negate all elements in coll1
 transform (coll1.begin(), coll1.end(), //source range
 coll1.begin(), //destination
range
 negate<int>()); //operation

 PRINT_ELEMENTS(coll1,"negated: ");

 //transform elements of coll1 into coll2 with ten times their
value
 transform (coll1.begin(), coll1.end(), //source range
 back_inserter(coll2), //destination
range
 bind2nd(multiplies<int>(),10)); //operation
 PRINT_ELEMENTS(coll2,"coll2: ");

 //print coll2 negatively and in reverse order
 transform (coll2.rbegin(), coll2.rend(), //source range

The C++ Standard Library

dyne-book 319

 ostream_iterator<int>(cout," "), //destination
range
 negate<int>()); //operation
 cout << endl;
 }

The program has the following output:

 coll1: 1 2 3 4 5 6 7 8 9
 negated: -1 -2 -3 -4 -5 -6 -7 -8 -9
 coll2: -10 -20 -30 -40 -50 -60 -70 -80 -90
 90 80 70 60 50 40 30 20 10

See the example on page 315 of how to combine two different operations while processing the
elements.

Combining Elements of Two Sequences

OutputIterator
transform (InputIterator1 source1Beg, InputIterator1 source1End, InputIterator2
source2Beg, OutputIterator destBeg, BinaryFunc op)

• Calls

op(source1Elem, source2Elem)

for all corresponding elements from the first source range [source1Beg,source1 End) and
the second source range starting with source2Beg, and writes each result to the the
destination range starting with destBeg:

• Returns the position after the last transformed element in the destination range (the first
element that is not overwritten with a result).

• The caller must ensure that the second source range is big enough (has at least as many
elements as the source range).

• The caller must ensure that the destination range is big enough or that insert iterators are
used.

The C++ Standard Library

dyne-book 320

• source1Beg, source2Beg, and destBeg may be identical. Thus, you can process the
results of elements that are combined with themselves and you can overwrite the
elements of a source with the results.

• Complexity: linear (numberOfElements calls of op()).

The following program demonstrates how to use this form of transform():

 // algo/transf2.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()
 {
 vector<int> coll1;
 list<int> coll2;

 INSERT_ELEMENTS(coll1,1,9);
 PRINT_ELEMENTS(coll1,"coll1: ");

 //square each element
 transform (coll1.begin(), coll1.end(), //first source
range
 coll1.begin(), //second source
range
 coll1.begin(), //destination
range
 multiplies<int>()); //operation
 PRINT_ELEMENTS(coll1,"squared: ");

 /*add each element traversed forward with each element traversed
backward
 *and insert result into coll2
 */
 transform (coll1. begin(), coll1. end(), //first source
range
 coll1.rbegin(), //second source
range
 back_inserter(coll2), //destination
range
 plus<int>()); //operation
 PRINT_ELEMENTS(coll2,"coll2: ");

 // print differences of two corresponding elements
 cout << "diff: ";
 transform (coll1.begin(), coll1.end(), //first source
range
 coll2.begin(), //second source
range
 ostream_iterator<int>(cout, " "), //destination
range
 minus<int>()); //operation
 cout << endl;
 }

The C++ Standard Library

dyne-book 321

The program has the following output:

 coll1: 1 2 3 4 5 6 7 8 9
 squared: 1 4 9 16 25 36 49 64 81
 coll2: 82 68 58 52 50 52 58 68 82
 diff: -81 -64 -49 -36 -25 -16 -9 -4 -1

9.6.3 Swapping Elements

ForwardIterator2
swap_ranges (ForwardIterator1 beg1, ForwardIterator1 end1, ForwardIterator2
beg2)

• Swaps the elements in the range [beg1,end1) with the corresponding elements starting
with beg2.

• Returns the position after the last swapped element in the destination range.
• The caller must ensure that the destination range is big enough or that insert iterators are

used.
• To swap all elements of a container of the same type, use its swap() member function

because the member function usually has constant complexity (see page 237).
• Complexity: linear (numberOfElements swap operations).

The following example demonstrates how to use swap_ranges():

 // algo/swap1.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()
 {
 vector<int> coll1;
 deque<int> coll2;

 INSERT_ELEMENTS(coll1,1,9) ;
 INSERT_ELEMENTS(col12,11,23);

 PRINT_ELEMENTS(coll1,"coll1: ");
 PRINT_ELEMENTS(coll2,"coll2: ");

 //swap first four elements
 deque<int>::iterator pos;
 pos = swap_ranges (coll1.begin(), coll1.end(), //first range
 coll2.begin()); //second range

 PRINT_ELEMENTS(coll1,"\ncoll1: ");
 PRINT_ELEMENTS(coll2,"col12: ");
 if (pos != coll2.end()) {
 cout << "first element not modified: "
 << *pos << endl;
 }

The C++ Standard Library

dyne-book 322

 //mirror first three with last three elements in coll2
 swap_ranges (coll2.begin(), coll2.begin()+3, //first range
 coll2.rbegin()); //second range
 PRINT_ELEMENTS(coll2,"\ncoll2: ") ;
 }

The first call of swap_ranges() swaps the elements of coll1 with the corresponding elements
of coll2. The remaining elements of coll2 are not modified. The swap_ranges() algorithm
returns the position of the first element not modified. The second call swaps the first and the last
three elements of coll2. One of the iterators is a reverse iterator, so the elements are mirrored
(swapped from outside to inside). The program has the following output:

 coll1: 1 2 3 4 5 6 7 8 9
 coll2: 11 12 13 14 15 16 17 18 19 20 21 22 23

 coll1: 11 12 13 14 15 16 17 18 19
 coll2: 1 2 3 4 5 6 7 8 9 20 21 22 23
 first element not modified: 20

 coll2: 23 22 21 4 5 6 7 8 9 20 3 2 1

9.6.4 Assigning New Values

Assigning the Same Value

void
fill (ForwardIterator beg, ForwardIterator end, const T& newValue)
void
fill_n (OutputIterator beg, Size num, const T& newValue)

• fill() assigns newValue to each element in the range [beg,end).
• fill_n() assigns newValue to the first num elements in the range starting with beg.
• The caller must ensure that the destination range is big enough or that insert iterators are

used.
• Complexity: linear (numberOfElements or num assignments respectively).

The following program demonstrates the use of fill() and fill_n():

 // algo/fill1.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()
 {
 //print ten times 7.7
 fill_n(ostream_iterator<float>(cout, " "), //beginning of
destination
 10, //count
 7.7); //new value
 cout << endl;

The C++ Standard Library

dyne-book 323

 list<string> coll;

 //insert "hello" nine times
 fill_n(back_inserter(coll), //beginning of destination
 9, //count
 "hello"); //new value
 PRINT_ELEMENTS(coll,"coll: ");

 //overwrite all elements with "again"
 fill(coll.begin(), coll.end(), //destination
 "again"); //new value
 PRINT_ELEMENTS(coll,"coll: ");

 //replace all but two elements with "hi"
 fill_n(coll.begin(), //beginning of destination
 coll.size()-2, //count
 "hi"); //new value
 PRINT_ELEMENTS(coll,"coll: ");

 //replace the second and up to the last element but one with
"hmmm"
 list<string>:: iterator posl, pos2;
 posl = coll.begin();
 pos2 = coll.end();
 fill (++pos1, --pos2, //destination
 "hmmm"); //new value
 PRINT_ELEMENTS(coll,"coll: ");
 }

The first call shows how to use fill_n() to print a certain number of values. The other calls of
fill() and fill_n() insert and replace values in a list of strings. The program has the
following output:

 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7
 coll: hello hello hello hello hello hello hello hello hello
 coll: again again again again again again again again again
 coll: hi hi hi hi hi hi hi again again
 coll: hi hmmm hmmm hmmm hmmm hmmm hmmm hmmm again

Assigning Generated Values

void
generate (ForwardIterator beg, ForwardIterator end, Func op)
void
generate_n (OutputIterator beg, Size num, Func op)

• generate() assigns the values that are generated by a call of

The C++ Standard Library

dyne-book 324

op()

to each element in the range [beg,end).

• generate_n() assigns the values that are generated by a call of

op()

to the first num elements in the range starting with beg.

• The caller must ensure that the destination range is big enough or that insert iterators are
used.

• Complexity: linear (numberOfElements or num calls of op() and assignments).

The following program demonstrates how to use generate() and generate_n() to insert or
assign some random numbers:

 // algo/generate.cpp

 #include <cstdlib>
 #include "algostuff.hpp"
 using namespace std;

 int main()
 {
 list<int> coll;

 //insert five random numbers
 generate_n (back_inserter(coll), //beginning of destination
range
 5, //count
 rand); //new value generator
 PRINT_ELEMENTS(coll);

 //overwrite with five new random numbers
 generate (coll.begin(), coll.end(), //destination range
 rand); //new value generator
 PRINT_ELEMENTS(coll);
 }

The rand() function is described in Section 12.3. The program might have the following
output:

 41 18467 6334 26500 19169
 15724 11478 29358 26962 24464

The output is platform dependent because the random number sequence that rand() generates
is not standardized.
See Section 8.1.2, for an example that demonstrates how to use generate() with function
objects so that it generates a sequence of numbers.

9.6.5 Replacing Elements

The C++ Standard Library

dyne-book 325

Replacing Values Inside a Sequence

void
replace (Forwardlterator beg, ForwardIterator end, const T& oldValue, const T&
newValue)
void
replace_if (ForwardIterator beg, ForwardIterator end, UnaryPredicate op, const
T& newValue)

• replace() replaces each element in the range [beg,end) that is equal to oldValue with
newValue.

• replace_if() replaces each element in the range [beg,end) for which the unary
predicate

op(elem)

yields true with newValue.

• Note that op should not change its state during a function call. See Section 8.1.4, for
details.

• Complexity: linear (numberOfElements comparisons or calls of op() respectively).

The following program demonstrates some examples of the use of replace() and
replace_if():

 // algo/replace1.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()
 {
 list<int> coll;

 INSERT_ELEMENTS(coll,2,7);
 INSERT_ELEMENTS(coll,4,9);
 PRINT_ELEMENTS(coll,"coll: ");

 //replace all elements with value 6 with 42
 replace (coll.begin(), coll.end(), //range
 6, //old value
 42); //new value
 PRINT_ELEMENTS(coll,"coll: ");

 //replace all elements with value less than 5 with 0
 replace_if (coll.begin(), coll.end(), //range
 bind2nd(less<int>(),5), //criterion for
replacement
 0); //new value
 PRINT_ELEMENTS(coll,"coll: ");
 }

The program has the following output:

The C++ Standard Library

dyne-book 326

 coll: 2 3 4 5 6 7 4 5 6 7 8 9
 coll: 2 3 4 5 42 7 4 5 42 7 8 9
 coll: 0 0 0 5 42 7 0 5 42 7 8 9

Copying and Replacing Elements

OutputIterator
replace_copy (InputIterator sourceBeg, InputIterator sourceEnd, OutputIterator destBeg, const
T& oldValue, const T& newValue)
OutputIterator
replace_copy_if (InputIterator sourceBeg, InputIterator sourceEnd,
OutputIterator destBeg, UnaryPredicate op, const T& newValue)

• replace_copy() is a combination of copy() and replace(). It replaces each
element in the source range [beg,end) that is equal to oldValue with newValue while the
elements are copied into the destination range starting with destBeg.

• replace_copy_if() is a combination of copy() and replace_if(). It replaces
each element in the source range [beg,end) for which the unary predicate

op(elem)

yields true with newValue while the elements are copied into the destination range
starting with destBeg.

• Both algorithms return the position after the last copied element in the destination range
(the first element that is not overwritten).

• Note that op should not change its state during a function call. See Section 8.1.4, for
details.

• The caller must ensure that the destination range is big enough or that insert iterators are
used.

• Complexity: linear (numberOfElements comparisons or calls of op() and assignments
respectively).

The following program demonstrates how to use replace_copy() and replace_copy_if():

 // algo/replace2.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()
 {
 list<int> coll;

 INSERT_ELEMENTS(coll,2,6);
 INSERT_ELEMENTS(coll,4,9);
 PRINT_ELEMENTS(coll);

 //print all elements with value 5 replaced with 55
 replace_copy(coll.begin(), coll.end(), //source

The C++ Standard Library

dyne-book 327

 ostream_iterator<int>(cout," "),
//destination
 5, //old value
 55); //new value
 cout << endl;

 //print all elements with a value less than 5 replaced with 42
 replace_copy_if (coll.begin(), coll.end(), //source
 ostream_iterator<int>(cout," "),
//destination
 bind2nd(less<int>(),5), //replacement
criterion
 42); //new value
 cout << endl;

 //print each element while each odd element is replaced with 0
 replace_copy_if (coll.begin(), coll.end(), //source
 ostream_iterator<int>(cout," "),
//destination
 bind2nd (modulus<int>(),2), //replacement
criterion
 0); //new value
 cout << endl; >
 }

The program has the following output:

 2 3 4 5 6 4 5 6 7 8 9
 2 3 4 55 6 4 55 6 7 8 9
 42 42 42 5 6 42 5 6 7 8 9
 2 0 4 0 6 4 0 6 0 8 0

9.7 Removing Algorithms

The following algorithms remove elements from a range according to their value or to a criterion.
These algorithms, however, cannot change the number of elements. They only move logically by
overwriting "removed" elements with the following elements that were not removed. They return
the new logical end of the range (the position after the last element not removed). See Section
5.6.1, for details.

9.7.1 Removing Certain Values

Removing Elements in a Sequence

ForwardIterator
remove (ForwardIterator beg, ForwardIterator end, const T& value)
ForwardIterator
remove_if (ForwardIterator beg, ForwardIterator end, UnaryPredicate op)

• remove() removes each element in the range [beg,end).
• remove_if() removes each element in the range [beg,end) for which the unary

predicate

The C++ Standard Library

dyne-book 328

op(elem)

yields true.

• Both algorithms return the logical new end of the modified sequence (the position after
the last element not removed).

• The algorithms overwrite "removed" elements by the following elements that were not
removed.

• The order of elements that were not removed remains stable.
• It is up to the caller, after calling this algorithm, to use the returned new logical end

instead of the original end end (see Section 5.6.1, for more details).
• Note that op should not change its state during a function call. See Section 8.1.4, for

details.
• Note that remove_if() usually copies the unary predicate inside the algorithm and uses

it twice. This may lead to problems if the predicate changes its state due to the function
call. See Section 8.1.4, for details.

• Due to modifications, you can't use these algorithms for an associative container (see
Section 5.6.2). However, associative containers provide a similar member function,
erase() (see page 242).

• Lists provide an equivalent member function, remove(), which offers better
performance because it relinks pointers instead of assigning element values (see page
242).

• Complexity: linear (numberOfElements comparisons or calls of op() respectively).

The following program demonstrates how to use remove() and remove_if():

 // algo/remove1.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()
 {
 vector<int> coll;

 INSERT_ELEMENTS(coll,2,6);
 INSERT_ELEMENTS(coll,4,9);
 INSERT_ELEMENTS(coll,1,7);
 PRINT_ELEMENTS(coll,"coll: ");

 //remove all elements with value 5
 vector<int>::iterator pos;
 pos = remove (coll. begin(), coll.end(), //range
 5); //value to remove

 PRINT_ELEMENTS(coll,"size not changed: ");

 //erase the "removed" elements in the container
 coll. erase (pos, coll.end());
 PRINT_ELEMENTS(coll,"size changed: ");

 //remove all elements less than 4
 coll.erase(remove_if (coll.begin(), coll.end(), //range
 bind2nd(less<int>(),4)), //remove
criterion

The C++ Standard Library

dyne-book 329

 coll.end());
 PRINT_ELEMENTS(coll,"<4 removed: : ");
 }

The program has the following output:

 coll: 2 3 4 5 6 4 5 6 7 8 9 1 2 3 4 5 6 7
 size not changed: 2 3 4 6 4 6 7 8 9 1 2 3 4 6 7 5 6 7
 size changed: 2 3 4 6 4 6 7 8 9 1 2 3 4 6 7
 <4 removed: : 4 6 4 6 7 8 9 4 6 7

Removing Elements While Copying

OutputIterator
remove_copy (InputIterator sourceBeg, InputIterator sourceEnd, OutputIterator
destBeg, const T& value)
OutputIterator
remove_copy_if (InputIterator sourceBeg, InputIterator sourceEnd,
OutputIterator destBeg, UnaryPredicate op)

• remove_copy() is a combination of copy() and remove(). It removes each element
in the source range [beg,end) that is equal to value while the elements are copied into the
destination range starting with destBeg.

• remove_copy_if() is a combination of copy() and remove_if(). It removes each
element in the source range [beg,end) for which the unary predicate

op(elem)

yields true while the elements are copied into the destination range starting with
destBeg.

• Both algorithms return the position after the last copied element in the destination range
(the first element that is not overwritten).

• Note that op should not change its state during a function call. See Section 8.1.4, for
details.

• The caller must ensure that the destination range is big enough or that insert iterators are
used.

• Complexity: linear (numberOfElements comparisons or calls of op() and assignments
respectively).

The following program demonstrates how to use remove_copy() and remove_copy_if():

 // algo/remove2.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()
 {
 list<int> coll1;

The C++ Standard Library

dyne-book 330

 INSERT_ELEMENTS(coll1,1,6);
 INSERT_ELEMENTS(coll1,l,9);
 PRINT_ELEMENTS(coll1);

 //print elements without those having the value 3
 remove_copy(coll1.begin(), coll 1.end(), //source
 ostream_iterator<int>(cout," "), //destination
 3); //removed value
 cout << endl;

 //print elements without those having a value greater than 4
 remove_copy_if (coll1.begin(), coll1.end(), //source
 ostream_iterator<int>(cout," "), //destination
 bind2nd(greater<int>(),4)); //removed
elements
 cout << endl;

 //copy all elements greater than 3 into a multiset
 multiset<int> coll2;
 remove_copy_if (coll1.begin(), coll1.end(), //source
 inserter(coll2,coll2.end()), //destination
 bind2nd(less<int>(),4)); //elements not
copied
 PRINT_ELEMENTS(coll2);
 }

The program has the following output:

 1 2 3 4 5 6 1 2 3 4 5 6 7 8 9
 1 2 4 5 6 1 2 4 5 6 7 8 9
 1 2 3 4 1 2 3 4
 4 4 5 5 6 6 7 8 9

9.7.2 Removing Duplicates

Removing Consecutive Duplicates

void
unique (ForwardIterator beg, ForwardIterator end)
void
unique (Forwardlterator beg, ForwardIterator end, BinaryPredicate op)

• Both forms collapse consecutive equal elements by removing the following duplicates.
• The first form removes from the range [beg,end) all elements that are equal to the

previous elements. Thus, only when the elements in the sequence are sorted (or at least
when all elements of the same value are adjacent), does it remove all duplicates.

• The second form removes all elements that follow an element e and for which the binary
predicate

op(elem,e)

The C++ Standard Library

dyne-book 331

yields true. In other words, the predicate is not used to compare an element with its
predecessor; the element is compared with the previous element that was not removed
(see the following examples).

• Both forms return the logical new end of the modified sequence (the position after the last
element not removed).

• The algorithms overwrite "removed" elements by the following elements that were not
removed.

• The order of elements that were not removed remains stable.
• It is up to the caller, after calling this algorithm, to use the returned new logical end

instead of the original end end (see Section 5.6.1, for more details).
• Note that op should not change its state during a function call. See Section 8.1.4, for

details.
• Due to modifications you can't use these algorithms for an associative container (see

Section 5.6.2).
• Lists provide an equivalent member function, unique(), which offers better

performance because it relinks pointers instead of assigning element values (see page
244).

• Complexity: linear (numberOfElements comparisons or calls of op() respectively).

The following program demonstrates how to use unique():

 // algo/unique1.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()
 {
 //source data
 int source[] = { 1, 4, 4, 6, 1, 2, 2, 3, 1, 6, 6, 6, 5, 7,
 5, 4, 4 };
 int sourceNum = sizeof(source)/sizeof(source[0]);

 list<int> coll;.

 //initialize coll with elements from source
 copy (source, source+sourceNum, //source
 back_inserter(coll)) ; //destination
 PRINT_ELEMENTS(coll);

 //remove consecutive duplicates
 list<int> :: iterator pos;

 pos = unique (coll.begin(), coll.end());

 /*print elements not removed
 *-use new logical end
 */
 copy (coll.begin(), pos, //source
 ostream_iterator<int>(cout," ")); //destination
 cout << "\n\n";

 //reinitialize coll with elements from source
 copy (source, source+sourceNum, //source

The C++ Standard Library

dyne-book 332

 coll.begin()); //destination
 PRINT_ELEMENTS(coll);

 //remove elements if there was a previous greater element
 coll.erase (unique (coll.begin(), coll.end(),
 greater<int>()),
 coll.end());
 PRINT_ELEMENTS(coll);
 }

The program has the following output:

 1 4 4 6 1 2 2 3 1 6 6 6 5 7 5 4 4
 1 4 6 1 2 3 1 6 5 7 5 4

 1 4 4 6 1 2 2 3 1 6 6 6 5 7 5 4 4
 1 4 4 6 6 6 6 7

The first call of unique() removes consecutive duplicates. The second call shows the behavior
of the second form. It removes all the consecutive following elements of an element for which the
comparison with greater yields true. For example, the first 6 is greater than the following 1,
2, 2, 3, and 1, so all these elements are removed. In other words, the predicate is not used
to compare an element with its predecessor; the element is compared with the previous element
that was not removed (see the following description of unique_copy() for another example).

Removing Duplicates While Copying

OutputIterator
unique_copy (InputIterator sourceBeg, InputIterator sourceEnd, OutputIterator
destBeg)
OutputIterator
unique_copy (InputIterator sourceBeg, InputIterator sourceEnd, OutputIterator
destBeg, BinaryPredicate op)

• Both forms are a combination of copy() and unique()
• They copy all elements of the source range [sourceBeg,sourceEnd) into the destination

range starting with destBeg except for consecutive duplicates.
• Both forms return the position after the last copied element in the destination range (the

first element that is not overwritten).
• The caller must ensure that the destination range is big enough or that insert iterators are

used.
• Complexity: linear (numberOfElements comparisons or calls of op() and assignments

respectively).

The following program demonstrates how to useunique_copy():

 // algo/unique2.cpp

 #include "algostuff.hpp"
 using namespace std;

The C++ Standard Library

dyne-book 333

 bool differenceOne (int elem1, int elem2)
 {

 return elem1 + 1 == elem2 || elem1 - 1 == elem2;

 }

 int main()
 {

 // source data
 int source[] = { 1, 4, 4, 6, 1, 2, 2, 3, 1, 6, 6, 6, 5, 7,
 5, 4, 4 };
 int sourceNum = sizeof(source)/sizeof(source[0]);

 // initialize coll with elements from source
 list<int> coll;
 copy(source, source+sourceNum, // source
 back_inserter(coll)); // destination
 PRINT_ELEMENTS(coll);

 // print element with consecutive duplicates removed
 unique_copy(coll.begin(), coll.end(), // source
 ostream_iterator<int>(cout," ")); // destination
 cout << endl;

 // print element without consecutive duplicates that differ by
one
 unique_copy(coll.begin(), coll.end(), // source
 ostream_iterator<int>(cout," "), // destination
 differenceOne); // duplicate
criterion
 cout << endl;
 }

The program has the following output:

 1 4 4 6 1 2 2 3 1 6 6 6 5 7 5 4 4
 1 4 6 1 2 3 1 6 5 7 5 4
 1 4 4 6 1 3 1 6 6 6 4 4

Note that the second call of unique_copy() does not remove the elements that differ from their
predecessor by one. Instead it removes all elements that differ from their previous element that is
not removed by one. For example, after the three occurrences of 6, the following 5, 7, and 5
differ by one compared with 6, so they are removed. However, the following two occurrences of
4 remain in the sequence because compared with 6 the difference is not one.
Another example compresses sequences of spaces:

 // algo/unique3.cpp

The C++ Standard Library

dyne-book 334

 #include <iostream>
 #include <algorithm>
 using namespace std;

 bool bothSpaces (char elem1, char elem2)
 {

 return elem1 == ' ' && elem2 == ' ';

 }

 int main()
 {

 // don't skip leading whitespaces by default
 cin.unsetf(ios :: skipws);
 / * copy standard input to standard output
 *-while compressing spaces
 */
 unique_copy(istream_iterator<char>(cin), // beginning of
source:cin
 istream_iterator<char>(), // end of source:
end-of-file
 ostream_iterator<char>(cout), // destination:
cout
 bothSpaces); // duplicate
criterion
 }

With the input of

 Hello, here are sometimes more and sometimes fewer spaces.

this example produces the following output:

 Hello, here are sometimes more and sometimes fewer spaces.

9.8 Mutating Algorithms

Mutating algorithms change the order of elements (but not their values). Because elements of
associative containers have a fixed order, you can't use them as a destination for mutating
algorithms.

9.8.1 Reversing the Order of Elements

void
reverse (BidirectionalIterator beg, BidirectionalIterator end)
OutputIterator
reverse_copy (BidirectionalIterator sourceBeg, BidirectionalIterator
sourceEnd, Output Iterator destBeg)

The C++ Standard Library

dyne-book 335

• reverse() reverses the order of the elements inside the range [beg,end).
• reverse_copy() reverses the order of the elements while copying them from the

source range [sourceBeg,sourceEnd) to the destination range starting with destBeg.
• reverse_copy() returns the position after the last copied element in the destination

range (the first element that is not overwritten).
• The caller must ensure that the destination range is big enough or that insert iterators are

used.
• Lists provide an equivalent member function, reverse(), which offers better

performance because it relinks pointers instead of assigning element values (see page
246).

• Complexity: linear (numberOfElements/2 swaps or numberOfElements assignments
respectively).

The following program demonstrates how to use reverse() and reverse,copy():

 // algo/reverse1.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()
 {

 vector<int> coll;

 INSERT_ELEMENTS(coll,1,9);
 PRINT_ELEMENTS(coll,"coll: ");

 // reverse order of elements
 reverse (coll.begin(), coll.end());
 PRINT_ELEMENTS(coll,"coll: ");

 // reverse order from second to last element but one
 reverse (coll.begin()+l, coll.end()-l);
 PRINT_ELEMENTS(coll,"coll: ");

 //print all of them in reverse order
 reverse_copy (coll.begin(), coll.end(), // source
 ostream_iterator<int>(cout," ")); //
destination
 cout << endl;
 }

The program has the following output:

 coll: 1 2 3 4 5 6 7 8 9
 coll: 9 8 7 6 5 4 3 2 1
 coll: 9 2 3 4 5 6 7 8 1
 1 8 7 6 5 4 3 2 9

The C++ Standard Library

dyne-book 336

9.8.2 Rotating Elements

Rotating Elements Inside a Sequence

void
rotate (ForwardIterator beg, ForwardIterator newBeg, ForwardIterator end)

• Rotates elements in the range [beg,end) so that *newBeg is the new first element after
the call.

• The caller must ensure that newBeg is a valid position in the range [beg,end); otherwise,
the call results in undefined behavior.

• Complexity: linear (at most, numberOfElements swaps).

The following program demonstrates how to use rotate():

 // algo/rotate1.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()
 {

 vector<int> coll;

 INSERT_ELEMENTS(coll,1,9);
 PRINT_ELEMENTS(coll,"coll: ");

 // rotate one element to the left
 rotate (coll.begin(), // beginning of range
 coll.begin() + 1, // new first element
 coll.end()); // end of range
 PRINT_ELEMENTS(coll,"one left: ");

 // rotate two elements to the right
 rotate (coll.begin(), // beginning of range
 coll.end() - 2, // new first element
 coll.end()); // end of range
 PRINT_ELEMENTS(coll,"two right: ");

 // rotate so that element with value 4 is the beginning
 rotate (coll.begin(), // beginning of
range
 find (coll.begin(), coll.end(),4), // new first
element
 coll.end()); // end of range
 PRINT_ELEMENTS(coll,"4 first: ");

The C++ Standard Library

dyne-book 337

 }

As the example shows, you can rotate to the left with a positive offset for the beginning and rotate
to the right with a negative offset to the end. However, adding the offset to the iterator is possible
only when you have random access iterators, as you have for vectors. Without such iterators, you
must use advance() (see the example of rotate_copy() on page 389).
The program has the following output:

 coll: 1 2 3 4 5 6 7 8 9
 one left: 2 3 4 5 6 7 8 9 1
 two right: 9 1 2 3 4 5 6 7 8
 4 first: 4 5 6 7 8 9 1 2 3

Rotating Elements While Copying

OutputIterator
rotate_copy (ForwardIterator sourceBeg, ForwardIterator newBeg,
ForwardIterator ourceEnd, OutputIterator destBeg)

• Is a combination of copy() and rotate().
• Copies the elements of the source range [sourceBeg,sourceEnd) into the destination

range starting with destBeg in rotated order so that newBeg is the new first element.
• Returns the position after the last copied element in the destination range.
• The caller must ensure that newBeg is an element in the range [beg,end); otherwise, the

call results in undefined behavior.
• The caller must ensure that the destination range is big enough or that insert iterators are

used.
• The source and destination ranges should not overlap.
• Complexity: linear (numberOfElements assignments).

The following program demonstrates how to use rotate_copy():

 // algo/rotate2.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()
 {

 set<int> coll;

 INSERT_ELEMENTS(coll,1,9);
 PRINT_ELEMENTS(coll);

 // print elements rotated one element to the left
 set<int>::iterator pos = coll.begin();
 advance(pos,1);

The C++ Standard Library

dyne-book 338

 rotate_copy (coll.begin(), // beginning of
source
 pos, // new first
element
 coll.end(), // end of source
 ostream_iterator<int>(cout," ")); // destination
 cout << endl;

 // print elements rotated two elements to the right
 pos = coll.end();
 advance(pos,-2);
 rotate_copy(coll.begin(), // beginning of
source
 pos, // new first
element
 coll.end(), // end of source
 ostream_iterator<int>(cout," ")); // destination
 cout << endl;

 // print elements rotated so that element with value 4 is the
beginning
 rotate_copy (coll.begin(), // beginning of
source
 coll.find(4), // new first
element
 coll.end(), // end of source
 ostreamIiterator<int>(cout," ")); // destination
 cout << endl;
 }

Unlike the previous example of rotate() (see page 388), here a set is used instead of a vector.
This has two consequences:

1. You must use advance() (see Section 7.3.1,) to change the value of the iterator
because bidirectional iterators do not provide operator +.

2. You should use the find() member function instead of the find() algorithm because
the former has better performance.

The program has the following output:

 1 2 3 4 5 6 7 8 9
 2 3 4 5 6 7 8 9 1
 8 9 1 2 3 4 5 6 7
 4 5 6 7 8 9 1 2 3

9.8.3 Permuting Elements

bool
next_permutation (BidirectionalIterator beg, BidirectionalIterator end)
bool

The C++ Standard Library

dyne-book 339

prev_permutation (BidirectionalIterator beg, BidirectionalIterator end)

• next_permutation() changes the order of the elements in [beg,end) according to the
next permutation.

• prev_permutation() changes the order of the elements in [beg,end) according to the
previous permutation.

• Both algorithms return true if the elements have the "normal" (lexicographical) order;
that is, ascending order for next_permutation() and descending order for
prev_permutation(). So, to run through all permutations you have to sort all
elements (ascending or descending), and start a loop that calls next_permutation()
or prev_permutation() as long as these algorithms return false. [5]
Lexicographical sorting is explained on page 360.

[5] next_permutation() and prev_permutation() could also be used to sort elements in a
range. You just call them for a range as long as they return false. However, doing so would
produce really bad performance.

• Complexity: linear (at most, numberOfElements/ 2 swaps).

The following example demonstrates how next_permutation() and prev_permutation()
run through all permutations of the elements:

 // algo/perm1.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()
 {

 vector<int> coll;

 INSERT_ELEMENTS(coll,1,3);
 PRINT_ELEMENTS(coll,"on entry: ");

 /*permute elements until they are sorted
 *-runs through all permutations because the elements are sorted
now
 */
 while (next_permutation(coll.begin(),coll.end())) {
 PRINTIELEMENTS(coll," ");
 }
 PRINT_ELEMENTS(coll."afterward: ");

 /*permute until descending sorted
 *-this is the next permutation after ascending sorting
 *-so the loop ends immediately
 */
 while (prev_permutation(coll.begin(),coll.end())) {
 PRINT_ELEMENTS(coll," ");
 }

The C++ Standard Library

dyne-book 340

 PRINT_ELEMENTS(coll,"now: ");

 /*permute elements until they are sorted in descending order
 *-runs through all permutations because the elements are sorted
 * in descending order now
 */
 while (prev_permutation(coll.begin(), coll.end()) {
 PRINT_ELEMENTS(coll," ");
 }
 PRINT_ELEMENTS(coll,"afterward: ");
 }

The program has the following output:

 on entry: 1 2 3
 1 3 2
 2 1 3
 2 3 1
 3 1 2
 3 2 1
 afterward: 1 2 3
 now: 3 2 1
 3 1 2
 2 3 1
 2 1 3
 1 3 2
 1 2 3
 afterward: 3 2 1

9.8.4 Shuffling Elements

void
random_shuffle (RandomAccessIterator beg, RandomAccessIterator end)
void
random_shuffle (RandomAccessIterator beg, RandomAccessIterator end,
RandomFunc& op)

• The first form shuffles the order of the elements in the range [beg,end) using a uniform
distribution random number generator.

• The second form shuffles the order of the elements in the range [beg,end) using op. op is
called with an integral value of difference_type of the iterator:

op (max)

It should return a random number greater than or equal to zero and less than max. Thus,
it should not return max itself.

• Note that op is a nonconstant reference, so you can't pass a temporary value or an
ordinary function.

• Complexity: linear (numberOfElements-1 swaps).

The C++ Standard Library

dyne-book 341

You might wonder why random_shuffle() uses its optional operation as a nonconstant
reference. It does so because random number generators typically have a local state. Old global
C functions such as rand() store their local state in a static variable. However, this has some
disadvantages: For example, the random number generator is inherently thread unsafe, and you
can't have two independent streams of random numbers. Therefore, function objects provide a
better solution by encapsulating their local state as one or more member variables. Thus, the
random number generator can't be constant because it has to change its local state while
generating a new random number. However, to have the random number generator nonconstant,
you could still pass it by value instead of passing it by nonconstant reference. In this case each
call would copy the random number generator and its state so that you get the same random
sequence each time you pass the generator to the algorithm. Thus the generator is passed as a
nonconstant reference. [6]

[6] Thanks to Matt Austern for this explanation.

If you need the same random number sequence twice, you can simply copy it. However, if the
generator is implemented in a way that uses a global state, you would still get different
sequences.
The following example demonstrates how to shuffle elements by calling random_shuffle():

 // algo/random1.cpp

 #include <cstdlib>
 #include "algostuff.hpp"
 using namespace std;

 c1ass MyRandom {
 public:
 ptrdiff_t operator() (ptrdiff_t max) {
 double tmp;
 tmp = static_cast<double>(rand())
 / static_cast<double>(RAND_MAX);
 return static_cast<ptrdiff_t>(tmp * max);
 }
 };

 int Main()
 {

 vector<int> coll;

 INSERT_ELEMENTS(coll,1,9);
 PRINT_ELEMENTS(coll,"coll: ");

 // shuffle all elements randomly
 random_shuffle (coll.begin(), coll.end());

 PRINT_ELEMENTS(coll."shuffled: ");

 // sort them again
 sort (coll.begin(), coll.end());
 PRINT_ELEMENTS(coll,"sorted: ");

 /*shuffle elements with self-written random number generator
 *-to pass an lvalue we have to use a temporary object
 */

The C++ Standard Library

dyne-book 342

 MyRandom rd;
 random_shuffle (coll.begin(), coll.end(), // range
 rd); // random number generator
 PRINT_ELEMENTS(coll,"shuffled: ");
 }

The second call of random() uses the self-written random number generator rd(). It is an
object of the auxiliary function object c1ass MyRandom, which uses an algorithm for random
numbers that often is better than the usual direct call of rand().[7]

[7] The way MyRandom generates random numbers is introduced and described in Bjarne Stroustrup's The
C++ Programming Language, 3rd edition.

A possible (but not portable) output of the program is as follows:

 coll: 1 2 3 4 5 6 7 8 9
 shuffled: 2 6 9 5 4 3 1 7 8
 sorted: 1 2 3 4 5 6 7 8 9
 shuffled: 2 6 9 3 1 8 7 4 5

9.8.5 Moving Elements to the Front

BidirectionalIterator
partition (BidirectionalIterator beg, BidirectionalIterator end. UnaryPredicate op)
BidirectionalIterator
stable_partition (BidirectionalIterator beg, BidirectionalIterator end,
UnaryPredicate op)

• Both algorithms move all elements in the range [beg,end) to the front for which the unary
predicate

op (elem)

yields true.

• Both algorithms return the first position for which op() yields false.
• The difference between partition() and stable_partition() is that

stable_partition() preserves the relative order of elements that match the criterion
and those that do not.

• You could use this algorithm to split elements into two parts according to a sorting
criterion. The nth_element() algorithm has a similar ability. See page 330 for a
discussion of the differences between these algorithms and nth_element().

• Note that op should not change its state during a function call. See Section 8.1.4,for
details.

• Complexity:
o For partition(): linear (numberOfElements calls of op() and, at most,

numberOfElements/2 swaps).
o For stable_partition(): linear if there is enough extra memory

(numberOfElements calls of op() and swaps), or n-log-n otherwise
(numberOfElements*log(numberOfElements) calls of op()).

The C++ Standard Library

dyne-book 343

The following program demonstrates the use of and the difference between partition() and
stable_partition():

 // algo/part1.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()
 {

 vector<int> coll1;
 vector<int> coll2;

 INSERT_ELEMENTS(coll1,1,9);
 INSERT_ELEMENTS(coll2,1,9);
 PRINT_ELEMENTS(coll1,"coll1: ");
 PRINTIELEMENTS(coll2,"coll2: ");
 cout << endl;

 // move all even elements to the front
 vector<int>::iterator pos1, pos2;
 pos1 = partition(coll1.begin(), coll1.end(), // range
 not1(bind2nd(modulus<int>(),2))); // criterion
 pos2 = stable_partition(coll2.begin(), coll2.end(), //
range
 not1(bind2nd(modulus<It>(),2))); //
crit

 // print collections and first odd element
 PRINT_ELEMENTS(coll1,"coll1: ");
 cout << "first odd element: " << *pos1 << endl;
 PRINT_ELEMENTS(coll2,"coll2: ");
 cout << "first odd element: " << *pos2 << endl;
 }

The program has the following output:

 coll1: 1 2 3 4 5 6 7 8 9
 coll2: 1 2 3 4 5 6 7 8 9

 coll1: 8 2 6 4 5 3 7 1 9
 first odd element: 5
 coll2: 2 4 6 8 1 3 5 7 9
 first odd element: 1

As this example shows, stable_partition(), unlike partition(), preserves the relative
order of the even and the odd elements.

9.9 Sorting Algorithms

The C++ Standard Library

dyne-book 344

The STL provides several algorithms to sort elements of a range. In addition to full sorting, it
provides different variants of partial sorting. If their result is enough, you should prefer them
because they usually have better performance.
You might also use associative containers to have elements sorted automatically. However, note
that sorting all elements once is usually faster than keeping them sorted always (see page 228 for
details).

9.9.1 Sorting All Elements

void
sort (RandomAccessIterator beg, RandomAccessIterator end)
void
sort (RandomAccessIterator beg, RandomAccessIterator end, BinaryPredicate op)
void
stable_sort (RandomAccessIterator beg, RandomAccessIterator end)
void
stable_sort (RandomAccessIterator beg, RandomAccessIterator end,
BinaryPredicate op)

• The first forms of sort() and stable_sort() sort all elements in the range [beg,end)
with operator <.

• The second forms of sort() and stable_sort() sort all elements by using the binary
predicate

op(elem1,elem2) as the sorting criterion.

• Note that op should not change its state during a function call. See Section 8.1.4,for
details.

• The difference between sort() and stable_sort() is that stable_sort()
guarantees that the order of equal elements remains stable.

• You can't call these algorithms for lists because lists do not provide random access
iterators. However, lists provide a special member function to sort elements: sort()
(see page 245).

• sort() guarantees a good performance (n-log-n) on average. However, if avoiding
worst-case performance is important, you should use partial_sort() or
stable_sort(). See the discussion about sorting algorithms on page 328.

• Complexity:
o For sort(): n-log-n on average (approximately

numberOfElements*log(numberOfElements) comparisons on average).
o For stable_sort(): n-log-n if there is enough extra memory

(numberOfElements* log(numberOfElements) comparisons), or n-log-n*log-n
otherwise (numberOfElements* log(numberOfElements)[] comparisons).

The following example demonstrates the use of sort():

 // algo/sort1.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()
 {
 deque<int> coll;

The C++ Standard Library

dyne-book 345

 INSERT_ELEMENTS(coll,1,9);
 INSERT_ELEMENTS(coll,1,9);

 PRINT_ELEMENTS(coll,"on entry: ");

 // sort elements
 sort (coll.begin(), coll.end());

 PRINT_ELEMENTS(coll,"sorted: ");

 // sorted reverse
 sort (coll.begin(), coll.end(), // range
 greater<int>()); // sorting criterion

 PRINT_ELEMENTS(coll,"sorted >: ");
 }

The program has the following output:

 on entry: 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
 sorted: 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9
 sorted >: 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1

See page 123 for an example that demonstrates how to sort according to a member of a c1ass.
The following program demonstrates how sort() and stable_sort() differ. The program
uses both algorithms to sort strings only according to their number of characters by using the
sorting criterion lessLength():

 // algo/sort2.cpp

 #include "algostuff.hpp"
 using namespace std;

 bool lessLength (const string& s1, const string& s2)
 {
 return s1.length() < s2.length();
 }

 int Main()
 {
 vector<string> coll1;
 vector<string> coll2;

 // fill both collections with the same elements
 coll1.push_back ("1xxx");
 coll1.push_back ("2x");
 coll1.push_back ("3x");
 coll1.push_back ("4x");
 coll1.push_back ("5xx");
 coll1.push_back ("6xxxx");
 coll1.push_back ("7xx");
 coll1.push_back ("8xxx");
 coll1.push_back ("9xx");

The C++ Standard Library

dyne-book 346

 coll1.push_back ("l0xxx");
 coll1.push_back ("11");
 coll1.push_back ("12");
 coll1.push_back ("13");
 coll1.push_back ("14xx");
 coll1.push_back ("15");
 coll1.push_back ("16");
 coll1.push_back ("17");
 col12 = coll1;

 PRINT_ELEMENTS (coll1,"on entry:\n ");

 // sort (according to the length of the strings)
 sort (coll1.begin(), coll1.end(), // range
 lessLength); // criterion
 stable_sort (coll2.begin(), coll2.end(), // range
 lessLength); //criterion

 PRINT_ELEMENTS(coll1,"\nwith sort():\n ");
 PRINT_ELEMENTS(coll2,"\nwith stable_sort():\n ");
 }

The program has the following output:

 on entry:
 1xxx 2x 3x 4x 5xx 6xxxx 7xx 8xxx 9xx lOxxx 11 12 13 14xx 15 16 17

 with sort():
 17 2x 3x 4x 16 15 13 12 11 9xx 7xx 5xx 8xxx 14xx 1xxx lOxxx 6xxxx

 with stable_sort():
 2x 3x 4x 11 12 13 15 16 17 5xx 7xx 9xx 1xxx 8xxx 14xx 6xxxx lOxxx

Only stable_sort() preserves the relative order of the elements (the leading numbers tag the
order of the elements on entry).

9.9.2 Partial Sorting

void
partial_sort (RandomAccessIterator beg, RandomAccessIterator sortEnd,
RandomAccessIterator end)
void
partial_sort (RandomAccessIterator beg, RandomAccessIterator sortEnd,
RandomAccessIterator end, BinaryPredicate op)

• The first form sorts the elements in the range [beg,end) with operator < so that range
[beg,sortEnd) contains the elements in sorted order.

• The second form sorts the elements by using the binary predicate

op (elem1, elem2)

as the sorting criterion so that range [beg,sortEnd) contains the elements in sorted order.

The C++ Standard Library

dyne-book 347

• Note that op should not change its state during a function call. See Section 8.1.4, for
details.

• Unlike sort(), partial_sort() does not sort all elements, but stops the sorting
once the first elements up to sortEnd are sorted correctly. Thus, if after sorting the
sequence you need only the first three elements, this algorithm saves time because it
does not sort the remaining elements unnecessarily.

• If sortEnd is equal to end, partial_sort() sorts the full sequence. It has worse
performance than sort() on average but better performance in the worst case. See the
discussion about sorting algorithms on page 328.

• Complexity: between linear and n-log-n (approximately
numberOfElements*log(numberOfSortedElements) comparisons).

The following program demonstrates how to use partial_sort():

 // algo/psort1.cpp

 #include "algostuff.hpp"
 using namespace std;

 int Main()
 {
 deque<int> coll;

 INSERT_ELEMENTS(coll,3,7);
 INSERT_ELEMENTS(coll,2,6);
 INSERT_ELEMENTS(coll,1,5);
 PRINT_ELEMENTS(coll);

 // sort until the first five elements are sorted
 partial_sort (coll.begin(), // beginning of the range
 coll.begin()+5, // end of sorted range
 coll.end()); // end of full range
 PRINT_ELEMENTS(coll);

 // sort inversely until the first five elements are sorted
 partial_sort(coll.begin(), // beginning of the range
 coll.begin()+5, // end of sorted range
 coll.end(), // end of full range
 greater<int>()); // sorting criterion
 PRINT_ELEMENTS(coll);

 // sort all elements
 partial_sort (coll.begin(), // beginning of the range
 coll.end(), // end of sorted range
 coll.end()); // end of full range
 PRINT_ELEMENTS(coll);
 }

The program has the following output:

 3 4 5 6 7 2 3 4 5 6 1 2 3 4 5
 1 2 2 3 3 7 6 5 5 6 4 4 3 4 5
 7 6 6 5 5 1 2 2 3 3 4 4 3 4 5
 1 2 2 3 3 3 4 4 4 5 5 5 6 6 7

The C++ Standard Library

dyne-book 348

RandomAccessIterator
partial_sort_copy (InputIterator sourceBeg, InputIterator sourceEnd,
RandomAccessIterator destbeg, RandomAccessIterator destEnd)
partial_sort_copy (InputIterator sourceBeg, InputIterator sourceEnd,
RandomAccessIterator destbeg, RandomAccessIterator destEnd) BinaryPredicate
op)

• Both forms are a combination of copy() and partial_sort().
• They copy elements from the source range [sourceBeg,sourceEnd) sorted into the

destination range [destBeg,destEnd).
• The number of elements that are sorted and copied is the minimum number of elements

in the source range and in the destination range.
• Both forms return the position after the last copied element in the destination range (the

first element that is not overwritten).
• If the destination range [destBeg,destEnd) has more or an equal number of elements

than the source range [sourceBeg,sourceEnd), all elements are copied and sorted. Thus,
the behavior is a combination of copy() and sort().

• Complexity: between linear and n-log-n (approximately
numberOfElements*log(numberOfSortedElements) comparisons).

The following program demonstrates some examples of partial_sort_copy():

 // algo/psort2.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()
 {

 deque<int> coll1;
 vector<int> coll6(6); // initialize with 6 elements
 vector<int> coll30(30); // initialize with 30 elements

 INSERT_ELEMENTS(coll1,3,7);
 INSERTIELEMEMTS(coll1,2,6);

 INSERT_ELEMENTS(coll1,1,5);
 PRINT_ELEMENTS(coll1);

 // copy elements of coll1 sorted into coll6
 vector<int>::iterator pos6;
 pos6 = partial_sort_copy (coll1.begin(), coll1.end(),
 coll6.begin(), coll6.end());

 // print all copied elements
 copy (coll6.begin(), pos6,
 ostream_iterator<int>(cout," "));
 cout << endl;

 // copy elements of coll1 sorted into coll30
 vector<int>::iterator pos30;
 pos30 = partial_sort_copy (coll1.begin(), coll1.end(),
 coll30.begin(), coll30.end(),

The C++ Standard Library

dyne-book 349

 greater<int>());

 // print all copied elements
 copy (coll30.begin(), pos30,
 ostream_iterator<int>(cout," "));
 cout << endl;
 }

The program has the following output:

 3 4 5 6 7 2 3 4 5 6 1 2 3 4 5
 1 2 2 3 3 3
 7 6 6 5 5 5 4 4 4 3 3 3 2 2 1

The destination of the first call of partial_sort_copy() has only six elements, so the
algorithm copies only six elements and returns the end of coll6. The second call of
partial_sort_copy() copies all elements of coll1 into coll30, which has enough room
for them, and thus all elements are copied and sorted.

9.9.3 Sorting According to the nth Element

void
nth_element (RandomAccessIterator beg, RandomAccessIterator nth,
RandomAccessIterator end)
void
nth_element (RandomAccessIterator beg, RandomAccessIterator nth,
RandomAccessIterator end, BinaryPredicate op)

• Both forms sort the elements in the range [beg,end) so that the correct element is at the
nth position and all elements in front are less than or equal to this element, and all
elements that follow are greater than or equal to it. Thus, you get two subsequences
separated by the element at position n, whereby each element of the first subsequence is
less than or equal to each element of the second subsequence. This is helpful if you
need only the set of the n highest or lowest elements without having all the elements
sorted.

• The first form uses operator < as the sorting criterion.
• The second form uses the binary predicate

op(elem1 ,elem2)

as the sorting criterion.

• Note that op should not change its state during a function call. See Section 8.1.4, for
details.

• The partition() algorithm (see page 395) is also provided to split elements of a
sequence into two parts according to a sorting criterion. See page 330 for a discussion of
how nth_element() and partition() differ.

• Complexity: linear on average.

The following program demonstrates how to use nth_element():

The C++ Standard Library

dyne-book 350

 // algo/nth1.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()
 {

 deque<int> coll;

 INSERT_ELEMENTS(coll,3,7);
 INSERT_ELEMENTS(coll,2,6);
 INSERT_ELEMENTS(coll,1,5);
 PRINT_ELEMENTS(coll);

 // extract the four lowest elements
 nth_element (coll.begin(), // beginning of range
 coll.begin()+3, // element that should be sorted
correctly
 coll.end()); // end of range

 // print them
 cout << "the four lowest elements are: ";
 copy (coll.begin(), coll.begin()+4,
 ostream_iterator<int>(cout," "));
 cout << endl;

 // extract the four highest elements
 nth_element (coll.begin(), // beginning of range
 coll.end()-4, // element that should be sorted
correctly
 coll.end()); // end of range

 // print them
 cout << "the four highest elements are: ";
 copy (coll.end()-4, coll.end(),
 ostream_iterator<int>(cout," "));
 cout << endl;

 // extract the four highest elements (second version)
 nth_element (coll.begin(), // beginning of range
 coll.begin()+3, // element that should be sorted
correctly
 coll.end(), // end of range
 greater<int>()); // sorting criterion

 // print them
 cout << "the four highest elements are: ";
 copy (coll.begin(), coll.begin()+4,
 ostream_iterator<int>(cout," "));
 cout << endl;
 }

The program has the following output:

 3 4 5 6 7 2 3 4 5 6 1 2 3 4 5

The C++ Standard Library

dyne-book 351

 the four lowest elements are: 2 1 2 3
 the four highest elements are: 5 6 7 6
 the four highest elements are: 6 7 6 5

9.9.4 Heap Algorithms

A heap, in the context of sorting, is used as a particular way to sort elements. It is used by
heapsort. A heap can be considered a binary tree that is implemented as a sequential collection.
Heaps have two properties:

1. The first element is always the largest element.
2. You can add or remove an element in logarithmic time.

A heap is the ideal way to implement a priority queue (a queue that sorts its elements
automatically). Therefore, the heap algorithms are used by the priority_queue container (see
Section 10.3). The STL provides four algorithms to handle a heap:

1. make_heap() converts a range of elements into a heap.
2. push_heap() adds one element to the heap.
3. pop_heap() removes the next element from the heap.
4. sort_heap() converts the heap into a sorted collection (after that, it is no longer a

heap).

As usual, you can pass a binary predicate as the sorting criterion. The default sorting criterion is
operator <.

Heap Algorithms in Detail

void
make_heap (RandomAccesIterator beg, RandomAccesIterator end)
void
make_heap (RandomAccesIterator beg, RandomAccesIterator end, BinaryPredicate
op)

• Both forms convert the elements in the range [beg,end) into a heap.
• op is an optional binary predicate that is used as the sorting criterion:

op(etem1 ,elem2)

• You need these functions only to start processing a heap for more than one element (one
element automatically is a heap).

• Complexity: linear (at most, 3*numberOfElements comparisons).

void
push_heap (RandomAccesIterator beg, RandomAccesIterator end)
void
push_heap (RandomAccesIterator beg, RandomAccesIterator end, BinaryPredicate
op)

The C++ Standard Library

dyne-book 352

• Both forms add the last element that is in front of end to the existing heap in the range
[beg,end-1) so that the whole range [beg,end) becomes a heap.

• op is an optional binary predicate that is used as the sorting criterion:

op(elem1 ,elem2)

• The caller has to ensure that, on entry, the elements in the range [beg,end-1) are a heap
(according to the same sorting criterion) and that the new element immediately follows
these elements.

• Complexity: logarithmic (at most, log(numberOfElements) comparisons).

void
pop_heap (RandomAccesIterator beg, RandomAccesIterator end)
void
pop_heap (RandomAccesIterator beg, RandomAccesIterator end, BinaryPredicate
op)

• Both forms move the highest element of the heap [beg,end), which is the first element, to
the last position and create a new heap from the remaining elements in the range
[beg,end-1).

• op is an optional binary predicate that is used as the sorting criterion:

op(elem1 ,elem2)

• The caller has to ensure that, on entry, the elements in the range [beg,end) are a heap
(according to the same sorting criterion).

• Complexity: logarithmic (at most, 2*log(numberOfElements) comparisons).

void
sort_heap (RandomAccesIterator beg, RandomAccesIterator end)
void
sort_heap (RandomAccesIterator beg, RandomAccesIterator end, BinaryPredicate
op)

• Both forms convert the heap [beg,end) into a sorted sequence.
• op is an optional binary predicate that is used as the sorting criterion:

op(elem1, elem2)

• Note that after this call, the range is no longer a heap.
• The caller has to ensure that, on entry, the elements in the range [beg,end] are a heap

(according to the same sorting criterion).
• Complexity: n-log-n (at most, numberOfElements*log(numberOfElements)

comparisons).

Example Using Heaps

The following program demonstrates how to use the different heap algorithms:

 // algo/heap1.cpp

 #include "algostuff.hpp"

The C++ Standard Library

dyne-book 353

 using namespace std;

 int main()
 {

 vector<int> coll;

 INSERT_ELEMENTS(coll,3,7);
 INSERT_ELEMENTS(coll,5,9);
 INSERT_ELEMENTS(coll,1,4);

 PRINT_ELEMENTS (coll, "on entry: ");

 // convert collection into a heap
 make_heap (coll.begin(), coll.end());

 PRINT_ELEMENTS (coll, "after make_heap(): ");

 // pop next element out of the heap
 pop_heap (coll.begin(), coll.end());
 coll.pop_back();

 PRINT_ELEMENTS (coll, "after pop_heap(): ");

 // push new element into the heap
 coll.push_back (17);
 push_heap (coll.begin(), coll.end());

 PRINT_ELEMENTS (coll, "after push_heap(): ");

 /*convert heap into a sorted collection
 * - NOTE: after the call it is no longer a heap
 */
 sort_heap (coll.begin(), coll.end());

 PRINT_ELEMENTS (coll, "after sort_heap(): ");
 }

The program has the following output:

 on entry: 3 4 5 6 7 5 6 7 8 9 1 2 3 4
 after make_heap(): 9 8 6 7 7 5 5 3 6 4 1 2 3 4
 after pop_heap(): 8 7 6 7 4 5 5 3 6 4 1 2 3
 after push_heap(): 17 7 8 7 4 5 6 3 6 4 1 2 3 5
 after sort_heap(): 1 2 3 3 4 4 5 5 6 6 7 7 8 17

After make_heap(), the elements are sorted as a heap:

9 8 6 7 7 5 5 3 6 4 1 2 3 4

Transform the elements into a binary tree, and you'll see that the value of each node is less than
or equal to its parent node (Figure 9.1). Both push_heap() and pop_heap() change the

The C++ Standard Library

dyne-book 354

elements so that the invariant of this binary tree structure (each node not greater than its parent
node) remains stable.

Figure 9.1. Elements of a Heap as a Binary Tree

9.10 Sorted Range Algorithms

Sorted range algorithms require that the source ranges have the elements sorted according to
their sorting criterion. They may have significant better performance than similar algorithms for
unsorted ranges (usually logarithmic instead of linear complexity). You can use these algorithms
with iterators that are not random access iterators. However, in this case, the algorithms have
linear complexity because they have to step through the sequence element-b-element.
Nevertheless, the number of comparisons may still have logarithmic complexity.
According to the standard, calling these algorithms for sequences that are not sorted on entry
results in undefined behavior. However, for most implementations calling these algorithms also
works for unsorted sequences. Nevertheless, to rely on this fact is not portable.
Associative containers provide special member functions for the searching algorithms presented
here. When searching for a special value or key, you should use them.

9.10.1 Searching Elements

The following algorithms search certain values in sorted ranges.

Checking Whether One Element Is Present

bool
binary_search (ForwardIterator beg, ForwardIterator end, const T& value)
bool
binary_search (ForwardIterator beg, ForwardIterator end, const T& value,
BinaryPredicate op)

• Both forms return whether the sorted range [beg,end) contains an element equal to
value.

• op is an optional binary predicate that is used as the sorting criterion:

The C++ Standard Library

dyne-book 355

op(elem1 ,elem2)

• To obtain the position of an element for which you are searching, use lower_bound(),
upper_bound(), or equal_range() (see page 413 and page 415).

• The caller has to ensure that the ranges are sorted according to the sorting criterion on
entry.

• Complexity: logarithmic for random access iterators, linear otherwise (at most,
log(numberOfElements) + 2 comparisons, but for other than random access iterators
the number of operations to step through the elements is linear, making the total
complexity linear).

The following program demonstrates how to use binary_search():

 // algo/bsearch1.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()
 {

 list<int> coll;

 INSERT_ELEMENTS(coll,1,9);
 PRINT_ELEMENTS(coll) ;

 // check existence of element with value 5
 if (binary_search(coll.begin(), coll end(), 5)) {
 cout << "5 is present" << endl;
 }
 else {
 cout << "5 is not present" << endl;
 }

 // check existence of element with value 42
 if (binary_search(coll.begin(), coll.end(), 42)) {
 cout << "42 is present" << endl;
 }
 else {
 cout << "42 is not present" << endl;
 }
 }

The program has the following output:

 1 2 3 4 5 6 7 8 9
 5 is present
 42 is not present

Checking Whether Several Elements Are Present

bool

The C++ Standard Library

dyne-book 356

includes (InputIterator1 beg, InputIterator1 end, InputIterator2 searchBeg,
InputIterator2 searchEnd)
bool
includes (InputIterator1 beg, InputIterator1 end, InputIterator2 searchBeg,
InputIterator2 searchEnd, BinaryPredicate op)

• Both forms return whether the sorted range [beg,end) contains all elements in the sorted
range [searchBeg,searchEnd). That is, for each element in [searchBeg,searchEnd) there
must be an equal element in [beg,end). If elements in [searchBeg,search End) are equal,
[beg,end) must contain the same number of elements. Thus, [searchBeg,searchEnd)
must be a subset of [beg,end).

• op is an optional binary predicate that is used as the sorting criterion:

op (elem1, elem2)

• The caller has to ensure that both ranges are sorted according to the same sorting
criterion on entry.

• Complexity: linear (at most, 2* (numberOfElements+searchElements) - 1 comparisons).

The following program demonstrates the usage of includes():

 // algo/includes.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()
 {
 list<int> coll;
 vector<int> search;

 INSERT_ELEMENTS(coll,1,9);
 PRINT_ELEMENTS(coll,"coll: ");

 search.push_back(3);
 search.push_back(4);
 search.push_back(7);
 PRINT_ELEMENTS(search,"search: ");

 // check whether all elements in search are also in coll
 if (includes (coll.begin(), coll.end(),
 search.begin(), search.end())) {
 cout << "all elements of search are also in coll"
 << endl;
 }
 else {
 cout << "not all elements of search are also in coll"
 << endl;
 }
 }

The program has the following output:

 coll: 1 2 3 4 5 6 7 8 9

The C++ Standard Library

dyne-book 357

 search: 3 4 7
 all elements of search are also in coll

Searching First or Last Possible Position

ForwardIterator
lower_bound (ForwardIterator beg, ForwardIterator end, const T& value)
ForwardIterator
lower_bound (ForwardIterator beg, ForwardIterator end, const T& value,
BinaryPredicate op)
ForwardIterator
upper_bound (ForwardIterator beg, ForwardIterator end, const T& value)
ForwardIterator
upper_bound (ForwardIterator beg, ForwardIterator end, const T& value,
BinaryPredicate op)

• lower_bound() returns the position of the first element that has a value less than or
equal to value. This is the first position where an element with value value could get
inserted without breaking the actual sorting of the range [beg,end).

• upper_bound() returns the position of the first element that has a value greater than
value. This is the last position where an element with value value could get inserted
without breaking the actual sorting of the range [beg,end).

• All algorithms return end if there is no such value.
• op is an optional binary predicate that is used as the sorting criterion:

op (elem1 ,elem2)

• The caller has to ensure that the ranges are sorted according to the sorting criterion on
entry.

• To obtain the result from both lower_bound() and upper_bound(), use
equal_range(), which returns both (see the next algorithm).

• Associative containers (set, multiset, map, and multimap) provide equivalent member
functions that provide better performance (see page 235).

• Complexity: logarithmic for random access iterators, linear otherwise (at most,
log(numberOfElements) + 1 comparisons, but for other than random access iterators
the number of operations to step through the elements is linear, making the total
complexity linear).

The following program demonstrates how to use lower_bound() and upper_bound()[8] :

[8] Older STL versions might need the file distance.hpp from page 263.

 // algo/bounds1.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()
 {

The C++ Standard Library

dyne-book 358

 list<int> coll;

 INSERT_ELEMENTS(coll,1,9);
 INSERT_ELEMENTS(coll,1,9);
 coll.sort();
 PRINT_ELEMENTS(coll);

 // print first and last position 5 could get inserted
 list<int> :: iterator pos1, pos2;

 pos1 = lower_bound (coll.begin(), coll.end(),
 5);
 pos2 = upper_bound (coll.begin(), coll.end(),
 5);

 cout << "5 could get position "
 << distance(coll.begin(),pos1) + 1
 << " up to "
 << distance(coll.begin(),pos2) + 1
 << " without breaking the sorting" << endl;

 // insert 3 at the first possible position without breaking the
sorting
 coll.insert (lower_bound(coll.begin(), coll.end(),
 3),
 3);

 // insert 7 at the last possible position without breaking the
sorting
 coll.insert (upper_bound(coll.begin(),coll.end(),
 7),
 7);

 PRINT_ELEMENTS(coll);
 }

The program has the following output:

 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9
 5 could get position 9 up to 11 without breaking the sorting
 1 1 2 2 3 3 3 4 4 5 5 6 6 7 7 7 8 8 9 9

Searching First and Last Possible Positions

pair<ForwardIterator,ForwardIterator>
equal_range (ForwardIterator beg, ForwardIterator end, const T& value)
pair<ForwardIterator,ForwardIterator>
equal_range (ForwardIterator beg, ForwardIterator end, const T& value,
BinaryPredicate op)

• Both forms return the range of elements that is equal to value. This is the first and the last
position an element with value value could get inserted without breaking the actual
sorting of the range [beg,end).

The C++ Standard Library

dyne-book 359

• This is equivalent to
•
• make_pair (lower_bound(...), upper_bound(...))
•

• op is an optional binary predicate that is used as the sorting criterion:

op (elem1, elem2)

• The caller has to ensure that the ranges are sorted according to the sorting criterion on
entry.

• Associative containers (set, multiset, map, and multimap) provide an equivalent member
function that has better performance (see page 236).

• Complexity: logarithmic for random access iterators, linear otherwise (at most,
2*log(numberOfElements) + 1 comparisons, but for other than random access iterators
the number of operations to step through the elements is linear, making the total
complexity linear).

The following program demonstrates how to use equal_range()[9] :

[9] Older STL versions might need the file distance.hpp from page 263.

 // algo/eqrange1.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()
 {
 list<int> coll;

 INSERT_ELEMENTS(coll,1,9);
 INSERT_ELEMENTS(coll,1,9);
 coll.sort();
 PRINT_ELEMENTS(coll);

 // print first and last position 5 could get inserted
 pair<list<int>::iterator,list<int>::iterator> range;
 range = equal_range (coll.begin(), coll.end(),
 5);

 cout << "5 could get position "
 << distance (coll.begin(),range, first) + 1
 << " up to "
 << distance(coll.begin().range.second) + 1
 << " without breaking the sorting" << endl;
 }

The program has the following output:

 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9

The C++ Standard Library

dyne-book 360

 5 could get position 9 up to 11 without breaking the sorting

9.10.2 Merging Elements

The following algorithms merge elements of two ranges. They process the sum, the union, the
intersection, and so on.

Processing the Sum of Two Sorted Sets

OutputIterator
merge (InputIterator source1Beg, InputIterator source1End, InputIterator
source2Beg, InputIterator source2End, Output Iterator destBeg)
OutputIterator
merge (InputIterator source1Beg, InputIterator source1End, InputIterator
source2Beg, InputIterator source2End, OutputIterator destBeg, BinaryPredicate
op)

• Both forms merge the elements of the sorted source ranges [source1Beg,source1End)
and [source2Beg,source2End) so that the destination range starting with destBeg
contains all elements that are in the first source range plus those that are in the second
source range. For example, calling merge() for

•
• 1 2 2 4 6 7 7 9

and

 2 2 2 3 6 6 8 9

results in

 1 2 2 2 2 2 3 4 6 6 6 7 7 8 9 9

• All elements in the destination range are in sorted order.
• Both forms return the position after the last copied element in the destination range (the

first element that is not overwritten).
• op is an optional binary predicate that is used as the sorting criterion:

op(elem1 ,elem2)

• The source ranges are not modified.
• According to the standard, the caller has to ensure that both source ranges are sorted on

entry. However, in most implementations this algorithm also merges elements of two

The C++ Standard Library

dyne-book 361

unsorted source ranges into an unsorted destination range. Nevertheless, for unsorted
ranges you should call copy() twice, instead of merge(), to be portable.

• The caller must ensure that the destination range is big enough or that insert iterators are
used.

• The destination range should not overlap the source ranges.
• Lists provide a special member function, merge(), to merge the elements of two lists

(see page 246).
• To ensure that elements that are in both source ranges end up in the destination range

only once, use set_union() (see page 418).
• To process only the elements that are in both source ranges, use

set_intersection() (see page 419).
• Complexity: linear (at most, numberOfElement1+numberOfElements2-1 comparisons).

The following example demonstrates how to use merge():

 // algo/merge1.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()
 {
 list<int> coll1;
 set<int> coll2;

 // fill both collections with some sorted elements
 INSERT_ELEMENTS(coll1,l,6);
 INSERT_ELEMENTS(coll2,3,8);

 PRINT_ELEMENTS(coll1,"coll1: ");
 PRINT_ELEMENTS(coll2,"coll2: ");

 // print merged sequence
 cout << "merged: ";
 merge (coll1.begin(), coll1.end(),
 coll2.begin(), coll2.end(),
 ostream_iterator<int>(cout," "));
 cout << endl;
 }

The program has the following output:

 coll1: 1 2 3 4 5 6
 coll2: 3 4 5 6 7 8
 merged: 1 2 3 3 4 4 5 5 6 6 7 8

See page 421 for another example. It demonstrates how the different algorithms that are provided
to combine sorted sequences differ.

Processing the Union of Two Sorted Sets

OutputIterator

The C++ Standard Library

dyne-book 362

set_union (InputIterator source1Beg, InputIterator source1End, InputIterator
source2Beg, InputIterator source2End, OutputIterator destBeg)
OutputIterator
set_union (InputIterator source1Beg, InputIterator source1End, InputIterator
source2Beg, InputIterator source2End, OutputIterator destBeg, BinaryPredicate
op)

• Both forms merge the elements of the sorted source ranges [source1Beg,source1End)
and [source2Beg,source2End) so that the destination range starting with destBeg
contains all elements that are either in the first source range, in the second source range,
or in both. For example, calling set_union() for

• 1 2 2 4 6 7 7 9

and

 2 2 2 3 6 6 8 9

results in

 1 2 2 2 3 4 6 6 7 7 8 9

• All elements in the destination range are in sorted order.
• Elements that are in both ranges are in the union range only once. However, duplicates

are possible if elements occur more than once in one of the source ranges. The number
of occurrences of equal elements in the destination range is the maximum of the number
of their occurrences in both source ranges.

• Both forms return the position after the last copied element in the destination range (the
first element that is not overwritten).

• op is an optional binary predicate that is used as the sorting criterion:

op(elem1,elem2)

• The source ranges are not modified.
• The caller has to ensure that the ranges are sorted according to the sorting criterion on

entry.
• The caller must ensure that the destination range is big enough or that insert iterators are

used.
• The destination range should not overlap the source ranges.
• To obtain all elements of both source ranges without removing elements that are in both,

use merge() (see page 416).
• Complexity: linear (at most, 2*(numberOfElements1+numberOfElements2) - 1

comparisons).

See page 421 for an example of the use of set_union(). This example also demonstrates how
it differs from other algorithms that combine elements of two sorted sequences.

Processing the Intersection of Two Sorted Sets

The C++ Standard Library

dyne-book 363

OutputIterator
set_intersection (InputIterator source1Beg, InputIterator source1End.
InputIterator source2Beg, InputIterator source2End, OutputIterator destBeg)
OutputIterator
set_intersection (InputIterator source1Beg, InputIterator source1End,
InputIterator source2Beg, InputIterator sotirce2End, OutputIterator destBeg,
BinaryPredicate op)

• Both forms merge the elements of the sorted source ranges [source1 Beg,source1 End)
and [source2Beg,source2End) so that the destination range starting with destBeg
contains all elements that are in both source ranges. For example, calling
set_intersection() for

•
• 1 2 2 4 6 7 7 9

and

 2 2 2 3 6 6 8 9

results in

 2 2 6 9

• All elements in the destination range are in sorted order.
• Duplicates are possible if elements occur more than once in both source ranges. The

number of occurrences of equal elements in the destination range is the minimum
number of their occurrences in both source ranges.

• Both forms return the position after the last merged element in the destination range.
• op is an optional binary predicate that is used as the sorting criterion:

op (elem1,elem2)

• The source ranges are not modified.
• The caller has to ensure that the ranges are sorted according to the sorting criterion on

entry.
• The caller must ensure that the destination range is big enough or that insert iterators are

used.
• The destination range should not overlap the source ranges.
• Complexity: linear (at most, 2* (numberOfElements 1+numberOfElements2*) - 1

comparisons).

See page 421 for an example of the use of set_intersection(). This example also
demonstrates how it differs from other algorithms that combine elements of two sorted
sequences.

Processing the Difference of Two Sorted Sets

The C++ Standard Library

dyne-book 364

OutputIterator
set_difference (InputIterator source1Beg, InputIterator source1End,
InputIterator source2Beg, InputIterator source2End, OutputIterator destBeg)
OutputIterator
set_difference (InputIterator source1Beg, InputIterator source1End,
InputIterator source2Beg, InputIterator source2End, OutputIterator destBeg,
BinaryPredicate op)

• Both forms merge the elements of the sorted source ranges [source1Beg,source1End)
and [source2Beg,source2End) so that the destination range starting with destBeg
contains all elements that are in the first source range but not in the second source
range. For example, calling set_difference() for

•
• 1 2 2 4 6 7 7 9
•

and

 2 2 2 3 6 6 8 9

results in

 1 4 7 7

• All elements in the destination range are in sorted order.
• Duplicates are possible if elements occur more than once in the first source range. The

number of occurrences of equal elements in the destination range is the difference
between the number of their occurrences in the first source range less the number of
occurrences in the second source range. If there are more occurrences in the second
source range, the number of occurrences in the destination range is zero.

• Both forms return the position after the last merged element in the destination range.
• op is an optional binary predicate that is used as the sorting criterion:

op(elem1 ,elem2)

• The source ranges are not modified.
• The caller has to ensure that the ranges are sorted according to the sorting criterion on

entry.
• The caller must ensure that the destination range is big enough or that insert iterators are

used.
• The destination range should not overlap the source ranges.
• Complexity: linear (at most, 2*(numberOfElements1+numberOfElements2) - 1

comparisons).

See page 421 for an example of the use of set_difference(). This example also
demonstrates how it differs from other algorithms that combine elements of two sorted
sequences.
OutputIterator
set_symmetric_difference (InputIterator source1 Beg, InputIterator source1 End,
InputIterator source2Beg, InputIterator source2End, OutputIterator destBeg)
OutputIterator

The C++ Standard Library

dyne-book 365

set_symmetric_difference (InputIterator source1Beg, InputIterator source1End,
InputIterator source2Beg, InputIterator source2End, OutputIterator destBeg,
BinaryPredicate op)

• Both forms merge the elements of the sorted source ranges [source1Beg,source1End)
and [source2Beg,source2End) so that the destination range starting with destBeg
contains all elements that are either in the first source range or in the second source
range, but not in both. For example, calling set_symmetric_difference() for

•
• 1 2 2 4 6 7 7 9
•

and

 2 2 2 3 6 6 8 9

results in

 1 2 3 4 6 7 7 8

• All elements in the destination range are in sorted order.
• Duplicates are possible if elements occur more than once in one of the source ranges.

The number of occurrences of equal elements in the destination range is the difference
between the number of their occurrences in the source ranges.

• Both forms return the position after the last merged element in the destination range.
• op is an optional binary predicate that is used as the sorting criterion:

op(elem1,elem2)

• The source ranges are not modified.
• The caller has to ensure that the ranges are sorted according to the sorting criterion on

entry.
• The caller must ensure that the destination range is big enough or that insert iterators are

used.
• The destination range should not overlap the source ranges.
• Complexity: linear (at most, 2* (numberOfElements1+numberOfElements2) - 1

comparisons).

See the following subsection for an example of the use of set_symmetric_difference().
This example also demonstrates how it differs from other algorithms that combine elements of
two sorted sequences.

Example of All Merging Algorithms

The C++ Standard Library

dyne-book 366

The following example compares the different algorithms that combine elements of two sorted
source ranges, demonstrating how they work and differ:

 // algo/setalgos.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()
 {
 int c1[] = { 1, 2, 2, 4, 6, 7, 7, 9 };
 int num1 = sizeof(c1) / sizeof(int);

 int c2[] = { 2, 2, 2, 3, 6, 6, 8, 9 >;
 int num2 = sizeof(c2) / sizeof(int);

 // print source ranges
 cout << "c1: " ;
 copy (c1, c1+num1,
 ostream_iterator<int>(cout," ")) ;
 cout << endl;
 cout << "c2: " ;
 copy (c2, c2+num2,
 ostream_iterator<int>(cout," "));
 cout << '\n' << endl;

 // sum the ranges by using merge()
 cout << "merge(): ";
 merge (c1, c1+num1,
 c2, c2+num2,
 ostream_iterator<int>(cout," "));
 cout << endl;

 // unite the ranges by using set_union()
 cout << "set_union(): ";
 set_union (c1, c1+num1,
 c2, c2+num2,
 ostream_iterator<int>(cout," "));
 cout << endl;

 // intersect the ranges by using set_intersection()
 cout << "set_intersection(): ";
 set_intersection (c1, c1+num1,
 c2, c2+num2,
 ostream_iterator<int>(cout," "));
 cout << endl;

 // determine elements of first range without elements of second
range
 // by using set_difference()
 cout << "set_difference(): ";
 set_difference (c1, c1+num1,
 c2, c2+num2,
 ostream_iterator<int>(cout," "));
 cout << endl;

The C++ Standard Library

dyne-book 367

 // determine difference the ranges with
set_symmetric_difference()
 cout << "set_symmetric_difference(): ";
 set_symmetric_difference (c1, c1+num1,
 c2, c2+num2,
 ostream_iterator<int>(cout," "));
 cout << endl;
 }

The program has the following output:

 c1: 1 2 2 4 6 7 7 9
 c2: 2 2 2 3 6 6 8 9

 merge(): 1 2 2 2 2 2 3 4 6 6 6 7 7 8 9 9
 set_union(): 1 2 2 2 3 4 6 6 7 7 8 9
 set_intersection(): 2 2 6 9
 set_difference(): 1 4 7 7
 set_symmetric_difference(): 1 2 3 4 6 7 7 8

Merging Consecutive Sorted Ranges

void
inplace_merge (BidirectionalIterator beg1, BidirectionalIterator end1beg2,
BidirectionalIterator end2)
void
inplace_merge (BidirectionalIterator beg1, BidirectionalIterator end1beg2,
BidirectionalIterator end2, BinaryPredicate op)

• Both forms merge the consecutive sorted source ranges [beg1,end1beg2) and [end 1
beg2 ,end2) so that the range [beg1,end2) contains the elements as a sorted summary
range.

• Complexity: linear (numberOfElements-1 comparisons) if enough memory available, or n-
log-n otherwise (numberOfElements*log (numberOfElements) comparisons).

The following program demonstrates the use of inplace_merge():

 // algo/imerge1.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()
 {

 list<int> coll;

 // insert two sorted sequences
 INSERT_ELEMENTS(coll,1,7);

The C++ Standard Library

dyne-book 368

 INSERT_ELEMENTS(coll,1,8);
 PRINT_ELEMENTS(coll);

 // find beginning of second part (element after 7)
 list<int>::iterator pos;
 pos = find (coll.begin(), coll.end(), // range
 7) ; // value
 ++pos;

 // merge into one sorted range
 inplace_merge (coll.begin(), pos, coll.end());

 PRINT_ELEMENTS(coll);
 }

The program has the following output:

 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8
 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8

9.11 Numeric Algorithms

This section presents the STL algorithms that are provided for numeric processing. However, you
can process other than numeric values. For example, you can use accumulate() to process
the sum of several strings. To use the numeric algorithms you have to include the header file
<numeric>[10] :

[10] In the original STL the numeric algorithms were defined in <algo.h>.

 #include <numeric>

9.11.1 Processing Results

Computing the Result of One Sequence

T
accumulate (InputIterator beg, InputIterator end, T initValue)
T
accumulate (InputIterator beg. InputIterator end, T initValue, BinaryFunc op)

• The first form computes and returns the sum of initValue and all elements in the range
[beg,end). In particular, it calls

•
• initValue = initValue + elem
•

The C++ Standard Library

dyne-book 369

for each element.

• The second form computes and returns the result of calling op for initValue and all
elements in the range [beg,end). In particular, it calls

•
• initValue = op(initValue, elem)
•

for each element.

• Thus, for the values
•
• a1 a2 a3 a4 ...
•

they compute and return either

initValue + a1 + a2 + a3 + ...

or

initValue op a1 op a2 op a3 op ...

respectively.

• If the range is empty (beg==end), both forms return initValue.
• op must not modify the passed arguments.
• Complexity: linear (numberOfElements calls of operator + or op() respectively).

The following program demonstrates how to use accumulate() to process the sum and the
product of all elements of a range:

 // algo/accu1.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()
 {
 vector<int> coll;

 INSERT_ELEMENTS(coll,1,9);
 PRINT_ELEMENTS(coll);

 // process sum of elements
 cout << "sum: "
 << accumulate (coll.begin(), coll.end(), // range

The C++ Standard Library

dyne-book 370

 0) // initial
value
 << endl;

 // process sum of elements less 100
 cout << "sum: "
 << accumulate (coll.begin(), coll.end(), // range
 -100) // initial value
 << endl;

 // process product of elements
 cout << "product: "
 << accumulate (coll.begin(), coll.end(), // range
 1, // initial
value
 multiplies<int>()) // operation
 << endl;

 // process product of elements (use 0 as initial value)
 cout << "product: "
 << accumulate (coll.begin(), coll.end(), // range
 0, // initial
value
 multiplies<int>()) // operation
 << endl;
 }

The program has the following output:

 1 2 3 4 5 6 7 8 9
 sum: 45
 sum: -55
 product: 362880
 product: 0

The last output is 0 because any value multiplied by zero is zero.

Computing the Inner Product of Two Sequences

T
inner_product (InputIterator1 beg1, InputIterator1 end1, InputIterator2 beg2, T
initValue)
T
inner_product (InputIterator1 beg1. InputIterator1 end1, InputIterator2 beg2, T
initValue, BinaryFunc op1. BinaryFunc op2)

• The first form computes and returns the inner product of initValue and all elements in the
range [beg,end) combined with the elements in the range starting with beg2. In particular,
it calls

•
• initValue = initValue + elem1 * elem2
•

The C++ Standard Library

dyne-book 371

for all corresponding elements.

• The second form computes and returns the result of calling op for initValue and all
elements in the range [beg,end) combined with the elements in the range starting with
beg2. In particular, it calls

•
• initValue = op1 (initValue,op2(elem1 ,elem2))
•

for all corresponding elements.

• Thus, for the values
•
• a1 a2 a3 ...
• b1 b2 b3 ...
•

they compute and return either

 initValue + (a1 * b1) + (a2 * b2) + (a3 * b3) + ...

or

 initValue op1 (a1 op2 b1) op1 (a2 op2 b2) op1 (a3 op2 b3) op1
...

respectively.

• If the first range is empty (beg1==end1), both forms return initValue.
• The caller has to ensure that the range starting with beg2 contains enough elements.
• op1 and op2 must not modify their arguments.
• Complexity: linear (numberOfElements calls of operators + and * or numberOfElements

calls of op1() and op2() respectively).

The following program demonstrates how to use inner_product(). It processes the sum of
products and the product of the sums for two sequences:

 // algo/inner1.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()

The C++ Standard Library

dyne-book 372

 {
 list<int> coll;

 INSERT_ELEMENTS(coll,1,6);
 PRINT_ELEMENTS(coll);

 / * process sum of all products
 * (0 + 1*1 + 2*2 + 3*3 + 4*4 + 5*5 + 6*6)
 */
 cout << "inner product: "
 << inner_product (coll.begin(), coll.end(), //
first range
 coll.begin(), //
second range
 0) //
initial value
 << endl;

 /*process sum of 1*6 ... 6*1
 *(0 + 1*6 + 2*5 + 3*4 + 4*3 + 5*2 + 6*1)
 */
 cout << "inner reverse product: "
 << inner_product (coll.begin(), coll.end(), //
firstrange
 coll.rbegin(), //
second range
 0) //
initial value
 << endl;

 / * process product of all sums
 * (1 * 1+1 * 2+2 * 3+3 * 4+4 * 5+5 * 6+6)
 */
 cout << "product of sums: "
 << inner_product (coll.begin(), coll.end(), // first
range
 coll.begin(), //
second range
 1, //
initial value
 multiplies<int>(), // inner
operation
 plus<int>()) // outer
operation
 << endl; }

The program has the following output:

 1 2 3 4 5 6
 inner product: 91
 inner reverse product: 56
 product of sums: 46080

The C++ Standard Library

dyne-book 373

9.11.2 Converting Relative and Absolute Values

The following two algorithms provide the ability to convert a sequence of relative values into a
sequence of absolute values, and vice versa.

Converting Relative Values into Absolute Values

OutputIterator
partial_sum (InputIterator sourceBeg, InputIterator sourceEnd, OutputIterator
destBeg)
OutputIterator
partial_sum (InputIterator sourceBeg, InputIterator sourceEnd, OutputIterator
destBeg, BinaryFunc op)

• The first form computes the partial sum for each element in the source range [sourceBeg,
sourceEnd) and writes each result to the destination range starting with destBeg.

• The first form calls op for each element in the source range [sourceBeg,sourceEnd)
combined with all previous values and writes each result to the destination range starting
with destBeg.

• Thus, for the values
•
• a1 a2 a3 ...
•

they compute either

 a1, a1 + a2, a1 + a2 + a3, ...

or

 a1, a1 op a2, a1 op a2 op a3, ...

respectively.

• Both forms return the position after the last written value in the destination range (the first
element that is not overwritten).

• The first form is equivalent to the conversion of a sequence of relative values into a
sequence of absolute values. In this regard, partial_sum() is the complement of
adjacent_difference().

• The source and destination range may be identical.
• The caller must ensure that the destination range is big enough or that insert iterators are

used.
• op should not modify the passed arguments.
• Complexity: linear (numberOfElements calls of operator + or op() respectively).

The C++ Standard Library

dyne-book 374

The following program demonstrates some examples of using partial_sum():

 // algo/partsum1.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()
 {
 vector<int> coll;

 INSERT_ELEMENTS(coll,1,6);
 PRINT_ELEMENTS(coll);

 // print all partial sums
 partial_sum (coll.begin(), coll.end(), // source range
 ostream_iterator<int>(cout," ")); // destination
 cout << end1;

 // print all partial products
 partial_sum (coll.begin(), coll.end(), // source range
 ostream_iterator<int>(cout," "), // destination
 multiplies<int>()) ; // operation
 cout << endl;
 }

The program has the following output:

 1 2 3 4 5 6
 1 3 6 10 15 21
 1 2 6 24 120 720

See also the example of converting relative values into absolute values, and vice versa, on page
432.

Converting Absolute Values into Relative Values

OutputIterator
adjacent_difference (InputIterator sourceBeg, InputIterator sourceEnd,
OutputIterator destBeg)
OutputIterator
adjacent_difference (InputIterator sourceBeg, InputIterator sourceEnd,
OutputIterator destBeg, BinaryFunc op)

• The first form computes the difference of each element in the range
[sourceBeg,sourceEnd) with its predecessor and writes the result to the destination range
starting with destBeg.

• The second form calls op for each element in the range [sourceBeg,sourceEnd) with its
predecessor and writes the result to the destination range starting with destBeg.

• The first element only is copied.
• Thus, for the values
•
• a1 a2 a3 a4 ...

The C++ Standard Library

dyne-book 375

•

they compute and write either the values

 a1, a2 - a1, a3 - a2, a4 - a3, ...

or the values

 a1, a2 op a1, a3 op a2, a4 op a3, ...

respectively.

• Both forms return the position after the last written value in the destination range (the first
element that is not overwritten).

• The first form is equivalent to the conversion of a sequence of absolute values into a
sequence of relative values. In this regard, adjacent_difference() is the
complement of partial_sum().

• The source and destination range may be identical.
• The caller must ensure that the destination range is big enough or that insert iterators are

used.
• op should not modify the passed arguments.
• Complexity: linear (numberOfElements-1 calls of operator - or op() respectively).

The following program demonstrates some examples of using adjacent_difference():

 // algo/adjdiff1.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()
 {
 deque<int> coll;

 INSERT_ELEMENTS(coll,1,6);
 PRINT_ELEMENTS(coll);

 // print all differences between elements
 adjacent_difference (coll.begin(), coll.end(), // source
 ostream_iterator<int>(cout, " ")); // dest.
 cout << end1;

 // print all sums with the predecessors
 adjacent_difference (coll.begin(), coll.end(), // source
 ostream_iterator<int>(cout," "), // dest.
 plus <int>()); //
operation

The C++ Standard Library

dyne-book 376

 cout << endl;

 // print all products between elements
 adjacent_difference (coll.begin(), coll.end(), // source
 ostream_iterator<int>(cout," "), // dest.
 multiplies<int>()); //
operation
 cout << endl;
 }

The program has the following output:

 1 2 3 4 5 6
 1 1 1 1 1 1
 1 3 5 7 9 1 1
 1 2 6 12 20 30

See also the example of converting relative values into absolute values, and vice versa, in the
next subsection.

Example of Converting Relative Values into Absolute Values

The following example demonstrates how to use partial_sum() and
adjacent_difference() to convert a sequence of relative values into a sequence of absolute
values, and vice versa:

 // algo/relabs.cpp

 #include "algostuff.hpp"
 using namespace std;

 int main()
 {
 vector<int> coll;

 coll.push_back(17);
 coll.push_back(-3);
 coll.push_back(22);
 coll.push_back(13);
 coll.push_back(13);
 coll.push_back(-9);
 PRINT_ELEMENTS(coll,"coll: ") ;

 // convert into relative values
 adjacent_difference (coll.begin(), coll.end(), // source
 coll.begin()); // destination

 PRINT_ELEMENTS (coll,"relative: ") ;

 // convert into absolute values
 partial_sum (coll.begin(), coll.end(), // source
 coll.begin()); // destination
 PRINT_ELEMENTS(coll,"absolute: ");
 }

The C++ Standard Library

dyne-book 377

The program has the following output:

coll: 17 -3 22 13 13 -9
relative: 17 -20 25 -9 0 -22
absolute: 17 -3 22 13 13 -9

The C++ Standard Library

dyne-book 378

Chapter 10. Special Containers
The C++ standard library provides not only the containers for the STL framework, but also some
containers that fit some special needs and provide simple, almost self-explanatory interfaces. You
can group these containers into

• The so-called container adapters

These containers adapt standard STL containers to fit special needs. There are three
standard container adapters:

1. Stacks
2. Queues
3. Priority queues

Priority queues are queues in which the elements are sorted automatically according to a
sorting criterion. Thus, the "next" element of a priority queue is the element with the
"highest" value.

• A special container, called a bitset

A bitset is a bitfield with an arbitrary but fixed number of bits. You can consider it a
container for bits or Boolean values. Note that the C++ standard library also provides a
special container with a variable size for Boolean values: vector<bool>. It is described
in Section 6.2.6.

10.1 Stacks

The class stack<> implements a stack (also known as LIFO). With push(), you can insert any
number of elements into the stack (Figure 10.1). With pop(), you can remove the elements in
the opposite order in which they were inserted ("last in, first out").

Figure 10.1. Interface of a Stack

To use a stack, you have to include the header file <stack>[1] :

[1] In the original STL the header file for stacks was <stack.h>.

The C++ Standard Library

dyne-book 379

 #include <stack>

In <stack>, the class stack is defined as follows:

 namespace std {
 template <class T,
 class Container = deque<T> >
 class stack;
 }

The first template parameter is the type of the elements. The optional second template parameter
defines the container that is used internally by the queue for its elements. The default container is
a deque. It was chosen because, unlike vectors, deques free their memory when elements are
removed and don't have to copy all elements on reallocation (see Section 6.9, for a discussion
of when to use which container).
For example, the following declaration defines a stack of integers[2] :

[2] In previous versions of the STL you could pass the container as the only template parameter. Thus, a
stack of integers had to be declared as follows:

 stack<deque<int> > st;

 std::stack<int> st; // integer stack

The stack implementation simply maps the operations into appropriate calls of the container that
is used internally (Figure 10.2). You can use any sequence container class that provides the
member functions back(), push_back(), and pop_back(). For example, you could also
use a vector or a list as the container for the elements:

Figure 10.2. Internal Interface of a Stack

The C++ Standard Library

dyne-book 380

 std::stack<int,std::vector<int> > st; // integer stack that uses
a vector

10.1.1 The Core Interface

The core interface of stacks is provided by the member functions push(), top(), and pop():

• push() inserts an element into the stack.
• top() returns the next element in the stack.
• pop() removes an element from the stack.

Note that pop() removes the next element but does not return it, whereas top() returns the
next element without removing it. Thus, you must always call both functions to process and
remove the next element from the stack. This interface is somewhat inconvenient, but it performs
better if you only want to remove the next element without processing it. Note that the behavior of
top() and pop() is undefined if the stack contains no elements. To check whether the stack
contains elements, the member functions size() and empty() are provided.
If you don't like the standard interface of stack<>, you can easily write a more convenient
interface. See Section 10.1.4, for an example.

10.1.2 Example of Using Stacks

The following program demonstrates the use of class stack<>:

 // cont/stack1.cpp

 #include <iostream>
 #include <stack>
 using namespace std;

 int main()
 {

 stack<int> st;

 // push three elements into the stack
 st.push(l);
 st.push(2);
 st.push(3);

 // pop and print two elements from the stack
 cout << st.top() << ' ';
 st.pop() ;
 cout << st.top() << ' ';
 st.pop() ;

 // modify top element
 st.top() = 77;

 // push two new elements
 st.push(4);

The C++ Standard Library

dyne-book 381

 st.push(5);

 // pop one element without processing it
 st.pop() ;

 // pop and print remaining elements
 while (!st.empty()) {
 cout << st.top() << ' ';
 st.pop() ;
 }
 cout << endl;
 }

The output of the program is as follows:

 3 2 4 77

10.1.3 Class stack<> in Detail

The stack<> interface is so small, you can understand it easily by reading its typical
implementation:

 namespace std {
 template <class T, class Container = deque<T> >
 class stack {
 public:
 typedef typename Container::value_type value_type;
 typedef typename Container::size_type size_type;
 typedef Container container_type;
 protected:
 Container c; // container
 public:
 explicit stack(const Container& = Container());

 bool empty() const { return c.empty(); }
 size_type size() const { return c.size(); }
 void push (const value_type& x) { c.push_back(x); }
 void pop() { c.pop_back(); }
 value_type& top() { return c.back(); }
 const value_type& top() const { return c.back(); }
 };

 template <class T, class Container>
 bool operator==(const stack<T, Container>&,
 const stack<T, Container>&);
 template <class T, class Container>
 bool operator< (const stack<T, Container>&,
 const stack<T, Container>&);
 ...// (other comparison operators)
 }

The following subsections describe the members and operations in detail.

The C++ Standard Library

dyne-book 382

Type Definitions

stack:: value_type

• The type of the elements.
• It is equivalent to container:: value_type.

stack:: size_type

• The unsigned integral type for size values.
• It is equivalent to container:: size_type.

stack:: container_type

• The type of the container.

Operations

stack::stack ()

• The default constructor.
• Creates an empty stack.

explicit stack:: stack (const Container& cont)

• Creates a stack that is initialized by the elements of cont.
• All elements of cont are copied.

size_type stack::size () const

• Returns the actual number of elements.
• To check whether the stack is empty (contains no elements), use empty() because it

might be faster.

bool stack::empty () const

• Returns whether the stack is empty (contains no elements).
• It is equivalent to stack:: size()==0, but it might be faster.

void stack::push (const value_type& elem)

• Inserts a copy of elem as the new first element in the stack.

value_type& stack::top ()
const value_type& stack::top () const

• Both forms return the next element of the stack. The next element is the element that was
inserted last (after all other elements in the stack).

• The caller has to ensure that the stack contains an element (size()>0); otherwise, the
behavior is undefined.

The C++ Standard Library

dyne-book 383

• The first form for nonconstant stacks returns a reference. Thus, you could modify the next
element while it is in the stack. It is up to you to decide whether this is good style.

void stack::pop ()

• Removes the next element from the stack. The next element is the element that was
inserted last (after all other elements in the stack).

• This function has no return value. To process this next element, you must call top()
first.

• The caller must ensure that the stack contains an element (size()>0); otherwise, the
behavior is undefined.

bool comparison (const stack&. stack1, const stack& stack2)

• Returns the result of the comparison of two stacks of the same type.
• comparison might be any of the following:
•
• operator ==
• operator !=
• operator <
• operator >
• operator <=
• operator >=
•

• Two stacks are equal if they have the same number of elements and contain the same
elements in the same order (all comparisons of two corresponding elements must yield
true).

• To check whether a stack is less than another stack, the stacks are compared
lexicographically. See the description of the lexicographical_compare() algorithm
on page 360.

10.1.4 A User-Defined Stack Class

The standard class stack<> prefers speed over convenience and safety. This is not what I
usually prefer. I have written my own stack class. It has the following two advantages:

1. pop() returns the next element.
2. pop() and top() throw exceptions when the stack is empty.

In addition, I have skipped the members that are not necessary for the ordinary stack user, such
as the comparison operations. My stack class is defined as follows:

 // cont/Stack.hpp

 /* **
 * Stack.hpp
 * -safer and more convenient stack class
 * **/

 #ifndef STACK_HPP

The C++ Standard Library

dyne-book 384

 #define STACK_HPP

 #include <deque>
 #include <exception>

 template <class T>
 class Stack {
 protected:
 std::deque<T> c; // container for the elements

 public:
 /* exception class for pop() and top() with empty stack
 */
 class ReadEmptyStack : public std::exception {
 public:
 virtual const char* what() const throw() {
 return "read empty stack";
 }
 };

 // number of elements
 typename std::deque<T>::size_type size() const {
 return c.size();
 }

 // is stack empty?
 bool empty() const {
 return c.empty();
 }

 // push element into the stack
 void push (const T& elem) {
 c.push_back(elem) ;
 }

 // pop element out of the stack and return its value
 T pop () {
 if (c.empty()) {
 throw ReadEmptyStack();
 }
 T elem(c.back());
 c.pop_back();
 return elem;
 }

 // return value of next element
 T& top () {
 if (c.empty()) {
 throw ReadEmptyStack();
 }
 return c.back() ;
 }
 };

 #endif /* STACK_HPP */

The C++ Standard Library

dyne-book 385

With this stack class, the previous stack example could be written as follows:

 // cont/stack 2.cpp

 #include <iostream>
 #include "Stack.hpp" // use special stack class
 using namespace std;

 int main()
 {
 try {
 Stack<int> st;

 // push three elements into the stack
 st.push(l);
 st.push(2);
 st.push(3);

 // pop and print two elements from the stack
 cout << st.pop() << ' ';
 cout << st.pop() << ' ';

 // modify top element
 st.top() = 77;

 // push two new elements
 st.push(4);
 st.push(5);

 // pop one element without processing it
 st.pop();

 /* pop and print three elements
 * - ERROR: one element too many
 */
 cout << st.pop() << ' ';
 cout << st.pop() << endl;
 cout << st.pop() << endl;
 }
 catch (const exception& e) {
 cerr << "EXCEPTION: " << e.what() << endl;
 }
 }

The additional final call of pop() forces an error. Unlike the standard stack class, this one throws
an exception rather than resulting in undefined behavior. The output of the program is as follows:

 3 2 4 77
 EXCEPTION: read empty stack

10.2 Queues

The C++ Standard Library

dyne-book 386

The class queue<> implements a queue (also known as FIFO). With push(), you can insert
any number of elements (Figure 10.3). With pop(), you can remove the elements in the same
order in which they were inserted ("first in, first out"). Thus, a queue serves as a classic data
buffer.

Figure 10.3. Interface of a Queue

To use a queue, you must include the header file <queue>[3] :

[3] In the original STL the header file for queues was <stack.h>

 #include <queue>

In <queue>, the class queue is defined as follows:

 namespace std {
 template <class T,
 class Container = deque<T> >
 class queue;
 }

The first template parameter is the type of the elements. The optional second template parameter
defines the container that is used internally by the queue for its elements. The default container is
a deque.
For example, the following declaration defines a queue of strings[4] :

[4] In previous versions of the STL you could pass the container as the only template parameter. Thus, a
queue of strings had to be declared as follows:

 queue<deque<string> > buffer;

 std::queue<std::string> buffer; // string queue

The queue implementation simply maps the operations into appropriate calls of the container that
is used internally (Figure 10.4). You can use any sequence container class that provides the

The C++ Standard Library

dyne-book 387

member functions front(), back(), push_back(), and pop_front(). For example, you
could also use a list as the container for the elements:

Figure 10.4. Internal Interface of a Queue

 std::queue<std::string,std::list<std::string> > buffer;

10.2.1 The Core Interface

The core interface of queues is provided by the member functions push(), front(), back()
and pop():

• push() inserts an element into the queue.
• front() returns the next element in the queue (the element that was inserted first).
• back() returns the last element in the queue (the element that was inserted first).
• pop() removes an element from the queue.

Note that pop() removes the next element but does not return it, whereas front() and back()
return the next element without removing it. Thus, you must always call front() and pop() to
process and remove the next element from the queue. This interface is somewhat inconvenient,
but it performs better if you only want to remove the next element without processing it. Note that
the behavior of front(), back(), and pop() is undefined if the queue contains no elements.
To check whether the queue contains elements, the member functions size() and empty() are
provided.
If you don't like the standard interface of queue<>, you can easily write a more convenient
interface. See Section 10.2.4, for an example.

10.2.2 Example of Using Queues

The following program demonstrates the use of class queue<>:

 // cont/queue1.cpp

 #include <iostream>

The C++ Standard Library

dyne-book 388

 #include <queue>
 #include <string>
 using namespace std;

 int main()
 {

 queue<string> q;

 // insert three elements into the queue
 q.push("These ");
 q.push("are ");
 q.push("more than ");

 // read and print two elements from the queue
 cout << q.front();
 q.pop();
 cout << q.front();
 q.pop();

 // insert two new elements
 q.push(''four ");
 q.push("words!");
 // skip one element
 q.pop();

 // read and print two elements
 cout << q.front();
 q.pop();
 cout << q.front() << endl;
 q.pop();

 //print number of elements in the queue
 cout << "number of elements in the queue: " << q.size()
 << endl;
 }

The output of the program is as follows:

 These are four words!
 number of elements in the queue: 0

10.2.3 Class queue<> in Detail

Similar to stack<>, the typical queue<> implementation is rather self-explanatory:

 namespace std {
 template <class T, class Container = deque<T> >
 class queue {
 public:
 typedef typename Container::value_type value_type;
 typedef typename Container::size_type size_type;
 typedef Container container_type;

The C++ Standard Library

dyne-book 389

 protected:
 Container c; // container
 public:
 explicit queue(const Container& = Container());

 bool empty() const { return c.empty(); }
 size_type size() const { return c.size(); }
 void push(const value_type& x) { c.push_back(x); }
 void pop() { c.pop_front(); }
 value_type& front() { return c.front(); }
 const value_type& front()const { return c.front(); }
 value_type& back() { return c.back(); }
 const value_type& back() const { return c.back(); }
 };

 template <class T, class Container>
 bool operator==(const queue<T, Container>&,
 const queue<T, Container>&);
 template <class T, class Container>
 bool operator< (const queue<T, Container>&,
 const queue<T, Container>&);
 //(other comparison operators)
 }

The following subsections describe the members and operations in detail.

Type Definitions

queue::value_type

• The type of the elements.
• It is equivalent to container:: value_type.

queue::size_type

• The unsigned integral type for size values.
• It is equivalent to container::size_type.

queue:: container_type

• The type of the container.

Operations

queue::queue ()

• The default constructor.
• Creates an empty queue.

explicit queue::stack (const Container& cont)

• Creates a queue that is initialized by the elements of cont.

The C++ Standard Library

dyne-book 390

• All elements of cont are copied.

size_type queue::size () const

• Returns the actual number of elements.
• To check whether the queue is empty (contains no elements), use empty() because it

might be faster.

bool queue::empty () const

• Returns whether the queue is empty (contains no elements).
• It is equivalent to queue::size()==0, but it might be faster.

void queue::push (const value_type& elem)

• Insert a copy of elem as the new last element in the queue.

value_type& queue::front ()
const value_type& queue::front () const

• Both forms return next element of the queue. The next element is the element that was
inserted first (before all other elements in the queue).

• The caller has to ensure that the queue contains an element (size()>0); otherwise,
the behavior is undefined.

• The first form for nonconstant queues returns a reference. Thus, you could modify the
next element while it is in the queue. It is up to you to decide whether this is good style.

value_type& queue::back ()
const value_type& queue::back () const

• Both forms return the last element of the queue. The last element is the element that was
inserted last (after all other elements in the queue).

• The caller must ensure that the queue contains an element (size()>0); otherwise, the
behavior is undefined.

• The first form for nonconstant queues returns a reference. Thus, you could modify the
last element while it is in the queue. It is up to you to decide whether this is good style.

void queue::pop ()

• Removes the next element from the queue. The next element is the element that was
inserted first (before all other elements in the queue).

• Note that this function has no return value. To process the next element, you must call
front() first.

• The caller must ensure that the queue contains an element (size()>0); otherwise, the
behavior is undefined.

bool comparison (const queue& queue1, const queue& queue2)

• Returns the result of the comparison of two queues of the same type.
• comparison might be any of the following:
•

The C++ Standard Library

dyne-book 391

• operator ==
• operator !=
• operator <
• operator >
• operator <=
• operator >=
•

• Two queues are equal if they have the same number of elements and contain the same
elements in the same order (all comparisons of two corresponding elements must yield
true).

• To check whether a queue is less than another queue, the queues are compared
lexicographically. See the description of the lexicographical_compare() algorithm
on page 360.

10.2.4 A User-Defined Queue Class

The standard class queue<> prefers speed over convenience and safety. This is not what I
usually prefer. I have written my own queue class. It has the following two advantages:

1. pop() returns the next element.
2. pop() and front() throw exceptions when the queue is empty.

In addition, I have skipped the members that are not necessary for the ordinary queue user, such
as the comparison operations and the back() member function. My queue class is defined as
follows:

 // cont/Queue.hpp

 /* **
 * Queue.hpp
 * -safer and more convenient queue class
 * **

 #ifndef QUEUE_HPP
 #define QUEUE_HPP

 #include <deque>
 #include <exception>
 template <class T>
 class Queue {
 protected:
 std::deque<T> c; // container for the elements

 public:
 /* exception class for pop() and top() with empty queue
 */
 class ReadEmptyQueue : public std::exception {
 public:
 virtual const char* what() const throw() {
 return "read empty queue";
 }

The C++ Standard Library

dyne-book 392

 };

 // number of elements
 typename std::deque<T>::size_type size() const {
 return c.size();
 }

 //is queue empty?
 bool empty() const {
 return c.empty();
 }

 // insert element into the queue
 void push (const T& elem) {
 c.push_back(elem);
 }

 // read element from the queue and return its value
 T pop () {
 if (c.empty()) {
 throw ReadEmptyQueue();
 }
 T elem(c.front());
 c.pop_front();
 return elem;
 }

 // return value of next element
 T& front () {
 if (c.empty()) {
 throw ReadEmptyQueue();
 }
 return c.front();
 }
 };

 #endif /* QUEUE_HPP */

With this queue class, the previous queue example could be written as follows:

 // cont/queue 2.cpp

 #include <iostream>
 #include <string>
 #include "Queue.hpp" // use special queue class
 using namespace std;

 int main()
 {
 try {
 Queue<string> q;

 // insert three elements into the queue
 q.push("These ");
 q.push(''are ");
 q.push(''more than ");

The C++ Standard Library

dyne-book 393

 // read and print two elements from the queue
 cout << q.pop();
 cout << q.pop();

 // push two new elements
 q.push("four ");
 q.push(''words!");

 // skip one element
 q.pop();

 // read and print two elements from the queue
 cout << q.pop();
 cout << q.pop() << endl;

 // print number of remaining elements
 cout << "number of elements in the queue: " << q.size()
 << endl;

 // read and print one element
 cout << q.pop) << endl;
 }
 catch (const exception& e) {
 cerr << "EXCEPTION: " << e.what() << endl;
 }
 }

The additional final call of pop() forces an error. Unlike the standard queue class, this one
throws an exception rather than resulting in undefined behavior. The output of the program is as
follows:

 These are four words!
 number of elements in the queue: 0
 EXCEPTION: read empty queue

10.3 Priority Queues

The class priority_queue<> implements a queue from which elements are read according to
their priority. The interface is similar to queues. That is, push() inserts an element into the
queue, whereas top() and pop() access and remove the next element (Figure 10.5).
However, the next element is not the first inserted element. Rather, it is the element that has the
highest priority. Thus, elements are partially sorted according to their value. As usual, you can
provide the sorting criterion as a template parameter. By default, the elements are sorted by
using operator < in descending order. Thus, the next element is always the "highest" element. If
more than one "highest" element exists, which element comes next is undefined.

Figure 10.5. Interface of a Priority Queue

The C++ Standard Library

dyne-book 394

Priority queues are defined in the same header file as ordinary queues, <queue>[5] :

[5] In the original STL the header file for priority queues was <stack.h>.

 #include <queue>

In <queue>, the class priority_queue is defined as follows:

 namespace std {
 template <class T,
 class Container = vector<T>,
 class Compare = less<typename Container::value_type> >
 class priority_queue;
 }

The first template parameter is the type of the elements. The optional second template parameter
defines the container that is used internally by the priority queue for its elements. The default
container is a vector. The optional third template parameter defines the sorting criterion that is
used to find the next element with the highest priority. By default, it compares the elements by
using operator <.
For example, the following declaration defines a priority queue of floats[6] :

[6] In previous versions of the STL you always had to pass the container and sorting criterion as mandatory
template arguments. Thus, a priority queue of floating values had to be declared as follows:

 priority_queue<vector<float>,less<float> > buffer;

 std::priority_queue<float> pbuffer; // priority queue for floats

The priority queue implementation simply maps the operations into appropriate calls of the
container that is used internally. You can use any sequence container class that provides random
access iterators and the member functions front(), push_back(), and pop_back().
Random access is necessary for sorting the elements, which is performed by the heap algorithms
of the STL (the heap algorithms are described in Section 9.9.4,). For example, you could also
use a deque as the container for the elements:

The C++ Standard Library

dyne-book 395

 std::priority_queue<float,std::deque<float> > pbuffer;

To define your own sorting criterion you must pass a function or function object as a binary
predicate that is used by the sorting algorithms to compare two elements (for more about sorting
criteria, see Section 6.5.2, and Section 8.1.1,). For example, the following declaration defines
a priority queue with reverse sorting:

 std::priority_queue<float,std::vector<float>,
 std::greater<float> > pbuffer;

In this priority queue the next element is always one of the elements with the lowest value.

10.3.1 The Core Interface

The core interface of priority queues is provided by the member functions push(), top(), and
pop():

• push() inserts an element into the priority queue.
• top() returns the next element in the priority queue.
• pop() removes an element from the priority queue.

As for the other container adapters, pop() removes the next element but does not return it,
whereas top() returns the next element without removing it. Thus, you must always call both
functions to process and remove the next element from the priority queue. And, as usual, the
behavior of top() and pop() is undefined if the priority queue contains no elements. If in doubt,
you must use the member functions size() and empty().

10.3.2 Example of Using Priority Queues

The following program demonstrates the use of class priority_queue<>:

 // cont/pqueue1. cpp

 #include <iostream>
 #include <queue>
 using namespace std;

 int main()
 {
 priority_queue<float> q;

 // insert three elements into the priority queue
 q.push(66.6);
 q.push(22.2);
 q.push(44.4);

 // read and print two elements
 cout << q.top() << ' ';
 q.pop();
 cout << q.top() << endl;
 q.pop();

The C++ Standard Library

dyne-book 396

 // insert three more elements
 q.push(11.1);
 q.push(55.5);
 q.push(33.3);

 // skip one element
 q.pop();

 //pop and print remaining elements
 while (!q.empty()) {
 cout << q.top() << ' ';
 q.pop();
 }
 cout << endl;
 }

The output of the program is as follows:

 66.6 44.4
 33.3 22.2 11.1

As you can see, after 66.6, 22.2, and 44.4 are inserted, the program prints 66.6 and 44.4
as the highest elements. After three other elements are inserted, the priority queue contains the
elements 22.2, 11.1, 55.5, and 33.3 (in the order of insertion). The next element is
skipped simply via a call of pop(), so the final loop prints 33.3, 22.2, and 11.1 in that order.

10.3.3 Class priority_queue<> in Detail

Most of the priority_queue<> operations are as self-explanatory as stack<> and queue<>:

 namespace std {
 template <class T, class Container = vector<T>,
 class Compare = less<typename Container::value_type> >
 class priority_queue {
 public:
 typedef typename Container::value_type value_type;
 typedef typename Container::size_type size_type;
 typedef Container container_type;
 protected:
 Compare comp; // sorting criterion
 Container c; // container
 public:
 // constructors
 explicit priority_queue(const Compare& cmp = Compare(),
 const Container& cont = Container())
 : comp(cmp), c(cont) {
 make_heap(c.begin(),c.end(),comp);
 }

 template <class InputIterator>
 priority_queue(InputIterator first, InputIterator last,
 const Compare& cmp = Compare(),
 const Container& cont = Container())
 : comp(cmp), c(cont) {

The C++ Standard Library

dyne-book 397

 c.insert(c.end(),first,last);
 make_heap(c.begin(),c.end(),comp);
 }

 void push(const value_type& x); {
 c.push_back(x);
 push_heap(c.begin(),c.end(),comp);
 }
 void pop() {
 pop_heap(c.begin(),c.end(),comp);
 c.pop_back();
 }

 bool empty() const { return c.empty(); }
 size_type size() const { return c.size(); }
 const value_type& top() const { return c.front(); }
 };
 }

As you can see, the priority queue uses the STL's heap algorithms. These algorithms are
described in Section 9.9.4. Note that, unlike other container adapters, no comparison operators
are defined.
The following subsections describe the members and operations in detail.

Type Definitions

priority_queue:: value_type

• The type of the elements.
• It is equivalent to container:: value_type.

priority_queue::size_type

• The unsigned integral type for size values.
• It is equivalent to container::size_type.

priority_queue::container_type

• The type of the container.

Constructors

priority_queue::priority_queue ()

• The default constructor.
• Creates an empty priority queue.

explicit priority_queue::priority_queue (const CompFunc& op)

• Creates an empty priority queue with op used as the sorting criterion.
• See page 191 and page 213 for examples that demonstrate how to pass a sorting

criterion as a constructor argument.

The C++ Standard Library

dyne-book 398

priority_queue::priority_queue (const CompFunc& op const Container& cont)

• Creates a priority queue that is initialized by the elements of cont and that uses op as the
sorting criterion.

• All elements of cont are copied.

priority_queue::priority_queue (InputIterator beg, Inputlterator end)

• Creates a priority queue that is initialized by all elements of the range [beg,end).
• This function is a member template (see page 11), so the elements of the source range

might have any type that is convertible into the element type of the container.

priority_queue::priority_queue (InputIterator beg, Inputlterator end,const
CompFunc& op)

• Creates a priority queue that is initialized by all elements of the range [beg,end) and that
uses op as the sorting criterion.

• This function is a member template (see page 11), so the elements of the source range
might have any type that is convertible into the element type of the container.

• See page 191 and page 213 for examples that demonstrate how to pass a sorting
criterion as a constructor argument.

priority_queue::priority_queue (InputIterator beg, InputIterator end, const
CompFunc& op, const Container& cont)

• Creates a priority queue that is initialized by all elements of the container cont plus all
elements of the range [beg,end) and that uses op as the sorting criterion.

• This function is a member template (see page 11). So, the elements of the source range
might have any type that is convertible into the element type of the container.

Other Operations

size_type priority _queue::size () const

• Returns the actual number of elements.
• To check whether the priority queue is empty (contains no elements), use empty()

because it might be faster.

bool priority_queue::empty () const

• Returns whether the priority queue is empty (contains no elements).
• It is equivalent to priority _queue::size()==0, but it might be faster.

void priority _queue::push (const value_type& elem)

• Inserts a copy of elem into the priority queue.

const value_type& priority_queue::top () const

The C++ Standard Library

dyne-book 399

• Returns the next element of the priority queue. The next element is the element that, of
all elements in the priority queue, has the maximum value. If more than one element has
the maximum value, which element it returns is undefined.

• The caller must ensure that the queue contains an element (size()>0); otherwise, the
behavior is undefined.

void priority_queue::pop ()

• Removes the next element from the queue. The next element is the element that, of all
elements in the priority queue, has the maximum value. If more than one element has the
maximum value, which element it removes is undefined.

• Note that this function has no return value. To process the next element, you must call
top() first.

• The caller must ensure that the queue contains an element (size()>0); otherwise, the
behavior is undefinesd.

10.4 Bitsets

Bitsets model fixed-sized arrays of bits or Boolean values. They are useful to manage sets of
flags, where variables may represent any combination of flags. C and old C++ programs usually
use type long for arrays of bits and manipulate the bits with the bit operators, such as &, |, and ~.
The class bitset has the advantage that bitsets may contain any number of bits, and additional
operations are provided. For example, you can assign single bits, and read and write bitsets as a
sequence of zeros and ones.
Note that you can't change the number of bits in a bitset. The number of bits is the template
parameter. If you need a container for a variable number of bits or Boolean values, you can use
the class vector<bool> (described in Section 6.2.6).
The class bitset is defined in the header file <bitset>:

 #include <bitset>

In <bitset>, the class bitset is defined as a template class with the number of bits as the
template parameter:

 namespace std {
 template <size_t Bits>
 class bitset;
 }

In this case the template parameter is not a type but an unsigned integral value (see page 10 for
details about this language feature).
Templates with different template arguments are different types. You can compare and combine
bitsets only with the same number of bits.

10.4.1 Examples of Using Bitsets

Using Bitsets as Set of Flags

The first example of using bitsets demonstrates how to use bitsets to manage a set of flags. Each
flag has a value that is defined by an enumeration type. The value of the enumeration type is
used as the position of the bit in the bitset. In particular, the bits represent colors. Thus, each

The C++ Standard Library

dyne-book 400

enumeration value defines one color. By using a bitset, you can manage variables that might
contain any combination of colors:

 // cont/bitsetl.cpp

 #include <bitset>
 #include <iostream>
 using namespace std;
 int main()
 {
 /* enumeration type for the bits
 * - each bit represents a color
 */
 enum Color { red, yellow, green, blue, white, black, ...,
 numColors };

 // create bitsetfor all bits/colors
 bitset<numColors> usedColors;

 // set bits for two colors
 usedColors.set(red);
 usedColors.set(blue);

 // print some bitset data
 cout << "bitfield of used colors: " << usedColors
 << endl;
 cout << "number of used colors: " << usedColors.count()
 << endl;
 cout << "bitfield of unused colors: " << ~usedColors
 << endl;

 // if any color is used
 if (usedColors.any()) {
 // loop over all colors
 for (int c = 0; c < numColors; ++c) {
 // if the actual color is used
 if (usedColors[(Color)c]) {
 ...
 }
 }
 }
 }

Using Bitsets for I/O with Binary Representation

A useful feature of bitsets is the ability to convert integral values into a sequence of bits and vice
versa. This is done simply by creating a temporary bitset:

 // cont/bitset2.cpp

 #include <bitset>
 #include <iostream>
 #include <string>
 #include <limits>

The C++ Standard Library

dyne-book 401

 using namespace std;

 int main()
 {
 /* print some numbers in binary representation
 */
 cout << "267 as binary short: "
 << bitset<numeric_limits<unsigned short>::digits>(267)
 << endl;

 cout << "267 as binary long: "
 << bitset<numeric_limits<unsigned long>::digits>(267)
 << endl;

 cout << "10,000,000 with 24 bits: "
 << bitset<24>(1e7) << endl;
 /* transform binary representation into integral number
 */
 cout << "\"1000101011\" as number: "
 << bitset<100>(string("1000101011")).to_ulong() << endl;
 }

Depending on the number of bits for short and long, the program might produce the following
output:

 267 as binary short: 0000000100001011
 267 as binary long: 00000000000000000000000100001011
 10,000,000 with 24 bits: 100110001001011010000000
 "1000101011" as number: 555

In this example,

 bitset<numeric_limits<unsigned short>::digits>(267)

converts 267 into a bitset with the number of bits of type unsigned short (see Section 4.3, for
a discussion of numeric limits). The output operator for bitset prints the bits as a sequence of
characters 0 and 1.
Similarly,

 bitset<100>(string("1000101011"))

converts a sequence of binary characters into a bitset, for which to_ulong() yields the integral
value. Note that the number of bits in the bitset should be smaller than sizeof (unsigned
long). This is because you get an exception when the value of the bitset can't be represented
as unsigned long.[7]

[7] Note that you have to convert the initial value to type string explicitly. This is probably a mistake in the
standard because it was possible to use

 bitset<100>("1000101011")

The C++ Standard Library

dyne-book 402

in earlier versions of the standard. By accident this implicit type conversion was ruled out when this
constructor was templified for different string types. There is a proposed resolution to fix this problem.

10.4.2 Class bitset in Detail

The bitset class provides the following operations.

Create, Copy, and Destroy Operations

For bitsets, some special constructors are defined. However, there is no special copy constructor,
assignment operator, and destructor defined. Thus, bitsets are assigned and copied with the
default operations that copy bitwise.
bitset<bits>::bitset ()

• The default constructor.
• Creates a bitset with all bits initialized with zero.
• For example:
•
• bitset<50> flags; // flags: 0000...000000
• // thus, 50 unset bits

bitset<bits>::bitset (unsigned long value)

• Creates a bitset that is initialized according to the bits of the integral value value.
• If the number of bits of value is too small, the leading bit positions are initialized to zero.
• For example:
•
• bitset<50> flags (7); // flags: 0000...000111

explicit bitset<bits>::bitset (const string& str)
bitset<bits>::bitset (const string& str, string::size_type str_idx)
bitset<bits>::bitset (const string& str, string::size_type str_idx, string::size_type str_num)

• All forms create a bitset that is initialized by the string str or a substring of str.
• The string or substring may contain only the characters '0' and '1'.
• str_idx is the index of the first character of str that is used for initialization.
• If str_num is missing, all characters from str_idx to the end of str are used.
• If the string or substring has fewer characters than necessary, the leading bit positions

are initialized to zero.
• If the string or substring has more characters than necessary, the remaining characters

are ignored.
• Throw out_of_range if str_idx > str.size().
• Throw invalid_argument if one of the characters is neither '0' nor '1'.
• Note that this constructor is a member template (see page 11). For this reason no implicit

type conversion from const char* to string for the first parameter is provided.[8]

[8] This is probably a mistake in the standard because it was possible to use

 bitset<50> flags("l0l0l0l")

The C++ Standard Library

dyne-book 403

in earlier versions of the standard. By accident this implicit type conversion was ruled out when
this constructor was templified for different string types. There is a proposed resolution to fix this
problem.

• For example:
•
• bitset<50> flags(string("1010101")); // flags:

0000...0001010101
 bitset<50> flags(string("1111000"),2,3); // flags:
0000...0000000110

Nonmanipulating Operations

size_t bitset<bits>::size () const

• Returns the number of bits (thus, bits)

size_t bitset<bits>::count () const

• Returns the number of set bits (bits with value 1).

bool bitset<bits>::any () const

• Returns whether any bit is set.

bool bitset<bits>::none () const

• Returns whether no bit is set.

bool bitset<bits>::test (size_t idx) const

• Returns whether the bit at position idx is set.
• Throws out_of_range if idx > size().

bool bitset<bits>::operator == (const bitset<bits>& bits) const

• Returns whether all bits of *this and bits have the same value.

bool bitset<bits>::operator != (const bitset<bits>& bits) const

• Returns whether any bits of *this and bits have a different value.

Manipulating Operations

bitset<bits>& bitset<bits>::set()

• Sets all bits to true.

The C++ Standard Library

dyne-book 404

• Returns the modified bitset.

bitset<bits>& bitset<bits>::set (size_t idx)

• Sets the bit at position idx to true.
• Returns the modified bitset.
• Throws out_of_range if idx > size().

bitset<bits>& bitset<bits>::set (size_t idx, int value)

• Sets the bit at position idx according to value.
• Returns the modified bitset.
• value is processed as a Boolean value. If value is equal to 0, the bit is set to false. Any

other value sets the bit to true.
• Throws out_of _range if idx > size().

bitset<bits>& bitset<bits>::reset()

• Resets all bits to false (assigns 0 to all bits).
• Returns the modified bitset.

bitset<bits>& bitset<bits>::reset (size_t idx)

• Resets the bit at position idx to false.
• Returns the modified bitset.
• Throws out_of_range if idx > size().

bitset<bits>& bitset<bits>::flip ()

• Toggles all bits (sets unset bits and vice versa).
• Returns the modified bitset.

bitset<bits>& bitset<bits>::flip (size_t idx)

• Toggles the bit at position idx.
• Returns the modified bitset.
• Throws out_of_range if idx > size().

bitset<bits>& bitset<bits>::operator \'88= (const bitset<bits>& bits)

• The bitwise exclusive-or operator.
• Toggles the value of all bits that are set in bits and leaves all other bits unchanged.
• Returns the modified bitset.

bitset<bits>& bitset<bits>::operator | = (const bitset<bits>& bits)

• The bitwise or operator.
• Sets all bits that are set in bits and leaves all other bits unchanged.
• Returns the modified bitset.

The C++ Standard Library

dyne-book 405

bitset<bits>& bitset<bits>::operator &= (const bitset<bits>& bits)

• The bitwise and operator.
• Resets all bits that are not set in bits and leaves all other bits unchanged.
• Returns the modified bitset.

bitset<bits>& bitset<bits>::operator <<= (size_t num)

• Shifts all bits by num positions to the left.
• Returns the modified bitset.
• The first num bits are set to false.

bitset<bits>& bitset<bits>::operator >>= (size_t num)

• Shifts all bits by num positions to the right.
• Returns the modified bitset.
• The last num bits are set to false.

Access with Operator []

bitset<bits>::reference bitset<bits>::operator [] (size_t idx)
bool bitset<bits>::operator [] (size_t idx) const

• Both forms return the bit at position idx
• The first form for nonconstant bitsets uses a proxy type to enable the use of the return

value as a modifiable value (lvalue). See the next paragraphs for details.
• The caller must ensure that idx is a valid index; otherwise, the behavior is undefined.

Operator [] returns a special temporary object of type bitset<>::reference when it is called
for nonconstant bitsets. That object is used as a proxy[9] that allows certain modifications with the
bit that is accessed by operator []. In particular, for references the following five operations are
provided:

[9] A proxy allows you to keep control where usually no control is provided. This is often used to get more
security. In this case, it maintains control to allow certain operations, although the return value in principle
behaves as bool.

1. referencefe& operator= (bool)

Sets the bit according to the passed value.

2. reference& operator= (const reference&)

Sets the bit according to another reference.

3. reference& flip ()

Toggles the value of the bit.

4. operator bool () const

The C++ Standard Library

dyne-book 406

Converts the value into a Boolean value (automatically).

5. bool operator~ () const

Returns the complement (toggled value) of the bit.

For example, you can write the following statements:

 bitset<50> flags;
 ...
 flags [42] = true; // set bit 42
 flags [13] = flags[42]; // assign value of bit 42 to bit 13
 flags [42].flip(); // toggle value of bit 42
 if (flags [13]) { // if bit 13 is set,
 flags [10] = ~flags [42]; // then assign complement of bit 42 to
bit 10
 }

Creating New Modified Bitsets

bitset<bits> bitset<bits>::operator ~ () const

• Returns a new bitset that has all bits toggled with respect to *this.

bitset<bits> bitset<bits>::operator << (size_t num) const

• Returns a new bitset that has all bits shifted to the left by num position.

bitset<bits> bitset<bits>::operator >> (size_t num) const

• Returns a new bitset that has all bits shifted to the right by num position.

bitset<bits> operator & (const bitset<bits>& bits1, const bitset<bits>& bits2)

• Returns the bitwise computing of operator and of bits1 and bits2.
• Returns a new bitset that has only those bits set in bits1 and in bits2.

bitset<bits> operator | (const bitset<bits>& bits1, const bitset<bits>& bits2)

• Returns the bitwise computing of operator or of bits1 and bits2.
• Returns a new bitset that has only those bits set in bits1 or in bits2.

bitset<bits> operator^ (const bitset<bits>& bits1, const bitset<bits>& bits2)

• Returns the bitwise computing of operator exclusive-or of bits1 and bits2.
• Returns a new bitset that has only those bits set in bits1 and not set in bits2 or vice versa.

Operations for Type Conversions

The C++ Standard Library

dyne-book 407

unsigned long bitset<bits>::to_ulong () const

• Returns the integral value that the bits of the bitset represent.
• Throws overflow_error if the integral value can't be represented by type unsigned

long.

string bitset<bits>::to_string () const

• Returns a string that contains the value of the bitset as a binary representation written
with characters '0' for unset bits and '1' for set bits.

• The order of the characters is equivalent to the order of the bits with descending index.
• This function is a template function that is parameterized only by the return type.

According to the language rules, you must write the following:
• bitset b;
• ...

 b.template to_string<char,char_traits<char>,allocator<char>
>()

Input/Output Operations

istream& operator>> (istream& strm, bitset<bits>& bits)

• Reads into bits a bitset as a character sequence of characters '0' and '1'.
• Reads until any one of the following happens:

o At most, bits characters are read.
o End-of-file occurs in strm.
o The next character is neither '0' nor '1'.

• If the number of bits read is less than the number of bits in the bitset, the bitset is filled
with leading zeros.

• If this operator can't read any character, it sets ios::failbit in strm, which might
throw the corresponding exception (see Section 13.4.4,).

ostream& operator << (ostream& strm, const bitset<bits>& bits)

• Writes bits converted into a string that contains the binary representation (thus, as a
sequence of '0' and '1').

• See page 462 for an example.

The C++ Standard Library

dyne-book 408

Chapter 11. Strings
This chapter presents the string types of the C++ standard library. It describes the basic template
class basic_string<> and its standard specializations string and wstring.
Strings can be a source of confusion. This is because it is not clear what is meant by the term
string. Does it mean an ordinary character array of type char* (with or without the const
qualifier), or an instance of class string, or is it a general name for objects that are kind of
strings? In this chapter I use the term string for objects of one of the string types in the C++
standard library (whether it is string or wstring). For "ordinary strings" of type char* or
const char*, I use the term C-string.
Note that the type of string literals (such as "hello") was changed into const char*.
However, to provide backward compatibility there is an implicit but deprecated conversion to
char* for them.

11.1 Motivation

The string classes of the C++ standard library enable you to use strings as normal types that
cause no problems for the user. Thus, you can copy, assign, and compare strings as fundamental
types without worrying or bothering about whether there is enough memory or for how long the
internal memory is valid. You simply use operators, such as assignment by using =, comparison
by using ==, and concatenation by using +. In short, the string types of the C++ standard library
are designed in such a way that they behave as if they were a kind of fundamental data type that
does not cause any trouble (at least in principle). Modern data processing is mostly string
processing, so this is an important step for programmers coming from C, Fortran, or similar
languages in which strings are a source of trouble.
The following sections offer two examples that demonstrate the abilities and uses of the string
classes. They aren't very useful because they are written only for demonstration purposes.

11.1.1 A First Example: Extracting a Temporary File Name

The first example program uses command-line arguments to generate temporary file names. For
example, if you start the program as

 string1 prog.dat mydir hello. oops.tmp end.dat

the output is

 prog.dat => prog.tmp
 mydir => mydir.tmp
 hello. => hello.tmp
 oops.tmp => oops.xxx
 end.dat => end.tmp

Usually, the generated file name has the extension .tmp, whereas the temporary file name for a
name with the extension .tmp is .xxx.
The program is written in the following way:

 //string/string1.cpp

 #include <iostream>
 #include <string>

The C++ Standard Library

dyne-book 409

 using namespace std;

 int main (int argc, char* argv[])
 {

 string filename, basename, extname, tmpname;
 const string suffix("tmp");

 /*for each command-line argument
 *(which is an ordinary C-string)
 */
 for (int i=1; i<argc; ++i) {
 //process actual argument as file name
 filename = argv[i];

 //search period in file name
 string::size_type idx = filename.find('.');
 if (idx == string::npos) {
 //file name does not contain any period
 tmpname = filename + '.' + suffix;
 }
 else {
 /* split file name into base name and extension
 * - base name contains all characters before the period
 * - extension contains all characters after the period
 */
 basename = filename.substr(0, idx);
 extname = filename.substr(idx+1);
 if (extname.empty()) {
 //contains period but no extension: append tmp
 tmpname = filename;
 tmpname += suffix;
 }
 else if (extname == suffix) {
 //replace extension tmp with xxx
 tmpname = filename;
 tmpname.replace (idx+1, extname.size(), "xxx");
 }
 else {
 //replace any extension with tmp
 tmpname = filename;
 tmpname.replace (idx+1, string::npos, suffix);
 }
 }

 //print file name and temporary name
 cout << filename << " => " << tmpname << endl;
 }
 }

At first,

 #include <string>

The C++ Standard Library

dyne-book 410

includes the header file for the C++ standard string classes. As usual, these classes are declared
in namespace std.
The declaration

 string filename, basename, extname, tmpname;

creates four string variables. No argument is passed, so for their initialization the default
constructor for string is called. The default constructor initializes them as empty strings.
The declaration

 const string suffix("tmp");

creates a constant string suffix that is used in the program as the normal suffix for temporary
file names. The string is initialized by an ordinary C-string, so it has the value tmp. Note that C-
strings can be combined with objects of class string in almost any situation in which two
strings can be combined. In particular, in the entire program every occurrence of suffix could
be replaced with "tmp" so that a C-string is used directly.
In each iteration of the for loop, the statement

 filename = argv[i];

assigns a new value to the string variable filename. In this case, the new value is an ordinary
C-string. However, it could also be another object of class string or a single character that has
type char.
The statement

 string::size_type idx = filename.find('.');

searches the first occurrence of a period inside the string filename. The find() function is
one of several functions that search for something inside strings. You could also search
backward, for substrings, only in a part of a string, or for more than one character simultaneously.
All these find functions return an index of the first matching position. Yes, the return value is an
integer and not an iterator. The usual interface for strings is not based on the concept of the STL.
However, some iterator support for strings is provided (see Section 11.2.13). The return type of
all find functions is string::size_type, an unsigned integral type that is defined inside the
string class.[1] As usual, the index of the first character is the value 0. The index of the last
character is the value "numberOfCharacters-1." Note that "numberOfCharacters" is not a valid
index. Unlike C-strings, objects of class string have no special character '\0' at the end of the
string.

[1] In particular, the size_type of a string depends on the memory model of the string class. See Section
11.3.12, for details.

If the search fails, a special value is needed to return the failure. That value is npos, which is
also defined by the string class. Thus, the line

 if (idx == string::npos)

checks whether the search for the period failed.

The C++ Standard Library

dyne-book 411

The type and value of npos are a big pitfall for the use of strings. Be very careful that you always
use string::size_type and not int or unsigned for the return type when you want to check
the return value of a find function. Otherwise, the comparison with string::npos might not
work. See Section 11.2.12, for details.
If the search for the period fails in this example, the file name has no extension. In this case, the
temporary file name is the concatenation of the original file name, the period character, and the
previously defined extension for temporary files:

 tmpname = filename + '.' + suffix;

Thus, you can simply use operator + to concatenate two strings. It is also possible to concatenate
strings with ordinary C-strings and single characters.
If the period is found, the else part is used. Here, the index of the period is used to split the file
name into a base part and the extension. This is done by the substr() member function:

 basename = filename.substr(0, idx);
 extname = filename.substr(idx+1);

The first parameter of the substr() function is the starting index. The optional second argument
is the number of characters (not the end index). If the second argument is not used, all remaining
characters of the string are returned as a substring.
At all places where an index and a length are used as arguments, strings behave according to the
following two rules:

1. An argument specifying the index must have a valid value. That value must be less than
the number of characters of the string (as usual, the index of the first character is 0). In
addition, the index of the position after the last character could be used to specify the
end.

In most cases, any use of an index greater than the actual number of characters throws
out_of _range. However, all functions that search for a character or a position (all
find functions) allow any index. If the index exceeds the number of characters these
functions simply return string::npos ("not found").

2. An argument specifying the number of characters could have any value. If the size is
greater than the remaining number of characters, all remaining characters are used. In
particular, string::npos always works as a synonym for "all remaining characters."

Thus, the following expression throws an exception if the period is not found:

 filename.substr(filename.find('.'))

But, the following expression does not throw an exception:

 filename.substr(0, filename.find('. '))

If the period is not found, it results in the whole file name.
Even if the period is found, the extension that is returned by substr() might be empty because
there are no more characters after the period. This is checked by

The C++ Standard Library

dyne-book 412

 if (extname.empty())

If this condition yields true, the generated temporary file name becomes the ordinary file name
that has the normal extension appended:

 tmpname = filename;
 tmpname += suffix;

Here, operator += is used to append the extension.
The file name might already have the extension for temporary files. To check this, operator == is
used to compare two strings:

 if (extname == suffix)

If this comparison yields true the normal extension for temporary files is replaced by the
extension xxx:

 tmpname = filename;
 tmpname.replace (idx+1, extname.size(), "xxx");

Here,

 extname.size()

returns the number of characters of the string extname. Instead of size() you could use
length(), which does exactly the same thing. So, both size() and length() return the
number of characters. In particular, size() has nothing to do with the memory that the string
uses.[2]

[2] In this case, two member functions do the same with respect to the two different design approaches that
are merged here. length() returns the length of the string as strlen() does for ordinary C-strings,
whereas size() is the common member function for the number of elements according to the concept of
the STL.

Next, after all special conditions are considered, normal processing takes place. The program
replaces the whole extension by the ordinary extension for temporary file names:

 tmpname = filename;
 tmpname.replace (idx+1, string::npos, suffix);

Here, string::npos is used as a synonym for "all remaining characters." Thus, all remaining
characters after the period are replaced with suffix. This replacement would also work if the
file name contained a period but no extension. It would just replace "nothing" with suffix.
The statement that writes the original file name and the generated temporary file name shows
that you can print the strings by using the usual output operators of streams (surprise, surprise):

 cout << filename << " => " << tmpname << endl;

The C++ Standard Library

dyne-book 413

11.1.2 A Second Example: Extracting Words and Printing Them Backward

The second example extracts single words from standard input and prints the characters of each
word in reverse order. The words are separated by the usual whitespaces (newline, space, and
tab), and by commas, periods, or semicolons.

 //string/string2.cpp

 #include <iostream>
 #include <string>
 using namespace std;

 int main (int argc, char** argv)
 {

 const string delims(" \t,.;");
 string line;
 //for every line read successfully
 while (getline(cin,line)) {
 string::size_type begIdx, endIdx;

 //search beginning of the first word
 begIdx = line.find_first_not_of(delims);

 //while beginning of a word found
 while (begIdx != string::npos) {
 //search end of the actual word
 endIdx = line.find_first_of (delims, begIdx);
 if (endIdx == string::npos) {
 //end of word is end of line
 endIdx = line.length();
 }

 //print characters in reverse order
 for (int i=endIdx-l; i>=static_cast<int>(begIdx); --i)
 cout << line [i];
 }
 cout << ' ';

 //search beginning of the next word
 begIdx = line.find_first_not_of (delims, endIdx);
 }
 cout << endl;
 }
 }

In this program, all characters used as word separators are defined in a special string constant:

 const string delims(" \t,.;");

The newline is also used as a delimiter. However, no special processing is necessary for it
because the program reads line-by-line.
The outer loop runs as far as a line can be read into the string line:

The C++ Standard Library

dyne-book 414

 string line;
 while (getline(cin,line)) {
 ...
 }

The function getline() is a special function to read input from streams into a string. It reads
every character up to the next end-of-line, which by default is the newline character. The line
delimiter itself is extracted hut not appended. By passing your special line delimiter as an optional
second character argument you can use getline() to read token-by-token, where the tokens
are separated by that special delimiter.
Inside the outer loop, the individual words are searched and printed. The first statement

 begIdx = line.find_first_not_of(delims);

searches for the beginning of the first word. The find_first_not_of() function returns the
first index of a character that is not part of the passed string argument. Thus, this function returns
the first character that is not one of the separators in delims. As usual for find functions, if no
matching index is found, string::npos is returned.
The inner loop iterates as long as the beginning of a word can be found:

 while (begIdx != string::npos) {
 ...
 }

The first statement of the inner loop searches for the end of the actual word:

 endIdx = line.find_first_of (delims, begIdx);

The find_first_of() function searches for the first occurrence of one of the characters
passed as the first argument. In this case, an optional second argument is used that specifies
where to start the search in the string. Thus, the first delimiter after the beginning of the word is
searched.
If no such character is found, the end-of-line is used:

 if (endIdx == string::npos) {
 endIdx = line.length();
 }

Here, length() is used, which does the same thing as size(): It returns the number of
characters.
In the next statement, all characters of the word are printed in reverse order:

 for (int i=endIdx-1; i>=static_cast<int>(begIdx); --i) {
 cout << line[i];
 }

Accessing a single character of the string is done with operator []. Note that this operator does
not check whether the index of the string is valid. Thus, you have to ensure that the index is valid
(as was done here). A safer way to access a character is to use the at() member function.

The C++ Standard Library

dyne-book 415

However, such a check costs runtime, so the check is not provided for the usual accessing of
characters of a string.
Another nasty problem results from using the index of the string. That is, if you omit the cast of
begIdx to int, this program might run in an endless loop or might crash. Similar to the first
example program, the problem is that string::size_type is an unsigned integral type.
Without the cast, the signed value i is converted automatically into an unsigned value because it
is compared with a signed type. In this case, the expression

 i>=begIdx

always yields true if the actual word starts at the beginning of the line. This is because begIdx
is then zero and any unsigned value is greater than or equal to zero. So, an endless loop results
that might get stopped by a crash due to an illegal memory access.
For this reason, I really don't like the concept of string::size_type and string::npos.
See Section 11.2.12, for a workaround that is safer (but not perfect).
The last statement of the inner loop reinitializes begIdx to the beginning of the next word, if any:

 begIdx = line.find_first_not_of (delims, endIdx);

Unlike with the first call of find_first_not_of() in the example, here the end of the previous
word is passed as the starting index for the search. If the previous word was the rest of the line,
endIdx is the index of the end of the line. This simply means that the search starts from the end
of the string, which returns string::npos.
Let's try this "useful and important" program. Here is some possible input:

 pots & pans
 I saw a reed

The output for this input is as follows:

 stop & snap
 I was a deer

I'd appreciate other examples of input for the next edition of this book.

11.2 Description of the String Classes

11.2.1 String Types

Header File

All types and functions for strings are defined in the header file <string>:

 #include <string>

As usual, it defines all identifiers in namespace std.

Template Class basic_string<>

The C++ Standard Library

dyne-book 416

Inside <string>, the type basic_string<> is defined as a basic template class for all string
types:

 namespace std {
 template<class charT,
 class traits = char_traits<charT>,
 class Allocator = allocator<charT> >
 class basic_string;
 }

It is parameterized by the character type, the traits of the character type, and the memory model:

• The first parameter is the data type of a single character.
• The optional second parameter is a traits class, which provides all core operations for the

characters of the string class. Such a traits class specifies how to copy or to compare
characters (see Section 14.1.2, for details). If it is not specified, the default traits class
according to the actual character type is used. See Section 11.2.14, for a user-defined
traits class that lets strings behave in a case-insensitive manner.

• The third optional argument defines the memory model that is used by the string class.
As usual, the default value is the default memory model allocator (see Section 3.4,
and Chapter 15 for details).[3]

[3] In systems that do not support default template parameters, the third argument is usually
missing.

Types string and wstring

Two specializations of class basic_string<> are provided by the C++ standard library:

1. string is the predefined specialization of that template for characters of type char:
2.
3. namespace std {
4. typedef basic_string<char> string;
5.
6. }
7.

8. wstring is the predefined specialization of that template for characters of type
wchar_t:

9.
10. namespace std {
11. typedef basic_string<wchar_t> wstring;
12.
13. }
14.

Thus, you can use strings that use wider character sets, such as Unicode or some Asian
character sets (see Chapter 14 for details about internationalization).

The C++ Standard Library

dyne-book 417

In the following sections no distinction is made between these different kinds of strings. The
usage and the problems are the same because all string classes have the same interface. So,
"string" means any string type, such as string and wstring. The examples in this book
usually use type string because the European and Anglo-American environment is the
common environment for software development.

11.2.2 Operation Overview

Table 11.1 lists all operations that are provided for strings.
Table 11.1. String Operation

Operation Effect
constructors Create or copy a string
destructor Destroys a string
=, assign() Assign a new value
swap() Swaps values between two strings
+=, append(), push_back() Append characters
insert() Inserts characters
erase() Deletes characters
clear() Removes all characters (makes it empty)
resize() Changes the number of characters (deletes or appends

characters at the end)
replace() Replaces characters
+ Concatenates strings
==, !=, <, <=, >, >=,
compare()

Compare strings

size(), length() Return the number of characters
max_size() Returns the maximum possible number of characters
empty() Returns whether the string is empty
capacity() Returns the number of characters that can held without be

reallocation
[], at() Access a character
>>, getline() Read the value from a stream
<< Writes the value to a stream
copy() Copies or writes the contents to a C-string
c_str() Returns the value as C-string
data() Returns the value as character array
substr() Returns a certain substring
find functions Search for a certain substring or character
begin(), end() Provide normal iterator support
rbegin(), rend() Provide reverse iterator support
get_allocator() Returns the allocator

String Operation Arguments

Many operations are provided to manipulate strings. In particular, the operations that manipulate
the value of a string have several overloaded versions that specify the new value with one, two,
or three arguments. All these operations use the argument scheme of Table 11.2.

The C++ Standard Library

dyne-book 418

Table 11.2. Scheme of String Operation Arguments
Arguments Interpretation

const string & str The whole string str
const string & str, size_type idx,
size_type num

At most, the first num characters of str starting with
index idx

const char* cstr The whole C-string cstr
const char* chars, size_type len len characters of the character array chars
char c The character c
size_type num, char c num occurrences of the character c
iterator beg, iterator end All characters in the range [beg,end)
Note that only the single-argument version char* handles the character '\0' as a special
character that terminates the string. In all other cases '\0' is not a special character:

 std::string s1("nico"); //initializes s1 with: 'n' 'i' 'c'
'o'
 std::string s2("nico",5) ; //initializes s2 with: 'n' 'i' 'c'
'o' '\0'
 std::string s3(5,'\0'); //initializes s3 with: '\0' '\0' '\0'
'\0' '\0'

 s1.length() //yields 4
 s2.length() //yields 5
 s3.length() //yields 5

Thus, in general a string might contain any character. In particular, a string might contain the
contents of a binary file.
See Table 11.3 for an overview of which operation uses which kind of arguments. All operators
can only handle objects as single values. Therefore, to assign, compare, or append a part of a
string or C-string, you must use the function that has the corresponding name.

Operations that Are Not Provided

The string classes of the C++ standard library do not solve every possible string problem. In fact,
they do not provide direct solutions for

• Regular expressions
• Word processing (capitalization, case-insensitive comparisons)

Word processing, however, is not a big problem. See Section 11.2.13, for some examples.
Table 11.3. Available Operations that Have String Parameters

 Full
String

Part of
String

C-string
(char*)

char
Array

Single
char

num
chars

Iterator
Range

constructors Yes Yes Yes Yes — Yes Yes
= Yes — Yes — Yes — —
assign() Yes Yes Yes Yes — Yes Yes
+= Yes — Yes — Yes — —
append() Yes Yes Yes Yes — Yes Yes
push_back() — — — — Yes — —

The C++ Standard Library

dyne-book 419

insert(), index
version

Yes Yes Yes Yes — Yes —

insert(), iterator
version

— — — — Yes Yes Yes

replace(), index
version

Yes Yes Yes Yes Yes Yes —

replace(), iterator
vers.

Yes — Yes Yes — Yes —

find functions Yes — Yes Yes Yes — —
+ Yes — Yes — Yes — —
==, !=, <, <=,
>, >=

Yes — Yes — — — —

compare() Yes Yes Yes Yes — — —

11.2.3 Constructors and Destructors

Table 11.4 lists all constructors and destructors for strings. These are described in this section.
The initialization by a range that is specified by iterators is described in Section 11.2.13.

Table 11.4. Constructors and Destructor of Strings
Expression Effect

string s Creates the empty string s
string s(str) Creates a string as a copy of the existing string str
string s (str,
stridx)

Creates a string s that is initialized by the characters of string str
starting with index stridx

string s(str, stridx,
strlen)

Creates a string s that is initialized by, at most, strlen characters
of string str starting with index stridx

string s(cstr) Creates a string s that is initialized by the C-string cstr
string s (chars,
chars_len)

Creates a string s that is initialized by chars_len characters of the
character array chars

string s(num,c) Creates a string that has num occurrences of character c
string s (beg, end) Creates a string that is initialized by all characters of the range

[beg, end)
s.~string() Destroys all characters and frees the memory
You can't initialize a string with a single character. Instead, you must use its address or an
additional number of occurrences:

 std:: string s('x'); //ERROR
 std:: string s(1, 'x'); //OK, creates a string that has one
character 'x'

This means that there is an automatic type conversion from type const char* but not from type
char to type string.

11.2.4 Strings and C-Strings

In standard C++ the type of string literals was changed from char* to const char*. However,
to provide backward compatibility there is an implicit but deprecated conversion to char* for

The C++ Standard Library

dyne-book 420

them. However, because string literals don't have type string, there is a strong relationship
between "new" string class objects and ordinary C-strings: You can use ordinary C-strings in
almost every situation where strings are combined with other string-like objects (comparing,
appending, inserting, etc.). In particular, there is an automatic type conversion from const
char* into strings. However, there is no automatic type conversion from a string object to a C-
string. This is for safety reasons to prevent unintended type conversions that result in strange
behavior (type char* often has strange behavior) and ambiguities (for example, in an expression
that combines a string and a C-string it would be possible to convert string into char* and
vice versa). Instead, there are several ways to create or write/copy in a C-string, In particular,
c_str() is provided to generate the value of a string as a C-string (as a character array that has
'\0' as its last character). By using copy(), you can copy or write the value to an existing C-
string or character array.
Note that strings do not provide a special meaning for the character '\0', which is used as
special character in an ordinary C-string to mark the end of the string. The character '\0' may
be part of a string just like every other character.
Note also that you must not use a null pointer (NULL) instead of a char* parameter. Doing so
results in strange behavior. This is because NULL has an integral type and is interpreted as the
number zero or the character with value 0 if the operation is overloaded for a single integral type.
There are three possible ways to convert the contents of the string into a raw array of characters
or C-string:

1. data()

Returns the contents of the string as an array of characters. Note that the return type is
not a valid C-string because no '\0' character gets appended.

2. c_str()

Returns the contents of the string as a C-string. Thus, the '\0' character is appended.

3. copy()

Copies the contents of the string into a character array provided by the caller. An '\0'
character is not appended.

Note that data() and c_str() return an array that is owned by the string. Thus, the caller must
not modify or free the memory. For example:

 std::string s("12345");

 atoi(s.c_str()) //convert string into integer
 f(s.data(), s.length()) //call function for a character array
 //and the number of characters

 char buffer [100];
 s.copy (buffer, 100) ; //copy at most 100 characters of s
into buffer
 s.copy (buffer, 100,2) ; //copy at most 100 characters of s
into buffer
 //starting with the third character of
s

The C++ Standard Library

dyne-book 421

You usually should use strings in the whole program and convert them into C-strings or character
arrays only just immediately before you need the contents as type char*. Note that the return
value of c_str() and data() is valid only until the next call of a nonconstant member function
for the same string:

 std::string s;

 ...
 foo (s . c_str()); //s.c_str() is valid during the whole
statement

 const char* p;
 p = s.c_str() ; //p refers to the contents of s as a C-string
 foo (p); //OK(p is still valid)
 s += " ext" ; //invalidates p
 foo (p); //ERROR: argument p is not valid

11.2.5 Size and Capacity

To use strings effectively and correctly you need to understand how the size and capacity of
strings cooperate. For strings, three "sizes" exist:

1. size() and length()

Return the actual number of characters of the string. Both functions are equivalent.[4]

[4] In this case, two member functions do the same thing because length() returns the length of
the string, as strlen() does for ordinary C-strings, whereas size() is the common member
function for the number of elements according to the concept of the STL.

The empty() member function is a shortcut for checking whether the numbers of
characters is zero. Thus, it checks whether the string is empty. You should use it instead
of length() or size() because it might be faster.

2. max_size()

Returns the maximum number of characters that a string may contain. A string typically
contains all characters in a single block of memory, so there might be relevant restrictions
on PCs. Otherwise, this value usually is the maximum value of the type of the index less
one. It is "less one" for two reasons: (a) The maximum value itself is npos and (b) an
implementation might append '\0' internally at the end of the internal buffer so that it
simply returns that buffer when the string is used as a C-string (for example, by
c_str()). Whenever an operation results in a siring that has a length greater than
max_size(), the class throws length_error.

3. capacity()

The C++ Standard Library

dyne-book 422

Returns the number of characters that a string could contain without having to reallocate
its internal memory.

Having sufficient capacity is important for two reasons:

1. Reallocation invalidates all references, pointers, and iterators that refer to characters of
the string.

2. Reallocation takes time.

Thus, the capacity must be taken into account if a program uses pointers, references, or iterators
that refer to a string or to characters of a string, or if speed is a goal.
The member function reserve() is provided to avoid reallocations. reserve() lets you reserve
a certain capacity before you really need it to ensure that references are valid as long as the
capacity is not exceeded:

 std::string s; //create empty string
 s.reserve(80); //reserve memory for 80 characters

The concept of capacity for strings is, in principle, the same as for vector containers (see Section
6.2.1); however, there is one big difference: Unlike vectors, you can call reserve() for strings
to shrink the capacity. Calling reserve() with an argument that is less than the current capacity
is, in effect, a nonbinding shrink request. If the argument is less than the current number of
characters, it is a nonbinding shrink-to-fit request. Thus, although you might want to shrink the
capacity, it is not guaranteed to happen. The default value of reserve() for string is 0. So, a
call of reserve() without any argument is always a nonbinding shrink-to-fit request:

 s.reserve() ; //"would like to shrink capacity to fit the
current size"

The call to shrink capacity is nonbinding because how to reach an optimal performance is
implementation-defined. Implementations of the string class might have different design
approaches with respect to speed and memory usage. Therefore, implementations might
increase capacity in larger steps and might never shrink the capacity.
The standard, however, specifies that capacity may shrink only because of a call of reserve().
Thus, it is guaranteed that references, pointers, and iterators remain valid even when characters
are deleted or changed, provided they refer to characters that have a position that is before the
manipulated characters.

11.2.6 Element Access

A string allows you to have read or write access to the characters it contains. You can access a
single character via either of two methods: the subscript operator [] and the at() member
function. Both return the character at the position of the passed index. As usual, the first
character has index 0 and the last character has index length()-1. However, note the
following differences:

• Operator [] does not check whether the index passed as an argument is valid; at()
does. If at() is called with an invalid index, it throws an out_of_range exception. If
operator [] is called with an invalid index, the behavior is undefined. The effect might be
an illegal memory access that might then cause some nasty side effects or a crash

The C++ Standard Library

dyne-book 423

(you're lucky if the result is a crash, because then you know that you did something
wrong).

• For the constant version of operator [], the position after the last character is valid. In
this case, the actual number of characters is a valid index. The operator returns the value
that is generated by the default constructor of the character type. Thus, for objects of type
string it returns the char '\0'.

In all other cases (for the nonconstant version of operator [] and for the at() member
function), the actual number of characters is an invalid index. Using it might cause an
exception or result in undefined behavior.

For example:

 const std::string cs("nico"); //cs contains: 'n' 'i' 'c' 'o'
 std::string s("abcde"); //s contains: 'a' 'b' 'c' 'd' 'e'

 s[2] //yields 'c'
 s.at(2) //yields 'c'

 s[100] //ERROR: undefined behavior
 s.at(100) //throws out_of_range

 s[s.length()] //ERROR: undefined behavior
 cs[cs.length()] //yields '\0'
 s.at(s.length()) //throws out_of _range
 cs.at(cs.length()) //throws out_of _range

To enable you to modify a character of a string, the nonconstant versions of [] and at() return
a character reference. Note that this reference becomes invalid on reallocation:

 std::string s("abcde"); //s contains: 'a' 'b' 'c' 'd' 'e'

 char& r = s[2]; //reference to third character
 char* p = s[3]; //pointer to fourth character

 r = 'X'; //OK, s contains: 'a' 'b' 'X' 'd' 'e'
 *p = 'Y'; //OK, s contains: 'a' 'b' 'X' 'Y' 'e'

 s = "new long value"; //reallocation invalidates r and p

 r = 'X'; //ERROR: undefined behavior
 *p = 'Y'; //ERROR: undefined behavior

Here, to avoid runtime errors, you would have had to reserve() enough capacity before r and
p were initialized.

The C++ Standard Library

dyne-book 424

References and pointers that refer to characters of a string may be invalidated by the following
operations:

• If the value is swapped with swap()
• If a new value is read by operator>>() or getline()
• If the contents are exported by data() or c_str()
• If any nonconstant member function is called, except operator [], at(), begin(),

rbegin(), end(), or rend()
• If any of these functions is followed by operator [], at(), begin(), rbegin(),

end(), or rend()

The same applies to iterators (see Section 11.2.13).

11.2.7 Comparisons

The usual comparison operators are provided for strings. The operands may be strings or C-
strings:

 std::string s1, s2;
 ...

 s1 == s2 //returns true if s1 and s2 contain the same
characters
 s1 < "hello" //return whether s1 is less than the C-string "hello"

If strings are compared by <, <=, >, or >=, their characters are compared lexicographically
according to the current character traits. For example, all of the following comparisons yield
true:

 std::string("aaaa") < std::string("bbbb")
 std::string("aaaa") < std::string("abba")
 std::string("aaaa") < std::string("aaaaaa")

By using the compare() member functions you can compare substrings. The compare()
member functions can process more than one argument for each string so that you can specify a
substring by its index and by its length. Note that compare() returns an integral value rather
than a Boolean value. This return value has the following meaning: 0 means equal, a value less
than zero means less than, and a value greater than zero means greater than. For example:

 std::string s("abcd");

 s.compare("abcd") //returns 0
 s compare ("dcba") //returns a value < 0 (s is less)
 s compare ("ab") //returns a value > 0 (s is greater)

 s.compare (s) //returns 0 (s is equal to s)
 s.compare(0,2,s,2,2) //returns a value <0("ab" is less than
"cd")
 s.compare (1,2, "bcx",2) //returns 0 ("bc" is equal to "bc")

The C++ Standard Library

dyne-book 425

To use a different comparison criterion you can define your own comparison criterion and use
STL comparison algorithms (see Section 11.2.13, for an example), or you can use special
character traits that make comparisons on a case-insensitive basis. However, because a string
type that has a special traits class is a different data type, you cannot combine or process these
strings with objects of type string. See Section 11.2.14, for an example.
In programs for the international market it might be necessary to compare strings according to a
specific locale. Class locale provides the parenthesis operator as convenient way to do this
(see page 703). It uses the string collation facet, which is provided to compare strings for sorting
according to some locale conventions. See Section 14.4.5, for details.

11.2.8 Modifiers

You can modify strings by using different member functions and operators.

Assignments

To modify a string you can use operator = to assign a new value. The new value may be a string,
a C-string, or a single character. In addition, you can use the assign() member functions to
assign strings when more than one argument is needed to describe the new value. For example:

 const std::string aString("othello");
 std::string s;

 s = aString; //assign "othello"
 s = "two\nlines"; //assign a C-string
 s = ' '; //assign a single character

 s.assign(aString); //assign "othello" (equivalent to operator
=)
 s.assign(aString, 1,3); //assign "the"
 s.assign(aString, 2, string::npos); //assign "hello"

 s.assign("two\nlines") ; //assign a C-string (equivalent to
operator =)
 s.assign("nico" ,5); //assign the character array: 'n' 'i'
'c' 'o' '\0'
 s.assign(5,'x'); //assign five characters: 'x' 'x' 'x'
'x' 'x'

You also can assign a range of characters that is defined by two iterators. See Section 11.2.13,
for details.

Swapping Values

As with many nontrivial types, the string type provides a specialization of the swap() function,
which swaps the contents of two strings (the global swap() function was introduced in Section
4.4.2). The specialization of swap() for strings guarantees constant complexity. So you should

The C++ Standard Library

dyne-book 426

use it to swap the value of strings and to assign strings if you don't need the assigned string after
the assignment.

Making Strings Empty

To remove all characters in a string, you have several possibilities. For example:

 std::string s;

 s = ""; // assign the empty string
 s.clear(); // clear contents
 s.erase(); // erase all characters

Inserting and Removing Characters

There are a lot of member functions to insert, remove, replace, and erase characters of a string.
To append characters, you can use operator +=, append(), and push_back(). For
example:

 const std::string aString("othello");
 std::string s;

 s += aString; //append "othello"
 s += "two\nlines"; //append C-string
 s += '\n'; //append single character

 s.append(aString); //append "othello" (equivalent to operator
+=)
 s.append(aString,1,3); //append "the"
 s.append(aString,2,string::npos); //append "hello"

 s.append("two\nlines"); //append C-string (equivalent to operator
+=)
 s.append("nico" ,5); //append character array: 'n' 'i' 'c' 'o'
'\0'
 s.append(5,'x'); //append five characters: 'x' 'x' 'x' 'x'
'x'

 s.push_back('\n'); //append single character (equivalent to
operator +=)

Operator += appends single-argument values, append() lets you specify the appended value by
using multiple arguments. One additional version of append() lets you append a range of
characters specified by two iterators (see Section 11.2.13). The push_back() member
function is provided for back inserters so that STL algorithms are able to append characters to a
string (see Section 7.4.2, for details about back inserters and Section 11.2.13, for an example
of their use with strings).

The C++ Standard Library

dyne-book 427

Similar to append(), several insert() member functions enable you to insert characters.
They require the index of the character, behind which the new characters are inserted:

 const std::string aString("age");
 std::string s("p");

 s.insert(1,aString); //s: page
 s.insert(1, "ersifl"); //s: persiflage

Note that no insert() member function is provided to pass the index and a single character.
Thus you must pass a string or an additional number:

 s.insert(0,' '); //ERROR
 s.insert(0," "); //OK

You might also try

 s.insert(0,1, ' '); //ERROR: ambiguous

However, this results in a nasty ambiguity because insert() is overloaded for the following
signatures:

 insert (size_type idx, size_type num, charT c); //position is index
 insert (iterator pos, size_type num, charT c); //position is
iterator

For type string, size_type is usually defined as unsigned and iterator is often defined
as char*. In this case, the first argument 0 has two equivalent conversions. So, to get the
correct behavior you have to write:

 s.insert((string::size_type)0,1,' '); //OK

The second interpretation of the ambiguity described here is an example of the use of iterators to
insert characters. If you wish to specify the insert position as an iterator, you can do it in three
ways: insert a single character, insert a certain number of the same character, and insert a range
of characters specified by two iterators (see Section 11.2.13).
Similar to append() and insert(), several erase() functions remove characters, and
several replace() functions replace characters. For example:

 std::string s = "i18n"; //s: i18n
 s.replace(1,2, "nternationalizatio"); //s:
internationalization
 s.erase(13); //s: international
 s.erase(7,5); //s: internal
 s.replace(0,2, "ex"); //s: external

resize() lets you change the number of characters. If the new size that is passed as an
argument is less than the actual number of characters, characters are removed from the end. If
the new size is greater than the actual number of characters, characters are appended at the

The C++ Standard Library

dyne-book 428

end. You can pass the character that is appended if the size of the string grows. If you don't, the
default constructor for the character type is used (which is the '\0' character for type char).

11.2.9 Substrings and String Concatenation

You can extract a substring from any string by using the substr() member function. For
example:

 std::string s("interchangeability");

 s.substr() //returns a copy of s
 s.substr(11) //returns string("ability")
 s.substr(5,6) //returns string ("change")
 s.substr(s.find('c')) //returns string ("changeability")

You can concatenate two strings or C-strings, or one of those with single characters by using
operator +. For example, the statements

 std::string s1("enter");
 std::string s2("nation");
 std::string i18n;

 i18n = 'i' + s1.substr(1) + s2 + "aliz" + s2.substr(1);
 cout << "i18n means: " + i18n << endl;

have the following output:

 i18n means: internationalization

11.2.10 Input/Output Operators

The usual I/O operators are defined for strings:

• Operator >> reads a string from an input stream.
• Operator << writes a string to an output stream.

These operators behave as they do for ordinary C-strings. In particular, operator >> operates as
follows:

1. It skips leading whitespaces if the skipws flag (see Section 13.7.7) is not set.
2. It reads all characters until any of the following happens:

o The next character is a whitespace
o The stream is no longer in a good state (for example due to end-of-file)
o The actual width() of the stream (see Section 13.7.3) is greater than zero

and width() characters are read
o max_size() characters are read

3. It sets width() of the stream to 0.

The C++ Standard Library

dyne-book 429

Thus, in general, the input operator reads the next word while skipping leading whitespaces. A
whitespace is any character for which isspace(c,strm.getloc()) is true (isspace() is
explained in Section 14.4.4).
The output operator also takes the width() of the stream in consideration. That is, if width() is
greater than 0, operator << writes at most width() characters.
The string classes also provide a special function in namespace std for reading line-by-line:
std::getline(). This function ignores leading whitespaces and reads all characters until the
line delimiter or end-of-file is reached. The line delimiter is extracted but not appended. By
default, the line delimiter is the newline character, but you can pass your own "line" delimiter as
an optional argument:[5] :

[5] You don't have to qualify getline() with std:: because "Koenig lookup" will always consider the
namespace where the class of an argument was defined when calling a function (see page 17).

 std::string s;

 while (getline(std::cin,s)) { //for each line read from cin
 ...

 }

 while (getline(std:: cin, s,':')) { //for each token separated by
':'
 ...

 }

Note that if you read token-by-token, the newline character is not a special character. In this case,
the tokens might contain a newline character.

11.2.11 Searching and Finding

Strings provide a lot of functions to search and find characters or substrings.[6] You can search

[6] Don't be confused because I write about searching "and" finding. They are (almost) synonymous. The
search functions use "find" in their name. However, unfortunately they don't guarantee to find anything. In
fact, they "search" for something or "try to find" something. So I use the term search for the behavior of
these functions and find with respect to their name.

• A single character, a character sequence (substring), or one of a certain set of characters
• Forward and backward
• Starting from any position at the beginning or inside the string

In addition, all search algorithms of the STL can be called when iterators are used.
All search functions have the word find inside their name. They try to find a character position
given a value that is passed as an argument. How the search proceeds depends on the exact
name of the find function. Table 11.5 lists all of the search functions for strings.

Table 11.5. Search Functions for Strings
String Function Effect

find() Finds the first occurrence of value

The C++ Standard Library

dyne-book 430

rfind() Finds the last occurrence of value (reverse find)
find_first_of() Finds the first character that is part of value
find_last_of() Finds the last character that is part of value
find_first_not_of() Finds the first character that is not part of value
find_last_not_of() Finds the last character that is not part of value
All search functions return the index of the first character of the character sequence that matches
the search. If the search fails, they return npos. The search functions use the following argument
scheme:

• The first argument is always the value that is searched.
• The second optional value indicates an index at which to start the search in the string.
• The optional third argument is the number of characters of the value to search.

Unfortunately, this argument scheme differs from that of the other string functions. With the other
string functions, the starting index is the first argument, and the value and its length are adjacent
arguments. In particular, each search function is overloaded with the following set of arguments:

• const string& value

The function searches against the characters of the string value.

• const string& value, size_type idx

The function searches against the characters of value, starting with index idx in *this.

• const char* value

The function searches against the characters of the C-string value.

• const char* value, size_type idx

The function searches against the characters of the C-string value, starting with index idx
in *this.

• const char* value, size_type idx, size_type value_len

The function searches against the value_len characters of the character array value,
starting with index idx in *this. Thus, the null character ('\0') has no special meaning
here inside value.

• const char value

The function searches against the character value.

• const char value, size_type idx

The function searches against the characters value, starting with index idx in *this.

For example:

The C++ Standard Library

dyne-book 431

 std::string s("Hi Bill, I'm ill, so please pay the bill");

 s.find ("i1") //returns 4 (first substring
"i1")
 s.find("il", 10) //returns 13 (first substring
"il" starting from s[10]
)
 s.rfind("il") //returns 37 (last substring
"il")
 s.find_first_of("il") //returns 1 (first char 'i'
or 'l')
 s.find_last_of("il") //returns 39 (last char 'i'
or 'l')
 s.find_first_not_of("il") //returns 0 (first char
neither 'i' nor 'l')
 s.find_last_not_of("il") //returns 36 (last char
neither 'i' nor 'l')
 s.find("hi") //returns npos

You could also use STL algorithms to find characters or substrings in strings. They allow you to
use your own comparison criterion (see Section 11.2.13, for an example). However, note that
the naming scheme of the STL search algorithms differs from the naming scheme for string
search functions (see Section 9.2.2, for details).

11.2.12 The Value npos

If a search function fails, it returns string::npos. Consider the following example:

 std::string s;
 std::string::size_type idx; //be careful: don't use any
other type!
 ...

 idx = s.find("substring");
 if (idx == std::string::npos) {
 ...
 }

The condition of the if statement yields true if and only if "substring" is not part of string s.
Be very careful when using the string value npos and its type. When you want to check the return
value always use string::size_type and not int or unsigned for the type of the return
value; otherwise, the comparison of the return value with string::npos might not work.
This behavior is the result of the design decision that npos is defined as -1:

 namespace std {
 template<class charT,
 class traits = char_traits<charT>,
 class Allocator = allocator<charT> >
 class basic_string {
 public:

The C++ Standard Library

dyne-book 432

 typedef typename Allocator::size_type size_type;
 ...
 static const size_type npos = -1;
 ...
 };
 }

Unfortunately, size_type (which is defined by the allocator of the string) must be an unsigned
integral type. The default allocator, allocator, uses type size_t as size_type (see
Section 15.3). Because -1 is converted into an unsigned integral type, npos is the maximum
unsigned value of its type. However, the exact value depends on the exact definition of type
size_type. Unfortunately, these maximum values differ. In fact, (unsigned long)-1 differs
from (unsigned short)-1 (provided the size of the types differ). Thus, the comparison

 idx == std::string::npos

might yield false, if idx has the value -1 and idx and string::npos have different types:

 string s;

 ...
 int idx = s.find("not found"); //assume it returns npos
 if (idx == std:: string::npos) { //ERROR: comparison might not
work
 ...
 }

One way to avoid this error is to check whether the search fails directly:

 if (s.find("hi") == std::string::npos) {
 ...
 }

However, often you need the index of the matching character position. Thus, another simple
solution is to define your own signed value for npos:

 const int NPOS = -1;

Now the comparison looks a bit different (and even more convenient):

 if (idx == NPOS) { //works almost always
 ...
 }

Unfortunately, this solution is not perfect because the comparison fails if either idx has type
unsigned short or the index is greater than the maximum value of int (because of these
problems the standard did not define it that way). However, because both might happen very
rarely, the solution works in most situations. To write portable code, however, you should always
use string::size_type for any index of your string type. For a perfect solution you'd need some

The C++ Standard Library

dyne-book 433

overloaded functions that consider the exact type of string::size_type. I hope the standard
will provide a better solution in the future.

11.2.13 Iterator Support for Strings

A string is an ordered collection of characters. As a consequence, the C++ standard library
provides an interface for strings that lets you use strings as STL containers.[7]

[7] The STL is introduced in Chapter 5.

In particular, you can call the usual member functions to get iterators that iterate over the
characters of a string. If you are not familiar with iterators, consider them as something that can
refer to a single character inside a string, just as ordinary pointers do for C-strings. By using these
objects, you can iterate over all characters of a string by calling several algorithms that either are
provided by the C++ standard library or that are user defined. For example, you can sort the
characters of a string, reverse the order, or find the character that has the maximum value.
String iterators are random access iterators. This means that they provide random access and
that you can use all algorithms (see Section 5.3.2, and Section 7.2, for a discussion about
iterator categories). As usual, the types of string iterators (iterator, const_iterator, and
so on) are defined by the string class itself. The exact type is implementation defined, but usually
string iterators are defined simply as ordinary pointers. See Section 7.2.6, for a discussion of a
nasty difference between iterators that are implemented as pointers and iterators that are
implemented as classes.
Iterators are invalidated when reallocation occurs or when certain changes are made to the
values to which they refer. See Section 11.2.6, for details.

Iterator Functions for Strings

Table 11.6 shows all of the member functions that strings provide for iterators. As usual, the
range specified by beg and end is a half-open range that includes beg but excludes end (often
written as [beg,end), see Section 5.3).
To support the use of back inserters for string, the push_back() function is defined. See
Section 7.4.2, for details about back inserters and page 502 for an example of their use with
strings.

Example of Using String Iterators

A very useful thing that you can do with string iterators is to make all characters of a string
lowercase or uppercase via a single statement. For example:

 //string/iter1.cpp

 #include <string>
 #include <iostream>
 #include <algorithm>
 #include <cctype>
 using namespace std;

Table 11.6. Iterator Operations of Strings
Expression Effect

s.begin() Returns a random access iterator for the first
character

The C++ Standard Library

dyne-book 434

s.end() Returns a random access iterator for the position
after the last character

s.rbegin() Returns a reverse iterator for the first character of a
reverse iteration (thus, for the last character)

s.rend() Returns a reverse iterator for the position after the
last character of a reverse iteration (thus, the position
before the first character)

string s(beg,end) Creates a string that is initialized by all characters of
the range [beg,end)

s.append(beg,end) Appends all characters of the range [beg,end)
s.assign(beg,end) Assigns all characters of the range [beg,end)
s.insert(pos,c) Inserts the character c at iterator position pos and

returns the iterator position of the new character
s.insert(pos,num,c) Inserts num occurrences of the character c at iterator

position pos and returns the iterator position of the
first new character

s.insert(pos,beg,end) Inserts all characters of the range [beg,end) at
iterator position pos

s.erase(pos) Deletes the character to which iterator pos refers and
returns the position of the next character

s.erase(beg,end) Deletes all characters of the range [beg,end) and
returns the next position of the next character

s.replace(beg, end, str) Replaces all characters of the range [beg,end) with
the characters of string str

s.replace(beg,end,cstr) Replaces all characters of the range [beg,end) with
the characters of the C-string cstr

s.replace(beg,end,cstr,len) Replaces all characters of the range [beg,end) with
len characters of the character array cstr

s.replace(beg,end,num,c) Replaces all characters of the range [beg,end) with
num occurrences of the character c

s.replace(beg,end,newBeg,newEnd) Replaces all characters of the range [beg,end) with
all characters of the range [newBeg,newEnd)

 int main()
 {
 //create a string
 string s("The zip code of Hondelage in Germany is 38108");
 cout << "original: " << s << endl;

 //lowercase all characters
 transform (s.begin(), s.end(), //source
 s.begin(), //destination
 tolower); //operation
 cout << "lowered: " << s << endl;

 //uppercase all characters
 transform (s.begin(), s.end(), //source
 s.begin(), //destination

The C++ Standard Library

dyne-book 435

 toupper); //operation
 cout << "uppered: " << s << endl;

 }

The output of the program is as follows:

 original: The zip code of Hondelage in Germany is 38108
 lowered: the zip code of hondelage in germany is 38108
 uppered: THE ZIP CODE OF HONDELAGE IN GERMANY IS 38108

Note that tolower() and toupper() are old C functions that use the global locale. If you have
a different locale or more than one locale in your program, you should use the new form of
tolower() and toupper(). See Section 14.4.4, for details.
The following example demonstrates how the STL enables you to use your own search and sort
criteria. It compares and searches strings in a case-insensitive way:

 //string/iter2.cpp

 #include <string>
 #include <iostream>
 #include <algorithm>
 using namespace std;

 bool nocase_compare (char c1, char c2)
 {
 return toupper(c1) == toupper(c2);
 }
 int main()
 {
 string s1("This is a string");
 string s2("STRING");

 //compare case insensitive
 if (s1.size() == s2.size() && //ensure same sizes
 equal (s1.begin(),s1.end(), //first source string
 s2.begin(), //second source string
 nocase_compare)) { //comparison criterion
 cout << "the strings are equal" << endl;
 }
 else {
 cout << "the strings are not equal" << endl;
 }

 //search case insensitive
 string::iterator pos;
 pos = search (s1.begin() ,s1.end(), //source string in which to
search
 s2.begin(), s2.end(), //substring to search
 nocase_compare); //comparison criterion
 if (pos == s1.end()) {

The C++ Standard Library

dyne-book 436

 cout << "s2 is not a substring of s1" << endl;
 }
 else {
 cout << ' " ' << s2 << "\" is a substring of \""
 << s1 << "\" (at index " << pos - s1.begin() << ")"
 << endl;
 }
 }

Note that the caller of equal() has to ensure that the second range has at least as many
elements/characters as the first range. Thus, comparing the string size is necessary; otherwise,
the behavior will be undefined.
In the last output statement you can process the difference of two string iterators to get the index
of the character position:

 pos - s1.begin()

This is because string iterators are random access iterators. Similar to transferring an index into
the iterator position, you can simply add the value of the index.
In this example the user-defined auxiliary function nocase_compare() is provided to compare
two strings in a case-insensitive way. Instead, you can also use a combination of some function
adapters and replace the expression nocase_compare with the following expression:

 compose_f_gx_hy(equal_to<int>(),
 ptr_fun(toupper),
 ptr_fun(toupper))

See page 309 and page 318 for further details.
If you use strings in sets or maps, you might need a special sorting criterion to let the collections
sort the string in a case-insensitive way. See page 213 for an example that demonstrates how to
do this.
The following program demonstrates other examples of strings using iterator functions:

 //string/iter3.cpp

 #include <string>
 #include <iostream>
 #include <algorithm>
 using namespace std;

 int main()
 {
 //create constant string
 const string hello("Hello, how are you?");

 //initialize string s with all characters of string hello
 string s(hello.begin(),hello.end());

 //iterate through all of the characters
 string::iterator pos;

The C++ Standard Library

dyne-book 437

 for (pos = s.begin(); pos != s.end(); ++pos) {
 cout << *pos;
 }
 cout << endl;

 //reverse the order of all characters inside the string
 reverse (s.begin(), s.end());
 cout << "reverse: " << s << endl;

 //sort all characters inside the string
 sort (s.begin(), s.end());
 cout << "ordered: " << s << endl;

 /*remove adjacent duplicates
 *-unique() reorders and returns new end
 *-erase() shrinks accordingly
 */
 s.erase (unique(s.begin(),
 s.end()),
 s.end());
 cout << "no duplicates: " << s << endl;
 }

The program has the following output:

 Hello, how are you?
 reverse: ?uoy era woh ,olleH
 ordered: ,?Haeehlloooruwy
 no duplicates: ,?Haehloruwy

The following example uses back inserters to read the standard input into a string:

 //string/unique.cpp

 #include <iostream>
 #include <string>
 #include <algorithm>
 #include <locale>
 using namespace std;

 class bothWhiteSpaces {
 private:
 const locale& loc; //locale
 public:
 /*constructor
 *-save the locale object
 */
 bothWhiteSpaces (const locale& l) : loc(l) {
 }
 /*function call
 *-returns whether both characters are whitespaces

The C++ Standard Library

dyne-book 438

 */
 bool operator() (char elem1, char elem2) {
 return isspace(elem1,loc) && isspace(elem2,loc);
 }
 };

 int main()
 {
 string contents;

 //don't skip leading whitespaces
 cin.unsetf (ios::skipws);

 //read all characters while compressing whitespaces
 unique_copy(istream_iterator<char>(cin) , //beginning of
source
 istream_iterator<char>(), //end of source
 back_inserter (contents), //destination
 bothWhiteSpaces (cin. getloc ())); //criterion for
removing
 //process contents
 //-here: write it to the standard output
 cout << contents;
 }

By using the unique_copy() algorithm (see Section 9.7.2), all characters are read from the
input stream cin and inserted into the string contents. The bothWhiteSpaces function
object is used to check whether two consecutive characters are both whitespaces. To do this, it is
initialized by the locale of cin and calls isspace(), which checks whether a character is a
whitespace character (see Section 14.4.4, for a discussion of isspace()). unique_copy()
uses the criterion bothWhiteSpaces to remove adjacent duplicate whitespaces. You can find a
similar example in the reference section about unique_copy() on page 385.

11.2.14 Internationalization

As mentioned in the introduction of the string class (see Section 11.2.1), the template string
class basic_string<> is parameterized by the character type, the traits of the character type,
and the memory model. Type string is the specialization for characters of type char, and type
wstring is the specialization for characters of type wchar_t.
The character traits are provided to specify the details of how to deal with aspects depending on
the representation of a character type. An additional class is necessary because you can't change
the interface of built-in types (such as char and wchar_t), and the same character type may
have different traits. The details about the traits classes are described in Section 14.1.2.
The following code defines a special traits class for strings so that they operate in a case-
insensitive way:

 //string/icstring.hpp

 #include <string>
 #include <iostream>
 #include <cctype>

The C++ Standard Library

dyne-book 439

 /* replace functions of the standard char_traits<char>
 * so that strings behave in a case-insensitive way
 */
 struct ignorecase_traits : public std::char_traits<char> {
 //return whether c1 and c2 are equal
 static bool eq(const char& c1, const char& c2) {
 return std::toupper(c1)==std::toupper(c2);
 }
 //return whether cl is less than c2
 static bool It(const char& c1, const char& c2){
 return std::toupper(c1)<std::toupper(c2);
 }
 //compare up to n characters of s1 and s2
 static int compare(const char* s1, const char* s2, size_t n) {
 for (size_t i=0; i<n; ++i) {
 if (!eq(s1[i],s2[i])) {
 return lt(s1 [i],s2[i])?-1:1;
 }
 }
 return 0;
 }
 //search c in s
 static const char* find(const char* s, size_t n,
 const char& c) {
 for (size_t i=0; i<n; ++i) {
 if (eq(s[i],c)) {
 return &(s[i]);
 }
 }
 return 0;
 }
 };
 //define a special type for such strings
 typedef std::basic_string<char,ignorecase_traits> icstring;

 /*define an output operator
 *because the traits type is different than that for std::ostream
 */
 std::ostream& operator << (std::ostream& strm, const icstring& s)
 {
 //simply convert the icstring into a normal string
 return strm << std::string(s.data(), s.length());
 }

The definition of the output operator is necessary because the standard only defines I/O
operators for streams that use the same character and traits type. But here, the traits type differs,
so we have to define our own output operator. For input operators the same problem occurs.
The following program demonstrates how to use these special kinds of strings:

 //string/icstring1.cpp

 #include "icstring.hpp"

The C++ Standard Library

dyne-book 440

 int main()
 {
 using std::cout;
 using std::endl;

 icstring s1("hallo");
 icstring s2("otto");
 icstring s3("hALLo");

 cout << std::boolalpha;
 cout << s1 << " == " << s2 << " : " << (s1==s2) << endl;
 cout << s1 << " == " << s3 << " : " << (s1==s3) << endl;

 icstring::size_type idx = s1.find("All");
 if (idx != icstring::npos) {
 cout << "index of \"A11\" in \"" << s1 << "\": "
 << idx << endl;
 }
 else {
 cout << "\"All\" not found in \"" << s1 << endl;
 }
 }

The program has the following output:

 hallo == otto : false
 hallo == hALLo : true
 index of "All" in "hallo": 1

See Chapter 14 for more details about internationalization.

11.2.15 Performance

The standard does not specify how the string class is to be implemented. It only specifies the
interface. There may be important differences in speed and memory usage depending on the
concept and priorities of the implementation.
If you prefer better speed, make sure that your string class uses a concept such as reference
counting. Reference counting makes copies and assignments faster because the implementation
only copies and assigns references instead of the contents of a string (see Section 6.8, for a
smart pointer class that enables reference counting for any type). By using reference counting
you might not even need to pass strings by constant reference; however, to maintain flexibility
and portability, you always should.

11.2.16 Strings and Vectors

Strings and vectors behave similarly. This is not a surprise because both are containers that are
typically implemented as dynamic arrays. Thus, you could consider a string as a special kind of a
vector that has characters as elements. In fact, you can use a string as an STL container. This is
covered by Section 11.2.13. However, considering a string as a special kind of vector is

The C++ Standard Library

dyne-book 441

dangerous because there are many fundamental differences between the two. Chief of these are
their two primary goals:

• The primary goal of vectors is to handle and to manipulate the elements of the container,
not the container as a whole. Thus, vectors implementations are optimized to operate on
elements inside the container.

• The primary goal of strings is to handle and to manipulate the container (the string) as a
whole. Thus, strings are optimized to reduce the costs of assigning and passing the
whole container.

These different goals typically result in completely different implementations. For example, strings
are often implemented by using reference counting; vectors never are. Nevertheless, you can
also use vectors as ordinary C-strings. See Section 6.2.3, for details.

11.3 String Class in Detail

In this section string means the actual string class. It might be string, wstring, or any other
specialization of class basic_string<>. Type char means the actual character type, which is
char for string and wchar_t for wstring. Other types and values that are in italic type have
definitions that depend on individual definitions of the character type or traits class. The details
about traits classes are provided in Section 14.1.2.

11.3.1 Type Definitions and Static Values

string::traits_type

• The type of the character traits.
• The second template parameter of class basic_string.
• For type string, it is equivalent to char_traits<char>.

string::value_type

• The type of the characters.
• It is equivalent to traits_type::char_type.
• For type string, it is equivalent to char.

string::size_type

• The unsigned integral type for size values and indices.
• It is equivalent to allocator_type::size_type.
• For type string, it is equivalent to size_t.

string::difference_type

• The signed integral type for difference values.
• It is equivalent to allocator_type::difference_type.
• For type string, it is equivalent to ptrdiff_t.

string::reference

The C++ Standard Library

dyne-book 442

• The type of character references.
• It is equivalent to allocator_type::reference.
• For type string, it is equivalent to char&.

string::const_reference

• The type of constant character references.
• It is equivalent to allocator_type::const_reference.
• For type string, it is equivalent to const char&.

string::pointer

• The type of character pointers.
• It is equivalent to allocator_type::pointer.
• For type string, it is equivalent to char*.

string::const_pointer

• The type of constant character pointers.
• It is equivalent to allocator_type::const_pointer.
• For type string, it is equivalent to const char*.

string::iterator

• The type of iterators.
• The exact type is implementation defined.
• For type string, it is typically char*.

string::const_iterator

• The type of constant iterators.
• The exact type is implementation defined.
• For type string, it is typically const char*.

string::reverse_iterator

• The type of reverse iterators.
• It is equivalent to reverse_iterator<iterator>.

string::const_reverse_iterator

• The type of constant reverse iterators.
• It is equivalent to reverse_iterator<const_iterator>.

static const size_type string::npos

• A special value that indicates one of the following:
o "not found"
o "all remaining characters"

• It is an unsigned integral value that is initialized by -1.

The C++ Standard Library

dyne-book 443

• Be careful when you use npos. See Section 11.2.12, for details.

11.3.2 Create, Copy, and Destroy Operations

string::string ()

• The default constructor.
• Creates an empty string.

string::string (const string& str)

• The copy constructor.
• Creates a new string as a copy of str.

string::string (const string& str, size_type str_idx)
string::string (const string& str, size_type str_idx, size_type str_num)

• Create a new string that is initialized by, at most, the first str_num characters of str
starting with index str_idx.

• If str_num is missing, all characters from str_idx to the end of str are used.
• Throws out_of_range if str_idx > str.size().

string::string (const char* cstr)

• Creates a string that is initialized by the C-string cstr.
• The string is initialized by all characters of cstr up to but not including '\0'.
• Note that cstr may not be a null pointer (NULL).
• Throws length_error if the resulting size exceeds the maximum number of characters.

string::string (const char* chars, size_type chars_len)

• Creates a string that is initialized by chars_len characters of the character array chars.
• Note that chars must have at least chars_len characters. The characters may have

arbitrary values. Thus, '\0' has no special meaning.
• Throws length_error if chars_len is equal to string::npos.
• Throws length_error if the resulting size exceeds the maximum number of characters.

string::string (size_type num, char c)

• Creates a string that is initialized by num occurrences of character c.
• Throws length_error if num is equal to string::npos.
• Throws length_error if the resulting size exceeds the maximum number of characters.

string ::string (InputIterator beg, Input Iterator end)

• Creates a string that is initialized by all characters of the range [beg,end).
• Throws length_error if the resulting size exceeds the maximum number of characters.

string::~string ()

The C++ Standard Library

dyne-book 444

• The destructor.
• Destroys all characters and frees the memory.

Most constructors allow you to pass an allocator as an additional argument (see Section
11.3.12).

11.3.3 Operations for Size and Capacity

Size Operations

size_type string::size () const
size_type string::length () const

• Both functions return the actual number of characters.
• They are equivalent.
• To check whether the string is empty, you should use empty() because it might be

faster.

bool string::empty () const

• Returns whether the string is empty (contains no characters).
• It is equivalent to string::size()==0, but it might be faster.

size_type string::max_size () const

• Returns the maximum number of characters a string could contain.
• Whenever an operation results in a string that has a length greater than max_size(),

the class throws length_error.

Capacity Operations

size_type string::capacity () const

• Returns the number of characters the string could contain without reallocation.

void string::reserve ()
Void string::reserve (size_type num)

• The second form reserves internal memory for at least num characters.
• If num is less than the actual capacity, the call is taken as a nonbinding request to shrink

the capacity.
• If num is less than the current number of characters, the call is taken as a nonbinding

request to shrink the capacity to fit the actual number of characters.
• If no argument is passed, the call is always a nonbinding shrink-to-fit request.
• The capacity is never reduced below the current number of characters.
• Each reallocation invalidates all references, pointers, and iterators and takes some time,

so a preemptive call to reserve() is useful to increase speed and to keep references,
pointers, and iterators valid (see Section 11.2.5, for details).

11.3.4 Comparisons

The C++ Standard Library

dyne-book 445

bool comparison (const string& str1, const string& str2)
bool comparison (const string& str, const char* cstr)
bool comparison (const char* cstr, const string& str)

• The first form returns the result of the comparison of two strings.
• The second and third form return the result of the comparison of a string with a C-string.
• comparison might be any of the following:
•
• Operator ==
• operator !=
• operator <
• operator >
• operator <=
• operator >=
•

• The values are compared lexicographically (see page 488).

int string::compare (const string& str) const

• Compares the string *this with the string str.
• Returns

o 0 if both strings are equal
o A value < 0 if *this is lexicographically less than str
o A value > 0 if *this is lexicographically greater than str

• For the comparison, traits::compare() is used (see Section 14.1.2).
• See Section 11.2.7, for details.

int string::compare (size_type idx, size_type len, const string& str) const

• Compares, at most, len characters of string *this, starting with index idx with the string
str.

• Throws out_of_range if idx > size().
• The comparison is performed as just described for compare (str).

int string::compare (size_type idx, size_type len, const string& str, size_type str_idx,
size_type str_len) const

• Compares, at most, len characters of string *this, starting with index idx with, at most,
str_len characters of string str starting with index str_idx.

• Throws out_of_range if idx > size().
• Throws out_of_range if str_idx > str.size().
• The comparison is performed as just described for compare (str).

int string::compare (const char* cstr) const

• Compares the characters of string *this with the characters of the C-string cstr.
• The comparison is performed as just described for compare (str).

The C++ Standard Library

dyne-book 446

int string::compare (size_type idx, size_type len, const char* cstr) const

• Compares, at most, len characters of string *this, starting with index idx with all
characters of the C-string cstr.[8]

[8] The standard specifies the behavior of this form of compare() differently: It states that cstr is
not considered a C-string but a character array, and passes npos as its length (in fact, it calls the
following form of compare() by using npos as an additional parameter). This is a bug in the
standard (it would always throw a length_error exception).

• The comparison is performed as just described for compare(str).
• Note that cstr may not be a null pointer (NULL).

int string::compare (size_type idx,size_type len, const char* chars, size_type
chars_len)const

• Compares, at most, len characters of string *this, starting with index idx with chars_len
characters of the character array chars.

• The comparison is performed as just described for compare(str).
• Note that chars must have at least chars_len characters. The characters may have

arbitrary values. Thus, '\0' has no special meaning.
• Throws length_error if chars_len is equal to string::npos.

11.3.5 Character Access

char& string::operator [] (size_type idx)
char string::operator [] (size_type idx) const

• Both forms return the character with the index idx (the first character has index 0).
• For constant strings, length() is a valid index and the operator returns the value

generated by the default constructor of the character type (for string: '\0').
• For nonconstant strings, using length() as index value is invalid.
• Passing an invalid index results in undefined behavior.
• The reference returned for the nonconstant string may become invalidated due to string

modifications or reallocations (see Section 11.2.6, for details).
• If the caller can't ensure that the index is valid, at() should be used.

char& string::at (size_type idx)
const char& string::at (size_type idx) const

• Both forms return the character that has the index idx (the first character has index 0).
• For all strings, an index with length() as value is invalid.
• Passing an invalid index (less than 0 or greater than or equal to size()) throws an

out_of_range exception.
• The reference returned for the nonconstant string may become invalidated due to string

modifications or reallocations (see Section 11.2.6, for details).
• If the caller ensures that the index is valid, she can use operator [], which is faster.

11.3.6 Generating C-Strings and Character Arrays

The C++ Standard Library

dyne-book 447

const char* string::c_str () const

• Returns the contents of the string as a C-string (an array of characters that has the null
character '\0' appended).

• The return value is owned by the string. Thus, the caller must neither modify nor free or
delete the return value.

• The return value is valid only as long as the string exists, and as long as only constant
functions are called for it.

const char* string::data () const

• Returns the contents of the string as a character array.
• The return value contains all characters of the string without any modification or

extension. In particular, no null character is appended. Thus, the return value is, in
general, not a valid C-string.

• The return value is owned by the string. Thus, the caller must neither modify nor free or
delete the return value.

• The return value is valid only as long as the string exists, and as long as only constant
functions are called for it.

size_type string::copy (char* buf, size_type buf_size) const
size_type string::copy (char* buf, size_type buf_size, size_type idx) const

• Both forms copy, at most, buf_size characters of the string (beginning with index idx) into
the character array buf.

• They return the number of characters copied.
• No null character is appended. Thus, the contents of buf may be not a valid C-string after

the call.
• The caller must ensure that buf has enough memory; otherwise, the call results in

undefined behavior.
• Throws out_of_range if idx > size().

11.3.7 Modifying Operations

Assignments

string& string::operator = (const string& str)
string& string::assign (const string& str)

• Both operations assign the value of string str.
• They return *this.

string& string::assign (const string& str, size_type str_idx, size_type str_num)

• Assigns at most str_num characters of str starting with index str_idx.
• Returns *this.
• Throws out_of _range if str_idx > str. size().

string & string:: operator = (const char* cstr)
string & string::assign (const char* cstr)

The C++ Standard Library

dyne-book 448

• Both operations assign the characters of the C-string cstr.
• They assign all characters of cstr up to but not including '\0'.
• Both operations return *this.
• Note that cstr may not be a null pointer (NULL).
• Both operations throw length_error if the resulting size exceeds the maximum

number of characters.

string& string::assign (const char* chars, size_type chars_len)

• Assigns chars_len characters of the character array chars.
• Returns *this.
• Note that chars must have at least chars_len characters. The characters may have

arbitrary values. Thus, '\0' has no special meaning.
• Throws length_error if the resulting size exceeds the maximum number of characters.

string& string:: operator = (char c)

• Assigns character c as the new value.
• Returns *this.
• After this call, *this contains only this single character.

string & string::assign (size_type num, char c)

• Assigns num occurrences of character c.
• Returns *this.
• Throws length_error if num is equal to string::npos.
• Throws length_error if the resulting size exceeds the maximum number of characters.

void string::swap (string& str)
void swap (string& str1, string& str2)

• Both forms swap the value of two strings:
o The member function swaps the contents of *this and str.
o The global function swaps the contents of str1 and str2.

• You should prefer these functions over assignment if possible because they are faster. In
fact, they are guaranteed to have constant complexity. See Section 11.2.8, for details.

Appending Characters

string& string::operator += (const string& str)
string& string::append (const string& str)

• Both operations append the characters of str.
• They return *this.
• Both operations throw length_error if the resulting size exceeds the maximum

number of characters.

string& string::append (const string& str, size_type str_idx, size_type str_num)

• Appends, at most, str_num characters of str, starting with index str_idx.

The C++ Standard Library

dyne-book 449

• Returns *this.
• Throws out_of_range if str_idx > str. size().
• Throws length_error if the resulting size exceeds the maximum number of characters.

string& string:: operator += (const char* cstr)
string& string::append (const char* cstr)

• Both operations append the characters of the C-string cstr.
• They return *this.
• Note that cstr may not be a null pointer (NULL).
• Both operations throw length_error if the resulting size exceeds the maximum

number of characters.

string& string::append (const char* chars, size_type chars_len)

• Appends chars_len characters of the character array chars.
• Returns *this.
• Note that chars must have at least chars_len characters. The characters may have

arbitrary values. Thus, '\0' has no special meaning.
• Throws length_error if the resulting size exceeds the maximum number of characters.

string& string::append (size_type num, char c)

• Appends num occurrences of character c.
• Returns *this.
• Throws length_error if the resulting size exceeds the maximum number of characters.

string& string::operator += (char c)
void string:: push_back (char c)

• Both operations append character c.
• Operator += returns *this.
• Both operations throw length_error if the resulting size exceeds the maximum

number of characters.

string& string::append (InputIterator beg, InputIterator end)

• Appends all characters of the range [beg,end).
• Returns *this.
• Throws length_error if the resulting size exceeds the maximum number of characters.

Inserting Characters

string& string::insert (size_type idx, const string& str)

• Inserts the characters of str so that the new characters start with index idx.
• Returns *this.
• Throws out_of_range if idx > size().
• Throws length_error if the resulting size exceeds the maximum number of characters.

The C++ Standard Library

dyne-book 450

string& string::insert (size_type idx, const string& str, size_type str_idx, size_type
str_num)

• Inserts, at most, str_num characters of str, starting with index str_idx, so that the new
characters start with index idx.

• Returns *this.
• Throws out_of_range if idx > size().
• Throws out_of_range if str_idx > str.size().
• Throws length_error if the resulting size exceeds the maximum number of characters.

string& string::insert (size_ type idx, const char* cstr)

• Inserts the characters of the C-string cstr so that the new characters start with index idx.
• Returns *this.
• Note that cstr may not be a null pointer (NULL).
• Throws out_of_range if idx > size().
• Throws length_error if the resulting size exceeds the maximum number of characters.

string& string::insert (size_type idx, const char* chars, size_type chars_len)

• Inserts chars_len characters of the character array chars so that the new characters start
with index idx.

• Returns *this.
• Note that chars must have at least chars_len characters. The characters may have

arbitrary values. Thus, '\0' has no special meaning.
• Throws out_of_range if idx > size().
• Throws length_error if the resulting size exceeds the maximum number of characters.

string& string ::insert (size_type idx, size_type num, char c)
void string ::insert (iterator pos, size_type num, char c)

• Both forms insert num occurrences of character c at the position specified by idx or pos
respectively.

• The first form inserts the new characters so that they start with index idx.
• The second form inserts the new characters before the character to which iterator pos

refers.
• Note that the overloading of these two functions results in a possible ambiguity. If you

pass 0 as first argument, it can be interpreted as an index (which is typically a conversion
to unsigned) or as an iterator (which is often a conversion to char*). So in this case
you should pass an index as the exact type. For example:

•
• string s;
• ...
• s.insert (0,1, ' ') ; //ERROR: ambiguous
• s.insert((string::size_type)0,1,' '); //OK
• Both forms return *this.
• Both forms throw out_of_range if idx > size().
• Both forms throw length_error if the resulting size exceeds the maximum number of

characters.

The C++ Standard Library

dyne-book 451

iterator string ::insert (iterator pos, char c)

• Inserts a copy of character c before the character to which iterator pos refers.
• Returns the position of the character inserted.
• Throws length_error if the resulting size exceeds the maximum number of characters.

void string ::insert (iterator pos, InputIterator beg, InputIterator end)

• Inserts all characters of the range [beg,end) before the character to which iterator pos
refers.

• Throws length_error if the resulting size exceeds the maximum number of characters.

Erasing Characters

void string ::clear ()
string& string ::erase ()

• Both functions delete all characters of the string. Thus, the string is empty after the call.
• erase() returns *this.

string& string ::erase (size_type idx)
string& string ::erase (size_type idx, size_type len)

• Both forms erase, at most, len characters of *this, starting at index idx.
• They return *this.
• If len is missing, all remaining characters are removed.
• Both forms throw out_of_range if idx > size().

string& string ::erase (iterator pos)
string& string ::erase (iterator beg, iterator end)

• Both forms erase the single character at iterator position pos or all characters of the
range [beg,end) respectively.

• They return the first character after the last character removed (thus, the second form
returns end)[9]

[9] The standard specifies that the second form of this function returns the position after end. This
is a bug in the standard.

Changing the Size

void string ::resize (size_type num)
void string ::resize (size_type num, char c)

• Both forms change the number of characters of *this to num. Thus, if num is not equal
to size(), they append or remove characters at the end according to the new size.

• If the number of characters increases, the new characters are initialized by c. If c is
missing, the characters are initialized by the default constructor of the character type (for
string: '\0').

• Both forms throw length_error if num is equal to string ::npos.

The C++ Standard Library

dyne-book 452

• Both forms throw length_error if the resulting size exceeds the maximum number of
characters.

Replacing Characters

string& string ::replace (size_type idx, size_type len, const string& str)
string& string ::replace (iterator beg, iterator end, const string& str)

• The first form replaces, at most, len characters of *this, starting with index idx, with all
characters of str.

• The second form replaces all characters of the range [beg,end) with all characters of str.
• Both forms return *this.
• Both forms throw out_of_range if idx > size().
• Both forms throw length_error if the resulting size exceeds the maximum number of

characters.

string& string::replace (size_type idx, size_type len, const string& str, size_type
str_idx, size_type str_num)

• Replaces, at most, len characters of *this, starting with index idx, with at most str_num
characters of str starting with index str_idx.

• Returns *this.
• Throws out_of_range if idx > size().
• Throws out_of_range if str_idx > str. size().
• Throws length_error if the resulting size exceeds the maximum number of characters.

string& string::replace (size_type idx, size_type len, const char* cstr)
string& string::replace (iterator beg, iterator end, const char* cstr)

• Both forms replace, at most, len characters of *this, starting with index idx, or all
characters of the range [beg,end), respectively, with all characters of the C-string cstr.

• Both forms return *this.
• Note that cstr may not be a null pointer (NULL).
• Both forms throw out_of_range if idx > size().
• Both forms throw length_error if the resulting size exceeds the maximum number of

characters.

string& string::replace (size_type idx, size_type len, const char* chars, size_type
chars_len)
string& string::replace (iterator beg, iterator end, const char* chars, size_type
chars_len)

• Both forms replace, at most, len characters of *this, starting with index idx, or all
characters of the range [beg,end), respectively, with chars_len characters of the
character array chars.

• They return *this.
• Note that chars must have at least chars_len characters. The characters may have

arbitrary values. Thus, '\0' has no special meaning.
• Both forms throw out_of_range if idx > size().

The C++ Standard Library

dyne-book 453

• Both forms throw length_error if the resulting size exceeds the maximum number of
characters.

string& string::replace (size_type idx, size_type len, size_type num, char c)
string& string::replace (iterator beg, iterator end, size_type num, char c)

• Both forms replace, at most, len characters of *this, starting with index idx, or all
characters of the range [beg,end), respectively, with num occurrences of character c

• They return *this.
• Both forms throw out_of_range if idx > size().
• Both forms throw length_error if the resulting size exceeds the maximum number of

characters.

string& string::replace (iterator beg, iterator end InputIterator newBeg,
InputIterator newEnd)

• Replaces all characters of the range [beg,end) with all characters of the range
[newBeg,newEnd).

• Returns *this.
• Throws length_error if the resulting size exceeds the maximum number of characters.

11.3.8 Searching and Finding

Find a Character

size_type string::find (char c) const
size_type string::flnd (char c, size_type idx) const
size_type string::rfind (char c) const
size_type string::rfind (char c, size_type idx) const

• These functions search for the first/last character c (starting at index idx).
• The find() functions search forward and return the first substring.
• The find() functions search backward and return the last substring.
• These functions return the index of the character when successful or string::npos if they

fail.

Find a Substring

size_type string::find (const string& str) const
size_type string::find (const string& str, size_type idx) const
size_type string::rfind (const string& str) const
size_type string::rfind (const string& str, size_type idx) const

• These functions search for the first/last substring str (starting at index idx).
• The find() functions search forward and return the first substring.
• The find() functions search backward and return the last substring.
• These functions return the index of the first character of the substring when successful or

string::npos if they fail.

size_type string::find (const char* cstr) const

The C++ Standard Library

dyne-book 454

size_type string::find (const char* cstr, size_type idx) const
size_type string::rfind (const char* cstr) const
size_type string::rfind (const char* cstr, size_type idx) const

• These functions search for the first/last substring that has the characters of the C-string
cstr (starting at index idx).

• The find() functions search forward and return the first substring.
• The rfind() functions search backward and return the last substring.
• These functions return the index of the first character of the substring when successful or

string::npos if they fail.
• Note that cstr may not be a null pointer (NULL).

size_type string::find (const char* chars, size_type idx, size_type chars_len) const
size_type string::rfind (const char* chars, size_type idx, size_type chars_len) const

• These functions search for the first/last substring that has chars_len characters of the
character array chars (starting at index idx).

• find() searches forward and returns the first substring.
• find() searches backward and returns the last substring.
• These functions return the index of the first character of the substring when successful or

string::npos if they fail.
• Note that chars must have at least chars_len characters. The characters may have

arbitrary values. Thus, '\0' has no special meaning.

Find First of Different Characters

size_type string::find_first_of (const string& str) const
size_type string::find_first_of (const string& str, size_type idx) const
size_type string::find_first_not_of (const string& str) const
size_type string::find_first_not_of (const string& str, size_type idx) const

• These functions search for the first character that is or is not also an element of the string
str (starting at index idx).

• These functions return the index of that character or substring when successful or
string::npos if they fail.

size_type string:: find_first_of (const char* cstr) const
size_type string::find_first_of (const char* cstr, size_type idx) const
size_type string::find_first_not_of (const char* cstr) const
size_type string:: find_first_not_of (const char* cstr, size_type idx) const

• These functions search for the first character that is or is not also an element of the C-
string cstr (starting at index idx).

• These functions return the index of that character when successful or string::npos if
they fail.

• Note that cstr may not be a null pointer (NULL).

size_type string::find_first_of (const char* chars, size_type idx, size_type chars_len)
const
size_type string::find_first_not_of (const char* chars, size_type idx, size_type
chars_len) const

The C++ Standard Library

dyne-book 455

• These functions search for the first character that is or is not also an element of the
chars_len characters of the character array chars (starting at index idx).

• These functions return the index of that character when successful or string::npos if
they fail.

• Note that chars must have at least chars_len characters. The characters may have
arbitrary values. Thus, '\0' has no special meaning.

size_type string::find_first_of (char c) const
size_type string::find_first_of (char c, size_type idx) const
size_type string::find_first_not_of (char c) const
size_type string::find_first_not_of (char c, size_type idx) const

• These functions search for the first character that has or does not have the value c
(starting at index idx).

• These functions return the index of that character when successful or string::npos if they
fail.

Find Last of Different Characters

size_type string::find_last_of (const string& str) const
size_type string::find_last_of (const string& str, size_type idx) const
size_type string::find_last_not_of (const string& str) const
size_type string::find_last_not_of (const string& str, size_type idx) const

• These functions search for the last character that is or is not also an element of the string
str (starting at index idx).

• These functions return the index of that character or substring when successful or
string::npos if they fail.

size_type string::find_last_of (const char* cstr) const
size_type string::find_last_of (const char* cstr, size_type idx) const
size_type string::find_last_not_of (const char* cstr) const
size_type string::find_last_not_of (const char* cstr, size_type idx) const

• These functions search for the last character that is or is not also an element of the C-
string cstr (starting at index idx).

• These functions return the index of that character when successful or string::npos if
they fail.

• Note that cstr may not be a null pointer (NULL).

size_type string::find_last_of (const char* chars, size_type idx, size_type chars_len)
const
size_type string::find_last_not_of (const char* chars, size_type idx, size_type
chars_len) const

• These functions search for the last character that is or is not also an element of the
chars_len characters of the character array chars (starting at index idx).

• These functions return the index of that character when successful or string::npos if they
fail.

• Note that chars must have at least chars_len characters. The characters may have
arbitrary values. Thus, '\0' has no special meaning.

The C++ Standard Library

dyne-book 456

size_type string::find_last_of (char c) const
size_type string::find_last_of (char c, size_type idx) const
size_type string::find_last_not_of (char c) const
size_type string::find_last_not_of (char c, size_type idx) const

• These functions search for the last character that has or does not have the value c
(starting at index idx).

• These functions return the index of that character when successful or string::npos if they
fail.

11.3.9 Substrings and String Concatenation

string string::substr () const
string string::substr (size_type idx) const
string string::substr (size_type idx, size_type len) const

• All forms return a substring of, at most, len characters of the string *this starting with
index idx.

• If len is missing, all remaining characters are used.
• If idx and len are missing, a copy of the string is returned.
• All forms throw out_of_range if idx > size().

string operator + (const string& str1, const string& str2)
string operator + (const string& str, const char* cstr)
string operator + (const char* cstr, const string& str)
string operator + (const string& str, char c)
string operator + (char c, const string& str)

• All forms concatenate all characters of both operands and return the sum string.
• The operands may be any of the following:

o A string
o A C-string
o A single character

• All forms throw length_error if the resulting size exceeds the maximum number of
characters.

11.3.10 Input/Output Functions

ostream& operator<< (ostream& strm, const string& str)

• Writes the characters of str to the stream strm.
• If strm.width() is greater than 0, at most width() characters are written and

width() is set to 0.
• ostream is the ostream type basic_ostream<char> according to the character type

(see Section 13.2.1).

istream& operator >> (istream& strm, string& str)

• Reads the characters of the next word from strm into the string str.
• If the skipws flag is set for strm, leading whitespaces are ignored.

The C++ Standard Library

dyne-book 457

• Characters are extracted until any of the following happens:
o strm.width() is greater than 0 and width() characters are stored
o strm. good() is false (which might cause an appropriate exception)
o isspace (c, strm. getloc()) is true for the next character c
o str.max_size() characters are stored

• The internal memory is reallocated accordingly.
• istream is the istream type basic_istream<char> according to the character type (see

Section 13.2.1).

istream& getline (istream& strm, string& str)
istream& getline (istream& strm, string& str, char delim)

• Read the characters of the next line from strm into the string str.
• All characters (including leading whitespaces) are extracted until any of the following

happens:
o strm. width() is greater than 0 and width() characters are stored
o strm.good() is false (which might cause an appropriate exception)
o delim or strm. widen('\n') is extracted
o str.max_size() characters are stored

• The line delimiter is extracted but not appended.
• The internal memory is reallocated accordingly.
• istream is the istream type basic_istream<char> according to the character type (see

Section 13.2.1).

11.3.11 Generating Iterators

iterator string::begin ()
const_iterator string::begin() const

• Both forms return a random access iterator for the beginning of the string (the position of
the first character).

• If the string is empty, the call is equivalent to end().

iterator string::end ()
const_iterator string::end() const

• Both forms return a random access iterator for the end of the string (the position after the
last character).

• Note that the character at the end is not defined. Thus, *s. end() results in undefined
behavior.

• If the string is empty, the call is equivalent to begin().

reverse_iterator string::rbegin ()
const_reverse_iterator string::rbegin () const

• Both forms return a random access iterator for the beginning of a reverse iteration over
the string (the position of the last character).

• If the string is empty, the call is equivalent to rend().
• For details about reverse iterators see Section 7.4.1.

reverse_iterator string::rend ()

The C++ Standard Library

dyne-book 458

const_reverse_iterator string::rend () const

• Both forms return a random access iterator for the end of the reverse iteration over the
string (the position before the first character).

• Note that the character at the reverse end is not defined. Thus, *s.rend() results in
undefined behavior.

• If the string is empty, the call is equivalent to rbegin().
• For details about reverse iterators see Section 7.4.1.

11.3.12 Allocator Support

Strings provide the usual members of classes with allocator support.
string::allocator_type

• The type of the allocator.
• Third template parameter of class basic_string<>.
• For type string, it is equivalent to allocator<char>.

allocator_type string::get_allocator () const

• Returns the memory model of the string.

Strings also provide all constructors with optional allocator arguments. The following are all of the
string constructors, including their optional allocator arguments, according to the standard:

 namespace std {
 template<class charT,
 class traits = char_traits<charT>,
 class Allocator = allocator<charT> >
 class basic_string {
 public:
 //default constructor
 explicit basic_string(const Allocator& a = Allocator());

 //copy constructor and substrings
 basic_string(const basic_string& str,
 size_type str_idx = 0,
 size_type str_num = npos);
 basic_string(const basic_string& str,
 size_type str_idx, size_type str_nnm,
 const Allocator&);

 //constructor for C-strings
 basic_string(const charT* cstr,
 const Allocator& a = Allocator());

 //constructor for character arrays
 basic_string(const charT* chars, size_type chars_len,
 const Allocator& a = Allocator());

The C++ Standard Library

dyne-book 459

 //constructor for num occurrences of a character
 basic_string(size_type num, charT c,
 const Allocator& a = Allocator());

 // constructor for a range of characters
 template<class InputIterator>
 basic_string(InputIterator beg, InputIterator end,
 const Allocator& a = Allocator());
 ...

 };

 }

These constructors behave as described in Section 11.3.2, with the additional ability that you
can pass your own memory model object. If the string is initialized by another string, the allocator
also gets copied.[10] See Chapter 15 for more details about allocators.

[10] The original standard states that the default allocator is used when a string gets copied. However, this
does not make much sense, so this is the proposed resolution to fix this behavior.

The C++ Standard Library

dyne-book 460

Chapter 12. Numerics
This chapter describes the numeric components of the C++ standard library. In particular, it
presents the class for complex numbers, the classes for value arrays, and the global numeric
functions, which are inherited from the C library.
Two other numeric components in the C++ standard library are described in other parts of this
book:

1. The STL contains some numeric algorithms that are described in Section 9.11.
2. For all fundamental numeric data types, the implementation-specific aspects of their

representation are described by numeric_limits, as described in Section 4.3.

12.1 Complex Numbers

The C++ standard library provides the template class complex<> to operate on complex
numbers. Just to remind you: Complex numbers are numbers that have two parts — real and
imaginary. The imaginary part has the property that its square is a negative number. In other
words, the imaginary part of a complex number is the factor i, which is the square root of minus 1.
The class complex is declared in the header file <complex>:

 #include <complex>

In <complex>, the class complex is defined as follows:

 namespace std {
 template <class T>
 class complex;
 }

The template parameter T is used as the scalar type of both the real and the imaginary parts of
the complex number.
In addition, the C++ standard library provides three specializations for float, double, and
long double:

 namespace std {
 template<> class complex<float>;
 template<> class complex<double>;
 template<> class complex<long double>;
 }

These types are provided to allow certain optimizations and some safer conversions from one
complex type to the other.

12.1.1 Examples Using Class Complex

The following program demonstrates some of the abilities of class complex to create complex
numbers, print different representations of complex numbers, and perform some common
operations on complex numbers.

 // num/complex1.cpp

The C++ Standard Library

dyne-book 461

 #include <iostream>
 #include <complex>
 using namespace std;

 int main()
 {
 /*complex number with real and imaginary parts
 *-real part: 4.0
 *-imaginary part: 3.0
 */
 complex<double> c1(4.0,3.0);

 /*create complex number from polar coordinates
 *-magnitude:5.0
 *-phase angle:0.75
 */
 complex<float> c2(polar(5.0,0.75));

 // print complex numbers with real and imaginary parts
 cout << "c1: " << c1 << endl;
 cout << "c2: " << c2 << endl;

 //print complex numbers as polar coordinates
 cout << "c1: magnitude: " << abs (c1)
 << " (squared magnitude: " << norm(c1) << ") "
 << " phase angle: " << arg(c1) << endl;
 cout << "c2: magnitude: " << abs(c2)
 << " (squared magnitude: " << norm (c2) << ") "
 << " phase angle: " << arg(c2) << endl;

 //print complex conjugates
 cout << "c1 conjugated: " << conj(c1) << endl;
 cout << "c2 conjugated: " << conj(c2) << endl;

 //print result of a computation
 cout << "4.4 + c1 * 1.8: " << 4.4 + c1 * 1.8 << endl;

 /*print sum of c1 and c2:
 *-note: different types
 */
 cout << "c1 + c2: "
 << c1 + complex<double>(c2.real(),c2.imag()) << endl;

 // add square root of c1 to c1 and print the result
 cout << "c1 += sqrt(c1): " << (c1 += sqrt(c1)) << endl;
 }

The C++ Standard Library

dyne-book 462

The program might have the following output (the exact output depends on the implementation
specific properties of the type double):

 c1: (4,3)
 c2: (3.65844,3.40819)
 c1: magnitude: 5 (squared magnitude: 25) phase angle: 0.643501
 c2: magnitude: 5 (squared magnitude: 25) phase angle: 0.75
 c1 conjugated: (4,-3)
 c2 conjugated: (3.65844,-3.40819)
 4.4 + c1 * 1.8: (11.6,5.4)
 c1 + c2: (7.65844,6.40819)
 c1 += sqrt(c1): (6.12132,3.70711)

A second example contains a loop that reads two complex numbers and processes the first
complex number raised to the power of the second complex number:

 // num/complex2.cpp

 #include <iostream>
 #include <complex>
 #include <cstdlib>
 #include <limits>
 using namespace std;

 int main()
 {
 complex<long double> c1, c2;

 while (cin.peek() != E0F) {

 // read first complex number
 cout << "complex number c1: ";
 cin >> c1;
 if (!cin) {
 cerr << "input error" << endl;
 return EXIT_FAILURE;
 }

 //read second complex number
 cout << "complex number c2: ";
 cin >> c2;
 if (!cin) {
 cerr << "input error" << endl;
 return EXIT.FAILURE;
 }

 if (c1 == c2) {
 cout << "c1 and c2 are equal !" << endl;
 }

The C++ Standard Library

dyne-book 463

 cout << "c1 raised to the c2: " << pow(c1,c2)
 << endl << endl;

 // skip rest of line
 cin.ignore (numeric_limits<int>::max(),'\n');
 }
 }

Table 12.1 shows some possible input and output of this program.

Table 12.1. Possible I/O of complex2 Example
c1 c2 Output

2 2 c1 raised to c2: (4,0)
(16) 0.5 c1 raised to c2: (4,0)
(8,0) 0.333333333 c1 raised to c2: (2,0)
0.99 (5) c1 raised to c2: (0.95099,0)
(0,2) 2 c1 raised to c2: (-4,4.89843e-16)
(1.7,0.3) 0 c1 raised to c2: (1,0)
(3,4) (-4,3) c1 raised to c2: (4.32424e-05,8.91396e-05)
(1.7,0.3) (4.3,2.8) c1 raised to c2: (-4.17622,4.86871)
Note that you can input a complex number by passing only the real part as a single value with or
without parentheses or by passing the real and imaginary parts separated by a comma in
parentheses.

12.1.2 Operations for Complex Numbers

The template class complex provides the operations described in the following subsections.

Create, Copy, and Assign Operations

Table 12.2 lists the constructors and assignment operations for complex. The constructors
provide the ability to pass the initial values of the real and the imaginary parts. If they are not
passed, they are initialized by the default constructor of the value type.
The assignment operators are the only way to modify the value of an existing complex number.
The computed assignment operators +=, -=, *=, and /= add, subtract, multiply, and divide
the value of the second operand to, from, by, and into the real part of the first operand. The
imaginary part of both operands is left unchanged.
The auxiliary polar() function provides the ability to create a complex number that is initialized
by polar coordinates (magnitude and phase angle in radians):

 // create a complex number initialized from polar coordinates
 std::complex<double> c2(std::polar(4.2,0.75));

A problem exists when you have an implicit type conversion during the creation. For example, this
notation works:

 std::complex<float> c2(std::polar(4.2,0.75)); // OK

However, the following notation with the equal sign does not:

The C++ Standard Library

dyne-book 464

 std::complex<float> c2 = std::polar(4.2,0.75); // ERROR

Table 12.2. Constructors and Assignment Operations of Class complex<>
Expression Effect

complex c Creates a complex number with 0 as the real part and 0 as the imaginary part
(0 + 0i)

complex c(1.3) Creates a complex number with 1.3 as the real part and 0 as the imaginary
part (1.3 + 0i)

complex
c(1.3,4.2)

Creates a complex number with 1.3 as the real part and 4.2 as the
imaginary part (1.3 + 4.2i)

complex c1(c2) Creates c1 as a copy of c2
polar (4. 2) Creates a temporary complex number from polar coordinates (4.2 as

magnitude rho and 0 as phase angle theta)
polar (4. 2,
0.75)

Creates a temporary complex number from polar coordinates (4.2 as
magnitude rho and 0.75 as phase angle theta)

conj (c) Creates a temporary complex number that is the conjugated complex number
of c (the complex number with the negated imaginary part)

c1 = c2 Assigns the values of c2 to c1
c1 += c2 Adds the value of c2 to c1
c1 -= c2 Subtracts the value of c2 from c1
c1 *= c2 Multiplies the value of c2 by c1
c1 /= c2 Divides the value of c2 into c1
This problem is discussed in the next subsection.
The auxiliary conj() function provides the ability to create a complex number that is initialized
by the conjugated complex value of another complex number (a conjugated complex value is the
value with a negated imaginary part):

 std::complex<double> c1(1.1,5.5);
 std::complex<double> c2(std::conj (c1)) ; // initialize with
 // complex<double>(1.1,-
5.5)

Implicit Type Conversions

The constructors of the specializations for float, double, and long double are designed in
such a way that safe conversions such as complex<float> to complex<double> are allowed
to be implicit, but less safe conversions such as complex<long double> to
complex<double> must be explicit (see page 542 for the declarations in detail):

 std::complex<float> cf;
 std::complex<double> cd;
 std::complex<long double> cld;
 ...
 std:: complex<double> cd1 = cf; // OK: safe conversion
 std::complex<double> cd2 = cld; // ERROR: no implicit conversion
 std::complex<double> cd3(cld); // OK: explicit conversion

The C++ Standard Library

dyne-book 465

In addition, there are no constructors from any other complex type defined. In particular, you can't
convert a complex with an integral value type into a complex with value type float, double,
or long double. However, you can convert the values by passing the real and imaginary parts
as separate arguments:

 std::complex<double> cd;
 std::complex<int> ci;
 ...
 std::complex<double> cd4 = ci; // ERROR: no implicit conversion
 std::complex<double> cd5(ci); // ERROR: no explicit conversion
 std::complex<double> cd6(ci.real(), ci.imag()); // OK

Unfortunately, the assignment operators allow less safe conversions. They are provided as
template functions for all types. So, you can assign any complex type as long as the value types
are convertible[1] :

[1] The fact that constructors for the complex specializations allow only safe implicit conversions, whereas
the assignment operations allow any implicit conversion, is probably a mistake in the standard.

 std::complex<double> cd;
 std::complex<long double> cld;
 std::complex<int> ci;
 ...
 cd = ci; // OK
 cd = cld; // OK

This problem also relates to polar() and conj(). For example, the following notation works
fine:

 std::complex<float> c2(std::polar(4.2,0.75)); // OK

But, the notation with the equal sign does not:

 std::complex<float> c2 = std::polar(4.2,0.75); // ERROR

The reason for this is that the expression

 std::polar(4.2,0.75)

creates a temporary complex<double> and the implicit conversion from complex<double> to
complex<float> is not defined.[2]

[2] There is a minor difference between

 X x;
 Y y(x); // explicit conversion

The C++ Standard Library

dyne-book 466

and

 X x;
 Y y = x; // implicit conversion

The former creates a new object of type Y by using an explicit conversion from type X, whereas
the latter creates a new object of type Y by using an implicit conversion.

Value Access

Table 12.3 shows the different functions provided to access the attributes of complex numbers.
Table 12.3. Operations for Value Access of Class complex<>

Expression Effect
c.real() Returns the value of the real part (as a member function)
real(c) Returns the value of the real part (as a global function)
c.imag() Returns the value of the imaginary part (as a member function)
imag(c) Returns the value of the imaginary part (as a global function)
abs(c)

Returns the absolute value of c
norm(c) Returns the squared absolute value of c(c.real()2 + c.imag()2)
arg(c)

Returns the angle of the polar representation of c (equivalent to
atan2(c.imag(), c.real()) as phase angle)

Note that real() and imag() provide only read access to the real and the imaginary parts. To
change only the real part or only the imaginary part you must assign a new complex number. For
example, the following statement sets the imaginary part of c to 3.7:

 std::complex<double> c;
 ...
 c = std::complex<double>(c.real(),3.7);

Comparison Operations

To compare complex numbers, you can only check for equality (Table 12.4). The operators ==
and != are defined as global functions so that one of the operands may be a scalar value. If you
use a scalar value as the operand it is interpreted as the real part, with the imaginary part having
the default value of its type (which is usually 0).

Table 12.4. Comparison Operations of Class complex<>
Expression Effect
c1 == c2 Returns whether c1 is equal to c2 (c1.real()==c2.real() &&

c1.imag()==c2. imag())
c == 1.7 Returns whether c is equal to 1.7 (c.real()==1.7 && c.imag()==0.0)
1.7 == c Returns whether c is equal to 1.7 (c.real()==1.7 && c.imag()==0.0)

The C++ Standard Library

dyne-book 467

c1 != c2 Returns whether c1 differs from c2 (c1.real()!=c2.real() || c1.imag()
!=c2 imag()).

c != 1.7 Returns whether c differs from 1.7 (c.real() !=1.7 || c.imag() !=0.0)
1.7 != c Returns whether c differs from 1.7 (c.real() !=1.7 || c.imag() !=0.0)
Other comparison operations, such as operator <, are not defined. Although it is not impossible
to define an ordering for complex values, such orderings are neither very intuitive nor very useful.
Note, for example, that the magnitude of complex numbers by itself is not a good basis to order
complex values because two complex values can be very different and yet have identical
magnitude (1 and -1 are two such numbers). An add hoc criterion can be added to create a valid
ordering. For example, given two complex values c1 and c2, you could deem c1 < c2 when
|c1| < |c2| or, if both magnitudes are equal, when arg(c1) < arg(c2). However, such a
criterion invariably has little or no mathematical meaning.[3]

[3] Thanks to David Vandevoorde for pointing this out.

As a consequence, you can't use complex as the element type of an associative container
(provided you use no user-defined sorting criterion). This is because associative containers use
the function object less<>, which calls operator <, to be able to sort the elements (see Section
5.10.1,).
By implementing a user-defined operator < you could sort complex numbers and use them in
associative containers. Note that you should be very careful not to pollute the standard
namespace. For example:

 template <class T>
 bool operator< (const std::complex<T>& c1,
 const std::complex<T>& c2)
 {
 return std::abs(c1)<std::abs(c2) ||
 (std::abs(c1)==std::abs(c2) &&
 std::arg(c1)<std::arg(c2));
 }

Arithmetic Operations

Complex numbers provide the four basic arithmetic operations and the negative and positive
signs (Table 12.5).

Table 12.5. Arithmetic Operations of Class complex<>
Expression Effect

c1 + c2 Returns the sum of c1 and c2
c + 1.7 Returns the sum of c and 1.7
1.7 + c Returns the sum of 1.7 and c
c1 - c2 Returns the difference between c1 and c2
c - 1.7 Returns the difference between c and 1.7
1.7 - c Returns the difference between 1. 7 and c
c1 * c2 Returns the product of c1 and c2
c * 1.7 Returns the product of c and 1.7
1.7 * c Returns the product of 1.7 and c

The C++ Standard Library

dyne-book 468

c1 / c2 Returns the quotient of c1 and c2
c / 1.7 Returns the quotient of c and 1.7
1.7 / c Returns the quotient of 1.7 and c
- c Returns the negated value of c
+ c Returns c
c1 += c2 Equivalent to c1 = c1 + c2
c1 -= c2 Equivalent to c1 = c1 - c2
c1 *= c2 Equivalent to c1 = c1 * c2
c1 /= c2 Equivalent to c1 = c1 / c2

Input/Output Operations

Class complex provides the common I/O operators << and >> (Table 12.6).
Table 12.6. I/O Operations of Class complex<>

Expression Effect
strm << c Writes the complex number c to the ostream strm
strm >> c Reads the complex number c from the istream strm
The output operator writes the complex number with respect to the actual stream state with the
format:

 (realpart, imagpart)

In particular, the output operator is defined as equivalent to the following implementation:

 template <class T, class charT, class traits>
 std::basic_ostream<charT, traits>&
 operator<< (std::basic_ostream<charT, traits>& strm,
 const std::complex<T>& c)
 {
 // temporary value string to do the output with one argument
 std::basic_ostringstream<charT, traits> s;

 s.flags (strm.flags()); // copy stream flags
 s.imbue (strm.getloc()); // copy stream locale
 s.precision(strm.precision()); // copy stream precision

 // prepare the value string
 s << '(' << c.real() << ',' << c.imag() << ')' << std::ends;

 // write the value string
 strm << s.str();

 return strm;
 }

The input operator provides the ability to read a complex number with one of the following
formats:

 (realpart, imagpart)

The C++ Standard Library

dyne-book 469

 (realpart)
 realpart

If none of the formats fits according to the next characters in the input stream, the
ios::failbit is set, which might throw a corresponding exception (see Section 13.4.4,).
Unfortunately, you can't specify the separator of complex numbers between the real and the
imaginary parts. So if you have a comma as a "decimal point" (as is the case in German), I/O
looks really strange. For example, a complex number with 4.6 as the real part and 2.7 as the
imaginary part would be written as

 (4,6,2,7)

See page 532 for an example of how to use the I/O operations.

Transcendental Functions

Table 12.7 lists the transcendental functions (trigonometric, exponential, and so on) for
complex.

Table 12.7. Transcendental Functions of Class complex<>
Expression Effect

pow(c, 3) Complex power c3
pow(c, 1.7) Complex power c1.7
pow(c1, c2) Complex power c1c2
pow(1.7, c) Complex power 1.7C
exp(c) Base e exponential of c (ec)
sqrt(c)

Square root of c ()
log(c) Complex natural logarithm of c with base e (ln c)
log10(c) Complex common logarithm of c with base 10 (lg c)
sin(c) Sine of c (sin c)
cos(c) Cosine of c (cos c)
tan(c) Tangent of c (tan c)
sinh(c) Hyperbolic sine of c (sinh c)
cosh(c) Hyperbolic cosine of c (cosh c)
tanh(c) Hyperbolic tangent of c (tanh c)

12.1.3 Class complex<> in Detail

This subsection describes all operations of class complex<> in detail. In the following definitions,
T is the template parameter of class complex<>, which is the type of the real and the imaginary
parts of the complex value.

Type Definitions

complex:: value_type

The C++ Standard Library

dyne-book 470

• The type of the real and the imaginary parts.

Create, Copy, and Assign Operations

complex::complex ()

• The default constructor.
• Creates a complex value in which the real and the imaginary parts are initialized by an

explicit call of their default constructor. Thus, for fundamental types, the initial value of the
real and the imaginary parts is 0 (see page 14 for the default value of fundamental types).

complex::complex (const T& re)

• Creates a complex value in which re is the value of the real part, and the imaginary part
is initialized by an explicit call of its default constructor (0 for fundamental data types).

• This constructor also defines an automatic type conversion from T to complex.

complex::complex (const T& re, const T& im)

• Creates a complex value, with re as the real part and im as the imaginary part.

complex polar (const T& rho)
complex polar (const T& rho, const T& theta)

• Both forms create and return the complex number that is initialized by polar coordinates.
• rho is the magnitude.
• theta is the phase angle in radians (default: 0).

complex conj (const complex& cmplx)

• Creates and returns the complex number that is initialized by the conjugated complex
value (the value with the negated imaginary part) of cmplx.

complex :: complex (const complex& cmplx)

• The copy constructor.
• Creates a new complex as a copy of cmplx.
• Copies the real and imaginary parts.
• In general, this function is provided as both a nontemplate and a template function (see

page 11 for an introduction to member templates). Thus, in general, automatic type
conversions of the element type are provided.

• However, the specializations for float, double, and long double restrict copy
constructors, so the less safe conversions from double and long double to float,
as well as from long double to double, must be explicit and allow no other element
type conversions:

• namespace std {
• template<> class complex<float> {
• public:
• explicit complex(const complex<double>&);
• explicit complex(const complex<long double>&);

The C++ Standard Library

dyne-book 471

• // no other kinds of copy constructors
• ...
• };
• template<> class complex<double> {
• public:
• complex(const complex<float>&);
• explicit complex(const complex<long double>&);
• // no other kinds of copy constructors
• ...
• };
• template<> class complex<long double> {
• public:
• complex(const complex<float>&);
• complex(const complex<double>&);
• // no other kinds of copy constructors
• ...
• };
• }

See page 534 for more information about the implications from this.

complex& complex::operator = (const complex& cmplx)

• Assigns the value of complex cmplx.
• Returns *this.
• This function is provided as both a nontemplate and a template function (see page 11 for

an introduction to member templates). Thus, automatic type conversions of the element
type are provided. (This is also the case for the specializations that are provided by the
C++ standard library.)

complex& complex::operator += (const complex& cmplx)
complex& complex::operator -= (const complex& cmplx)
complex& complex::operator *= (const complex& cmplx)
complex& complex::operator /= (const complex& cmplx)

• These operations add, subtract, multiply, and divide the value of cmplx to, from, by, and
into *this respectively and store the result in *this.

• They return *this.
• These operations are provided as both a nontemplate and a template function (see page

11 for an introduction to member templates). Thus, automatic type conversions of the
element type are provided. (This is also the case for the specializations that are provided
by the C++ standard library.)

Note that the assignment operators are the only functions that allow you to modify the value of an
existing complex.

Element Access

T complex :: real () const
T real (const complex& cmplx)

The C++ Standard Library

dyne-book 472

T complex::imag () const
T imag (const complex& cmplx)

• These functions return the real or imaginary part respectively.
• Note that the return value is not a reference. Thus, you can't use these functions to

modify the real or the imaginary parts. To change only the real part or only the imaginary
part you must assign a new complex number (see page 536).

T abs (const complex& cmplx)

• Returns the absolute value (magnitude) of cmplx.

• The absolute value is

T norm (const complex& cmplx)

• Returns the squared absolute value (squared magnitude) of cmplx.
• The squared absolute value is cmplx.real()2 + cmplx.imag()2.

T arg (const complex& cmplx)

• Returns the angle of the polar representation of cmplx in radians.
• It is equivalent to atan2(cmplx.imag(), cmplx.real()) as the phase angle.

Input/Output Operations

ostream& operator << (ostream& strm, const complex& cmplx)

• Writes the value of cmplx to the stream strm in the format (realpart, imagpart)
• See page 539 for the exact behavior of this operation.

istream& operator >> (istream& strm, complex& cmplx)

• Reads a new value from strm into cmplx.
• Valid input formats are

(realpart, imagpart)

(realpart)

realpart

• See page 539 for the exact behavior of this operation.

Operators

complex operator+ (const complex& cmplx)

• The positive sign.
• Returns cmplx.

The C++ Standard Library

dyne-book 473

complex operator- (const complex& cmplx)

• The negative sign.
• Returns the value of cmplx with the negated real and the negated imaginary parts.

complex binary-op (const complex& cmplx1, const complex& cmplx2)
complex binary-op (const complex& cmplx, const T& value)
complex binary-op (const T& value, const complex& cmplx)

• All forms return a complex number with the result ofbinary-op.
• binary-op may be any of the following:
• operator +
• operator -
• operator *
• operator /
• If a scalar value of the element type is passed, it is interpreted as the real part, with the

imaginary part having the default value of its type (which is 0 for fundamental types).

bool comparison (const complex& cmplx1, const complex&, cmplx2)
bool comparison (const complex& cmplx, const T& value)
bool comparison (const T& value, const complex& cmplx)

• Returns the result of the comparison of two complex numbers or the result of the
comparison of a complex number with a scalar value.

• comparison may be any of the following:
• operator ==
• operator !=
• If a scalar value of the element type is passed, it is interpreted as the real part, with the

imaginary part having the default value of its type (which is 0 for fundamental types).
• Note that no operators <, <=, >, and >= are provided.

Transcendental Functions

complex pow (const complex& base, int exp)
complex pow (const complex& base, const T& exp)
complex pow (const complex& base, const complex& exp)
complex pow (const T& base, const complex& exp)

• All forms return the complex power of base raised to the expth power, defined as exp
(exp*log(base)).

• The branch cuts are along the negative real axis.
• The value returned for pow (0,0) is implementation defined.

complex exp (const complex& cmplx)

• Returns the complex base e exponential of cmplx.

complex sqrt (const complex& cmplx)

• Returns the complex square root of cmplx in the range of the right halt plane.

The C++ Standard Library

dyne-book 474

• If the argument is a negative real number, the value returned lies on the positive
imaginary axis.

• The branch cuts are along the negative real axis.

complex log (const complex& cmplx)

• Returns the complex natural base e logarithm of cmplx.
• When cmplx is a negative real number, imag(log(cmplx)) is pi.
• The branch cuts are along the negative real axis.

complex log10 (const complex& cmplx)

• Returns the complex base 10 logarithm of cmplx.
• It is equivalent to log(cmplx)/log(10).
• The branch cuts are along the negative real axis.

complex sin (const complex& cmplx)
complex cos (const complex& cmplx)
complex tan (const complex& cmplx)
complex sinh (const complex& cmplx)
complex cosh (const complex& cmplx)
complex tanh (const complex& cmplx)

• These operations return the corresponding complex trigonometric operation on cmplx.

12.2 Valarrays

The C++ standard library provides the class valarray for the processing of arrays of numeric
values. A valarray is a representation of the mathematical concept of a linear sequence of values.
It has one dimension, but you can get the illusion of higher dimensionality by special techniques
of computed indices and powerful subsetting capabilities. Therefore, a valarray can be used as a
base both for vector and matrix operations as well as for the processing of mathematical systems
of polynomial equations with good performance.
The valarray classes enable some tricky optimizations to get good performance for the
processing of value arrays. However, it is not clear how important this component of the C++
standard library will be in the future because there are other interesting developments that
perform even better. One of the most interesting examples is the Blitz system. If you are
interested in numeric processing, you should look at it. For details, see
http://monet.uwaterloo.ca/blitz/.
The valarray classes were not designed very well. In fact, nobody tried to determine whether the
final specification worked. This happened because nobody felt "responsible" for these classes.
The people who introduced valarrays to the C++ standard library left the committee a long time
before the standard was finished. For example, to use valarrays, you often need some
inconvenient and time-consuming type conversions (see page 554).

12.2.1 Getting to Know Valarrays

Valarrays are one-dimensional arrays with elements numbered sequentially from zero. They
provide the ability to do some numeric processing for all or a subset of the values in one or more
value arrays. For example, you can process the statement

 z = a*x*x + b*x + c

The C++ Standard Library

dyne-book 475

with a, b, c, x, and z being arrays that contain hundreds of numeric values. In doing this,
you have the advantage of a simple notation. Also, the processing is done with good performance
because the classes provide some optimizations that avoid the creation of temporary objects
while processing the whole statement. In addition, special interfaces and auxiliary classes provide
the ability to process only a certain subset of value arrays or to do some multidimensional
processing. In this way, the valarray concept also helps to implement vector and matrix
operations and classes.
The standard guarantees that valarrays are alias free. That is, any value of a nonconstant
valarray is accessed through a unique path. Thus, operations on these values can get optimized
better because the compiler does not have to take into account that the data could be accessed
through another path.

Header File

Valarrays are declared in the header file <valarray>:

 #include <valarray>

In particular, in <valarray> the following classes are declared:

 namespace std {
 template<class T> class valarray; // numeric array
of type T

 class slice; // slice out of a
valarray
 template<class T> class slice_array;

 class gslice; // a generalized
slice
 template<class T> class gslice_array;

 template<class T> class mask_array; // a masked
valarray

 template<class T> class indirect_array; // an indirected
valarray
 }

The classes have the following meanings:

• valarray is the core class that manages an array of numeric values.
• slice and gslice arc provided to define a BLAS-like[4] slice as a subset of a valarray.

[4] The Basic Linear Algebra Subprograms (BLAS) library provides computational kernels for
several of the fundamental linear algebra operations, such as matrix multiply, the solution of
triangular systems, and simple vector operations.

• slice_array, gslice_array, mask_array, and indirect_array are internal
auxiliary classes that are used to store temporary values or data. You can't use them in

The C++ Standard Library

dyne-book 476

your programming interface directly. They are created indirectly by certain valarray
operations.

All classes are templatized for the type of the elements. In principle, the type could be any data
type. However, according to the nature of valarrays it should be a numeric data type.

Creating Valarrays

When you create a valarray you usually pass the number of elements as a parameter:

 std::valarray<int> va1(10); // valarray of ten ints with
value 0
 std::valarray<float> va2(5.7, 10); // valarray of ten floats
with value 5.7
 // (note the order)

If you pass one argument, it is used as the size. The elements are initialized by the default
constructor of their type. Elements of fundamental data types are initialized by zero (see Section
2.2.2, for a description of why fundamental data types may be initialized by a default
constructor). If you pass a second value, the first is used as the initial value for the elements,
whereas the second specifies the number of elements. Note that the order of passing two
arguments to the constructor differs from that of all other classes of the C++ standard library. All
STL container classes use the first numeric argument as the number of elements and the second
argument as the initial value.
You can also initialize a valarray with an ordinary array:

 int array[] = { 3, 6, 18, 3, 22 };

 // initialize valarray by elements of an ordinary array
 std::valarray<int> va3(array, sizeof (array)/sizeof (array[0]));

 // initialize by the second to the fourth element
 std::valarray<int> va4(array+1, 3);

The valarray creates copies of the passed values. Thus, you can pass temporary data for
initialization.

Valarray Operations

For valarrays, the subscript operator is defined to access the element of a valarray. As usual, the
first element has the index 0:

 va[0] = 3 * va[1] + va[2];

In addition, all ordinary numeric operators are defined (addition, subtraction, multiplication,
modulo, negation, bit operators, comparison operators, and logical operators, as well as all
assignment operators). These operators are called for each element in the valarrays that is
processed by the operation. Thus, the result of a valarray operation is a valarray that has the
same number of elements as the operands and that contains the result of the elementwise
computation. For example, the statement

 va1 = va2 * va3;

The C++ Standard Library

dyne-book 477

is equivalent to

 va1[0] = va2[0] * va3[0];
 va1[l] = va2[l] * va3[l];
 va1[2] = va2[2] * va3[2];
 ...

If the number of elements of the combined valarrays differs, the result is undefined.
Of course, the operations are available only if the element's type supports them. And the exact
meaning of the operation depends on the meaning of the operation for the elements. Thus, all of
these operations simply do the same for each element or pair of elements in the valarrays they
process.
For binary operations, one of the operands may be a single value of the element's type. In this
case, the single value is combined with each element of the valarray that is used as the other
operand. For example, the statement

 va1 = 4 * va2;

is equivalent to

 va1[0] = 4 * va2[0];
 va1[1] = 4 * va2[l];
 va1[2] = 4 * va2[2];
 ...

Note that the type of the single value has to match exactly the element type of the valarray. Thus,
the previous example works only if the element type is int. The following statement would fail:

 std::valarray<double> va(20);
 ...
 va = 4 * va; // ERROR: type mismatch

The schema of binary operations also applies to comparison operators. Thus, operator == does
not return a single Boolean value that shows whether both valarrays are equal. Instead, it returns
a new valarray with the same number of elements of type bool, where each value is the result
of the individual comparison. For example, in the following code

 std::valarray<double> val(10);
 std::valarray<double> va2(10);
 std::valarray<bool> vab(10);
 ...
 vab = (va1 == va2);

the last statement is equivalent to

 vab[0] = (va1[0] == va2[0]);
 vab[1] = (va1[1] == va2[1]);
 vab[2] = (va1[2] == va2[2]);
 ...

The C++ Standard Library

dyne-book 478

 vab[9] = (va1 [9] == va2[9]);

For this reason, you can't sort valarrays by using operator <, and you can't use them as elements
in STL containers if the test for equality is performed with operator == (see Section 5.10.1, for
the requirements of elements of STL containers).
The following program demonstrates a simple use of valarrays:

 // num/val1.cpp

 #include <iostream>
 #include <valarray>
 using namespace std;

 // print valarray
 template <class T>
 void printValarray (const valarray<T>& va)
 {
 for (int i=0; i<va.size(); i++) {
 cout << va[i] << ' ';
 }
 cout << endl;
 }
 int main()
 {
 // define two valarrays with ten elements
 valarray<double> va1(10), va2(10);

 // assign values 0.0, 1.1, up to 9.9 to the first valarray
 for (int i=0; i<10; i++) {
 va1[i] = i * 1.1;
 }

 // assign -1 to all elements of the second valarray
 va2 = -1;

 // print both valarrays
 printValarray(va1);
 printValarray(va2);

 // print minimum, maximum, and sum of the first valarray
 cout << "min(): " << val.min() << endl;
 cout << "max(): " << val.max() << endl;
 cout << "sum(): " << val.sum() << endl;

 // assign values of the first to the second valarray
 va2 = va1;

 // remove all elements of the first valarray
 va1.resize (0);

 // print both valarrays again
 printValarray(va1);
 printValarray(va2);
 }

The C++ Standard Library

dyne-book 479

The program has the following output:

 0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 min():0
 max(): 9.9
 sum(): 49.5

 0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9

Transcendental Functions

The transcendental operations (trigonometric and exponential) are defined as equivalent to the
numeric operators. The operations are performed with all elements in the valarrays, and for
binary operations, one of the operands may be a single value, which is used as one operand, with
all elements of the valarrays as the other operand.
All of these operations are defined as global functions instead of member functions. This is to
provide automatic type conversion for subsets of valarrays for both operands (subsets of
valarrays are covered in Section 12.2.2,).
Here is a second example of the use of valarrays. It demonstrates the use of transcendental
operations:

 // num/val2.cpp

 #include <iostream>
 #include <valarray>
 using namespace std;

 // print valarray
 template <class T>
 void printValarray (const valarray<T>& va)
 {
 for (int i=0; i<va.size(); i++) {
 cout << va[i] << ' ';
 }
 cout << endl;
 }

 int main()
 {

 // create and initialize valarray with nine elements
 valarray<double> va(9);
 for (int i=0; i<va.size(); i++) {
 va[i] = i * 1.1;
 }

 // print valarray
 printValarray(va);

 // double values in the valarray
 va *= 2.0;

 // print valarray again

The C++ Standard Library

dyne-book 480

 printValarray(va);

 // create second valarray initialized by the values of the first
plus 10
 valarray<double> vb(va+10.0);

 // print second valarray
 printValarray(vb);

 // create third valarray as a result of processing both existing
valarrays
 valarray<double> vc;
 vc = sqrt(va) + vb/2.0 - 1.0;

 // print third valarray
 printValarray(vc);
 }

The program has the following output:

 0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8
 0 2.2 4.4 6.6 8.8 11 13.2 15.4 17.6
 10 12.2 14.4 16.6 18.8 21 23.2 25.4 27.6
 4 6.58324 8.29762 9.86905 11.3665 12.8166 14.2332 15.6243 16.9952

12.2.2 Valarray Subsets

The subscript operator [] is overloaded for special auxiliary objects of valarrays. These auxiliary
objects define subsets of valarrays in different ways. In doing this, they provide an elegant way to
operate on certain subsets of valarrays (with both read and write access).
The subset of a valarray is defined by using a certain subset definition as the index. For example:

 va[std::slice (2, 4, 3)] // four elements with distance 3
starting from index 2
 va[va>7] // all elements with a value greater
than 7

If a subset definition such as std::slice(2, 4, 3) or va>7 is used with a constant valarray,
the expression returns a new valarray with the corresponding elements. However, if such a
subset definition is used with a nonconstant valarray, the expression returns a temporary object
of a special auxiliary valarray class. This temporary object does not contain the subset values,
only the definition of the subset. Thus, the evaluation of expressions is deferred until the values
are needed to compute a final result.
This mechanism is called lazy evaluation. It has the advantage that no temporary values for
expressions are computed. This saves time and memory. In addition, the technique provides
reference semantics. Thus, the subsets are logical sets of references to the original values. You
can use these subsets as the destination (lvalue) of a statement. For example, you could assign
one subset of a valarray the result of a multiplication of two other subsets of the same valarray
(examples follow shortly).
However, because "temporaries" are avoided, some unexpected conditions might occur when
elements in the destination subset are also used in a source subset. Therefore, any operation of

The C++ Standard Library

dyne-book 481

valarrays is guaranteed to work only if the elements of the destination subset and the elements of
all source subsets are distinct.
With smart definitions of subsets you can give valarrays the semantics of two or more
dimensions. Thus, in a way, valarrays may be used as multidimensional arrays.
There are four ways to define subsets of valarrays:

1. Slices
2. General slices
3. Masked subsets
4. Indirect subsets

The following subsections discuss them and give examples.

Valarray Subset Problems

Before I start with the individual subsets, I have to mention a general problem. The handling of
valarray subsets is not well designed. You can create subsets easily, but you can't combine them
easily with other subsets. Unfortunately, you almost always need an explicit type conversion to
valarray. This is because the C++ standard library does not specify that valarray subsets
provide the same operations as valarrays.
For example, to multiply two subsets and assign the result to a third subset, you can't write the
following:

 // ERROR: conversions missing
 va[std::slice(0,4,3)]
 = va[std::slice (1,4,3)] * va[std::slice (2,4,3)];

Instead, you have to code by using a new-style cast (see page 19)[5] :

[5] Note that you have to put a space between the two ">" characters. ">>" would be parsed as shift
operator, which would result in a syntax error.

 va[std::slice (0,4,3)]
 = static_cast<std::valarray<double> >(va[std::slice (l,4,3)]) *
 static_cast<std::valarray<double> >(va[std::slice (2,4,3)]);

or by using an old-style cast:

 va[std::slice(0,4,3)]
 = std::valarray<double>(va[std::slice (1,4,3)]) *
 std::valarray<double>(va[std::slice (2,4,3)]);

This is tedious and error prone. Even worse, without good optimization it may cost performance
because each cast creates a temporary object, which could be avoided without the cast.
To make the handling a bit more convenient, you can use the following template function:

 /* template to convert valarray subset into valarray
 */
 template <class T>
 inline
 std::valarray<typename T::value_type> VA (const T& valarray_subset)

The C++ Standard Library

dyne-book 482

 {
 return std::valarray<typename T::value_type>(valarray_subset);
 }

By using this template, you could write

 va[std::slice (0,4,3)] = VA(va[std::slice (l,4,3)]) *
 VA(va[std::slice (2,4,3)]); // OK

However, the performance penalty remains.
If you use a certain element type you could also use a simple type definition:

 typedef valarray<double> VAD;

By using this type definition you could also write

 va[std::slice (0,4,3)] = VAD(va[std::slice(l,4,3)]) *
 VAD (va[std:: slice (2,4,3)]); // OK

provided the elements of va have type double.

Slices

A slice defines a set of indices that has three properties:

1. The starting index
2. The number of elements (size)
3. The distance between elements (stride)

You can pass these three properties exactly in the same order as parameters to the constructor
of class slice. For example, the following expression specifies four elements, starting with
index 2 with distance 3:

 std::slice (2,4,3)

In other words, the expression specifies the following set of indices:

 2 5 8 11

The stride may be negative. For example, the expression

 std::slice (9,5,-2)

specifies the following indices:

 9 7 5 3 1

The C++ Standard Library

dyne-book 483

To define the subset of a valarray, you simply use a slice as an argument of the subscript
operator. For example, the following expression specifies the subset of the valarray va that
contains the elements with the indices 2, 5, 8, and 11:

 va[std::slice (2,4,3)]

It's up to the caller to ensure that all these indices are valid.
If the subset qualified by a slice is a subset of a constant valarray, the subset is a new valarray. If
the valarray is nonconstant, the subset has reference semantics to the original valarray. The
auxiliary class slice_array is provided for this:

 namespace std {
 class slice;

 template <class T>
 class slice_array;

 template <class T>
 class valarray {
 public:
 // slice of a constant valarray returns a new valarray
 valarray<T> operator[] (slice) const;

 // slice of a variable valarray returns a slice_array
 slice_array<T> operator[] (slice);
 ...
 };
 }

For slice_arrays, the following operations are defined:

• Assign a single value to all elements.
• Assign another valarray (or valarray subset).
• Call any computed assignment operation, such as operators += and *=.

For any other operation you have to convert the subset to a valarray (see page 554). Note that
the class slice_array<> is intended purely as an internal helper class for slices, and it should
be transparent to the user. Thus, all constructors and the assignment operator of class
slice_array<> are private.
For example, the statement

 va[std::slice (2,4,3)] = 2;

assigns 2 to the third, sixth, ninth, and twelfth elements of the valarray va. It is equivalent to the
following statements:

 va[2] = 2;
 va[5] = 2;
 va[8] = 2;
 va[11] = 2;

The C++ Standard Library

dyne-book 484

As another example, the following statement squares the values of the elements with index 2,
5, 8, and 11:

 va[std::slice (2,4,3)]
 *= std::valarray<double>(va[std::slice(2,4,3)]);

As mentioned on page 554, you can't write

 va[std::slice (2,4,3)] *= va[std::slice (2,4,3)]; // ERROR

But using the VA() template function mentioned on page 555, you can write

 va[std::slice(2,4,3)] *= VA(va[std::slice (2,4,3)]);. // OK

By passing different slices of the same valarray you can combine different subsets and store the
result in another subset of the valarray. For example, the statement

 va[std::slice (0,4,3)] = VA(va[std::slice (l,4,3)]) *
 VA(va[std::slice (2,4,3)]);

is equivalent to the following:

 va[0] = va[1] * va[2];
 va[3] = va[4] * va[5];
 va[6] = va[7] * va[8];
 va[9] = va[10] * va[11];

If you consider your valarray as a two-dimensional matrix, this example is nothing else but vector
multiplication (Figure 12.1). However, note that the order of the individual assignments is not
defined. Therefore, the behavior is undefined if the destination subset contains elements that are
used in the source subsets.

Figure 12.1. Vector Multiplication by Valarray Slices

The C++ Standard Library

dyne-book 485

In the same way, more complicated statements are possible. For example:

 va[std::slice (0,100,3)]
 = std::pow(VA(va[std::slice (l,100,3)]) * 5.0,
 VA(va[std::slice (2,100,3)]));

Note again that a single value, such as 5.0 in this example, has to match the element type of the
valarray exactly.
The following program demonstrates a complete example of using valarray slices:

 // num/slice1.cpp

 #include <iostream>
 #include <valarray>
 using namespace std;

 // print valarray line-by-line
 template<class T>
 void printValarray (const valarray<T>& va, int num)
 {
 for (int i=0; i<va.size()/num; ++i) {
 for (int j=0; j<num; ++j) {
 cout << va[i*num+j] << ' ';
 }
 cout << endl;
 }
 cout << endl;
 }

 int main()
 {
 /* valarray with 12 elements
 * - four rows
 * - three columns
 */
 valarray<double> va(12);

 // fill valarray with values
 for (int i=0; i<12; i++) {
 va[i] = i;
 }

 printValarray (va, 3);

 // first column = second column raised to the third column
 va [slice (0,4,3)] = pow (valarray<double>(va[slice (l,4,3)]),
 valarray<double>(va[slice (2,4,3)]));

 printValarray (va, 3);

 // create valarray with three times the third element of va
 valarray<double> vb(va[slice (2,4,0)]);

 // multiply the third column by the elements of vb
 va[slice (2,4,3)] *= vb;

The C++ Standard Library

dyne-book 486

 printValarray (va, 3);

 // print the square root of the elements in the second row
 printValarray (sqrt(valarray<double>(va[slice (3,3,1)])), 3);

 // double the elements in the third row
 va[slice (2,4,3)] = valarray<double>(va[slice (2,4,3)]) * 2.0;

 printValarray (va, 3);
 }

The program has the following output:

 0 1 2
 3 4 5
 6 7 8
 9 10 11

 1 1 2
 1024 4 5
 5.7648e+006 7 8
 1e+011 10 11

 1 1 4
 1024 4 10
 5.7648e+006 7 16
 1e+011 10 22

 32 2 3.16228

 1 1 8
 1024 4 20
 5.7648e+006 7 32
 1e+011 10 44

General Slices

General slices, or gslices, are the general form of slices. Similar to slices, which provide the
ability to handle a subset that is one dimension out of two dimensions, gslices allow the handling
of subsets of multidimensional arrays. In principle, gslices have the same properties as slices:

• Starting index
• Number of elements (size)
• Distance between elements (stride)

Unlike slices, however, the number and distance of elements in a gslice are arrays of values. The
number of elements in such an array is equivalent to the number of dimensions used. For
example, if a gslice has the state

 start: 2
 size: [4]
 stride: [3]

The C++ Standard Library

dyne-book 487

then the gslice is equivalent to a slice because the array handles one dimension. Thus, it defines
four elements with distance 3, starting with index 2:

 2 5 8 11

However, if a gslice has the state

 start: 2
 size: [2 4]
 stride: [10 3]

then the gslice handles two dimensions. The smallest index handles the highest dimension. Thus,
this gslice specifies starting from index 2, twice with distance 10, four elements with distance 3:

 2 5 8 11
 12 15 18 21

Here is an example of a slice with three dimensions:

 start: 2
 size: [3 2 4]
 stride: [30 10 3]

It specifies starting from index 2, three times with distance 30, twice with distance 10, four
elements with distance 3:

 2 5 8 11
 12 15 18 21

 32 35 38 41
 42 45 48 51

 62 65 68 71
 72 75 78 81

The ability to use arrays to define size and stride is the only difference between gslices and
slices. Apart from this, gslices behave the same as slices:

1. To define a concrete subset of a valarray, you simply pass a gslice as the argument to
the subscript operator of the valarray.

2. If the valarray is constant, the resulting expression is a new valarray.
3. If the valarray is nonconstant, the resulting expression is a gslice_array that

represents the elements of the valarray with reference semantics:
4. namespace std {
5. class gslice;
6.
7. template <class T>
8. class gslice_array;
9.

The C++ Standard Library

dyne-book 488

10. template <class T>
11. class valarray {
12. public:
13. // gslice of a constant valarray returns a new

valarray
14. valarray<T> operator[] (const gslice&) const;
15. // gslice of a variable valarray returns a

gslice_array
16. gslice_array<T> operator[] (const gslice&);
17. ...
18.
19. };
20.
21. }
22. For gslice_array, the assignment and computed assignment operators are provided

to modify the elements of the subset.
23. By using type conversions you can combine a gslice array with other valarrays and

subsets of valarrays (see page 554).

The following program demonstrates the use of valarray gslices:

 // num/gslice1.cpp

 #include <iostream>
 #include <valarray>
 using namespace std;

 // print three-dimensional valarray line-by-line
 template<class T>
 void printValarray3D (const valarray<T>& va, int dim1, int dim2)
 {
 for (int i=0; i<va.size()/(dim1*dim2); ++i) {
 for (int j=0; j<dim2; ++j) {
 for (int k=0; k<dim1; ++k) {
 cout << va[i*dim1*dim2+j*dim1+k] << ' ';
 }
 cout << '\n';
 }
 cout << '\n';
 }
 cout << endl;
 }

 int main()
 {
 /* valarray with 24 elements
 * - two groups
 * -four rows
 * - three columns
 */
 valarray<double> va(24);
 // fill valarray with values
 for (int i=0; i<24; i++) {
 va[i] = i;
 }
 // print valarray

The C++ Standard Library

dyne-book 489

 printValarray3D (va, 3, 4);
 // we need two two-dimensional subsets of three times 3 values
 // in two 12-element arrays
 size_t lengthvalues[] = { 2, 3 };
 size_t stridevalues[] = { 12, 3 };
 valarray<size_t> length(lengthvalues, 2);
 valarray<size_t> stride(stridevalues, 2);
 // assign the second column of the first three rows
 // to the first column of the first three rows
 va[gslice (0, length, stride)]
 = valarray<double>(va[gslice (1, length, stride)]);
 // add and assign the third of the first three rows
 // to the first of the first three rows
 va[gslice (0, length, stride)]
 += valarray<double>(va[gslice (2, length, stride)]);
 // print valarray
 printValarray3D (va, 3, 4);
 }

The program has the following output:

 0 1 2
 3 4 5
 6 7 8
 9 10 11

 12 13 14
 15 16 17
 18 19 20
 21 22 23

 3 1 2
 9 4 5
 15 7 8
 9 10 11

 27 13 14
 33 16 17
 39 19 20
 21 22 23

Masked Subsets

Mask arrays provide another way to define a subset of a valarray. You can mask the elements
with a Boolean expression. For example, in the expression

 va[va > 7]

the subexpression

 va > 7

The C++ Standard Library

dyne-book 490

returns a valarray with the size of va, where for each element a Boolean value states whether
the element is greater than 7. The Boolean valarray is used by the subscript operator to specify
all elements for which the Boolean expression yields true. Thus,

 va[va > 7]

specifies the subset of elements in the valarray va that is greater than 7.
Apart from this, mask arrays behave the same as all valarray subsets:

1. To define a concrete subset of a valarray, you simply pass a valarray of Boolean values
as the argument to the subscript operator of the valarray.

2. If the valarray is constant, the resulting expression is a new valarray.
3. If the valarray is nonconstant, the resulting expression is a mask_array that represents

the elements of the valarray with reference semantics:
4. namespace std {
5. template <class T>
6. class mask_array;
7. template <class T>
8. class valarray {
9. public:
10. // masking a constant valarray returns a new

valarray
11. valarray<T> operator[] (const valarray<bool>&)

const;
12. // masking a variable valarray returns a

mask_array
13. mask_array<T> operator[] (const

valarray<bool>&);
14. ...
15. };
16. }
17. For mask_array, the assignment and computed assignment operators are provided to

modify the elements of the subset.
18. By using type conversions you can combine a mask array with other valarrays and

subsets of valarrays (see page 554).

The following program demonstrates the use of masked subsets of valarrays:

 // num/masked1.cpp
 #include <iostream>
 #include <valarray>
 using namespace std;
 // print valarray line-by-line
 template<class T>
 void printValarray (const valarray<T>& va, int num)
 {
 for (int i=0; i<va.size()/num; ++i) {
 for (int j=0; j<num; ++j) {
 cout << va[i*num+j] << ' ';
 }
 cout << endl;
 }
 cout << endl;
 }

The C++ Standard Library

dyne-book 491

 int main()
 {
 /* valarray with 12 elements
 * - four rows
 * - three columns
 */
 valarray<double> va(12);
 // fill valarray with values
 for (int i=0; i<12; i++) {
 va[i] = i;
 }
 printValarray (va, 3);
 // assign 77 to all values that are less than 5
 va[va<5.0] = 77.0;
 // add 100 to all values that are greater than 5 and less than 9
 va[va>5.0 && va9.0]
 = valarray<double>(va[va>5.0 && va<9.0]) + 100.0;
 printValarray (va, 3);
 }

The program has the following output:

 0 1 2
 3 4 5
 6 7 8
 9 10 11

 77 77 77
 77 77 5
 106 107 108
 9 10 11

Note that the type of a numeric value that is compared with the valarray has to match the type of
the valarray exactly. So, using an int value to compare it with a valarray of doubles would not
compile:

 valarray<double> va(12);
 ...
 va[va<5] = 77; // ERROR

Indirect Subsets

The fourth and last way to define a subset of a valarray is provided by indirect arrays. Here you
simply define the subset of a valarray by passing an array of indices. Note that the indices that
specify the subset don't have to be sorted and may occur twice.
Apart from this, indirect arrays behave the same as all valarray subsets:

1. To define a concrete subset of a valarray you simply pass a valarray of elements of type
size_t as the argument to the subscript operator of the valarray.

2. If the valarray is constant, the resulting expression is a new valarray.
3. If the valarray is nonconstant, the resulting expression is an indirect_array that

represents the elements of the valarray with reference semantics:

The C++ Standard Library

dyne-book 492

4. namespace std {
5. template <class T>
6. class indirect_array;
7.
8.
9. template <class T>
10. class valarray {
11. public:
12. // indexing a constant valarray returns a new

valarray
13. valarray<T> operator[] (const valarray<bool>&)

const;
14. // indexing a variable valarray returns a

indirect_array
15. indirect_array<T> operator[] (const

valarray<bool>&);
16. ...
17. };
18. }
19. For indirect_array, the assignment and computed assignment operators are

provided to modify the elements of the subset.
20. By using type conversions you can combine an indirect array with other valarrays and

subsets of valarrays (see page 554).

The following program demonstrates how to use indirect arrays:

 // num/indi1.cpp

 #include <iostream>
 #include <valarray>
 using namespace std;

 // print valarray as two-dimensional array
 template<class T>
 void printValarray (const valarray<T>& va, int num)
 {
 for (int i=0; i<va.size()/num; i++) {
 for (int j=0; j<num; j++) {
 cout << va[i*num+j] << ' ';
 }
 cout << endl;
 }
 cout << endl;
 }
 int main()
 {
 // create valarray for 12 elements
 valarray<double> va(12);
 // initialize valarray by values 1.01, 2.02, ... 12.12
 for (int i=0; i<12; i++) {
 va[i] = (i+1) * 1.01;
 }
 printValarray(va, 4);
 /* create array of indexes

The C++ Standard Library

dyne-book 493

 * - note: element type has to be size_t
 */
 valarray<size_t> idx(4);
 idx[0] = 8;
 idx[1] = 0;
 idx[2] = 3;
 idx[3] = 7;
 // use array of indexes to print the ninth, first, fourth, and
eighth elements
 printValarray(valarray<double>(va[idx]), 4);
 // change the first and fourth elements and print them again
indirectly
 va[0] = 11.11;
 va[3] = 44.44;
 printValarray(valarray<double>(va[idx]), 4);
 // now select the second, third, sixth, and ninth elements
 // and assign 99 to them
 idx[0] = 1;
 idx[l] = 2;
 idx[2] = 5;
 idx[3] = 8;
 va[idx] = 99;
 // print the whole valarray again
 printValarray (va, 4);
 }

The valarray idx is used to define the subset of the elements in valarray va. The program has
the following output:

 1.01 2.02 3.03 4.04
 5.05 6.06 7.07 8.08
 9.09 10.1 11.11 12.12

 9.09 1.01 4.04 8.08

 9.09 11.11 44.44 8.08

 11.11 99 99 44.44
 5.05 99 7.07 8.08
 99 10.1 11.11 12.12

12.2.3 Class valarray in Detail

The class valarray<> is the core part of the valarray component. It is defined as a template
class parameterized on the type of the elements:

 namespace std {
 template <class T>
 class valarray;
 }

The C++ Standard Library

dyne-book 494

The size is not part of the type. Thus, in principle you can process valarrays with different sizes
and you can change the size. However, changing the size of a valarray is provided only to make
a two-step initialization (creating and setting the size), which you can't avoid to manage arrays of
valarrays. Beware that the result of combining valarrays of different size is undefined.

Create, Copy, and Destroy Operations

valarray::valarray ()

• The default constructor.
• Creates an empty valarray.
• This constructor is provided only to enable the creation of arrays of valarrays. The next

step is to give them the correct size using the resize() member function.

explicit valarray::valarray (size_t num)

• Creates a valarray that contains num elements.
• The elements are initialized by their default constructor (which is 0 for fundamental data

types).

valarray::valarray (const T& value, size_t num)

• Creates a valarray that contains num elements.
• The elements are initialized by value.
• Note that the order of parameters is unusual. All other classes of the C++ standard library

provide an interface in which num is the first parameter and value is the second
parameter.

valarray::valarray (const T* array, size_t num)

• Creates a valarray that contains num elements.
• The elements are initialized by the values of the elements in array.
• The caller must ensure that array contains num elements; otherwise, the behavior is

undefined.

valarray::valarray (const valarray& va)

• The copy constructor.
• Creates a valarray as a copy of va.

valarray::~valarray ()

• The destructor.
• Destroys all elements and frees the memory.

In addition, you can create valarrays initialized by objects of the internal auxiliary classes
slice_array, gslice_array, mask_array, and indirect_array. See pages 575,
577, 578, and 579, respectively, for details about these classes.

Assignment Operations

The C++ Standard Library

dyne-book 495

valarray& valarray::operator = (const valarray& va)

• Assigns the elements of the valarray va.
• If va has a different size, the behavior is undefined.
• The value of an element on the left side of any valarray assignment operator should not

depend on the value of another element on that left side. In other words, if an assignment
overwrites values that are used on the right side of the assignment, the result is
undefined. This means you should not use an element on the left side anywhere in the
expression on the right side. The reason for this is that the order of the evaluation of
valarray statements is not defined. See page 557 and page 554 for details.

valarray& valarray::operator = (const T& value)

• Assigns value to each element of the valarray.[6]

[6] In earlier versions single values were assigned by the member function fill().

• The size of the valarray is not changed. Pointers and references to the elements remain
valid.

In addition, you can assign values of the internal auxiliary classes slice_array,
gslice_array, mask_array, and indirect_array. See pages 575, 577, 578, and 579,
respectively, for details about these classes.

Member Functions

Class valarray provides the following member functions.
size_t valarray::size () const

• Returns the actual number of elements.[7]

[7] The member function size() was called length() in earlier versions.

void valarray::resize (size_t num)
void valarray::resize (size_t num, T value)

• Both forms change the size of the valarray to num.
• If the size grows, the new elements are initialized by their default constructor or with

value respectively.
• Both forms invalidate all pointers and references to elements of the valarray.
• These functions are provided only to enable the creation of arrays of valarrays. After

creating them with the default constructor you should give them the correct size by calling
this function.

T valarray::min () const
T valarray::max () const

• The first form returns the minimum value of all elements.
• The second form returns the maximum value of all elements.
• The elements are compared with operator < or >. Thus, these operators must be

provided for the element type.

The C++ Standard Library

dyne-book 496

• If the valarray contains no elements, the return value is undefined.

T valarray::sum () const

• Returns the sum of all elements.
• The elements are processed by operator +=. Thus, this operator has to be provided for

the element type.
• If the valarray contains no elements, the return value is undefined.

valarray valarray::shift (int num) const

• Returns a new valarray in which all elements are shifted by num positions.
• The returned valarray has the same number of elements.
• Elements of positions that were shifted are initialized by their default constructor.
• The direction of the shifting depends on the sign of num:

o If num is positive, it shifts to the left/front. Thus, elements get a smaller index.
o If num is negative, it shifts to the right/back. Thus, elements get a higher index.

valarray valarray::cshift (int num) const

• Returns a new valarray in which all elements are shifted cyclically by num positions.
• The returned valarray has the same number of elements.
• The direction of the shifting depends on the sign of num:

o If num is positive, it shifts to the left/front. Thus, elements get a smaller index or
are inserted at the back.

o If num is negative, it shifts to the right/back. Thus, elements get a higher index or
are inserted at the front.

valarray valarray::apply (T op (T)) const
valarray valarray::apply (T op (const T&)) const

• Both forms return a new valarray with all elements processed by op().
• The returned valarray has the same number of elements.
• For each element of *this, it calls op(elem) and initializes the corresponding element

in the new returned valarray by its result.

Element Access

T & valarray::operator [] (size_t idx)
T valarray::operator [] (size_t idx) const

• Both forms return the valarray element that has index idx (the first element has index 0).
• The nonconstant version returns a reference. So, you can modify the element that is

specified and returned by this operator. The reference is guaranteed to be valid as long
as the valarray exists, and no function is called that modifies the size of the valarray.

Valarray Operators

Unary valarray operators have the following format:
valarray valarray :: unary-op () const

The C++ Standard Library

dyne-book 497

• A unary operator returns a new valarray that contains all values of *this modified by
unary-op.

• unary-op may he any of the following:
• operator +
• operator -
• operator ~
• operator !
• The return type for operator ! is valarray<bool>.

The binary operators for valarrays (except comparison and assignment operators) have the
following format:
valarray binary-op (const valarray& va1, const valarray& va2)
valarray binary-op (const valarray& va, const T& value)
valarray binary-op (const T& value, const valarray& va)

• These operators return a new valarray with the same number of elements as va, va1,
or va2. The new valarray contains the result of computing binary-op for each value pair.

• If only one operand is passed as a single value, it is combined with each element of va.
• binary-op may be any of the following:
• operator +
• operator -
• operator *
• operator /
• operator %
• operator ~
• operator &
• operator |
• operator <<
• operator >>
• If va1 and va2 have different numbers of elements, the result is undefined.

The logical and comparison operators follow the same schema. However, their return values are
a valarray of Boolean values:
valarray<bool> logical-op (const valarray& va1, const valarray& va2)
valarray<bool> logical-op (const valarray& va, const T& value)
valarray<bool> logical-op (const T& value, const valarray& va)

• These operators return a new valarray with the same number of elements as va, va1,
or va2. The new valarray contains the result of computing logical-op for each value
pair.

• If only one operand is passed as a single value, it is combined with each element of va.
• logical-op may be any of the following:
•
• operator ==
• operator !=
• operator <
• operator <=
• operator >
• operator >=
• operator &&

The C++ Standard Library

dyne-book 498

• operator ||
• If va1 and va2 have different numbers of elements, the result is undefined.

Similarly, computed assignment operators are defined for valarrays:
valarray& valarray::assign-op (const valarray& va)
valarray& valarray::assign-op (const T& value)

• Both forms call for each element in *this assign-op with the corresponding element of
va or value, respectively, as the second operand.

• They return a reference to the modified valarray.
• assign-op may be any of the following:
• operator +=
• operator -=
• operator *=
• operator /=
• operator %=
• operator ^=
• operator &=
• operator |=
• operator <<=
• operator >>=
• If *this and va2 have different numbers of elements, the result is undefined.
• References and pointers to modified elements stay valid as long as the valarray exists,

and no function is called that modifies the size of the valarray.

Transcendental Functions

valarray abs (const valarray& va)
valarray pow (const valarray& va1, const valarray& va2)
valarray pow (const valarray& va, const T& value)
valarray pow (const T& value, const valarray& va)
valarray exp (const valarray& va)
valarray sqrt (const valarray& va)
valarray log (const valarray& va)
valarray log10 (const valarray& va)
valarray sin (const valarray& va)
valarray cos (const valarray& va)
valarray tan (const valarray& va)
valarray sinh (const valarray& va)
valarray cosh (const valarray& va)
valarray tanh (const valarray& va)
valarray asin (const valarray& va)
valarray acos (const valarray& va)
valarray atan (const valarray& va)
valarray atan2 (const valarray& va1, const valarray& va2)
valarray atan2 (const valarray& va, const T& value)
valarray atan2 (const T& value, const valarray& va)

• All of these functions return a new valarray with the same number of elements as va,
va1, or va2. The new valarray contains the result of the corresponding operation called
for each element or pair of elements.

The C++ Standard Library

dyne-book 499

• If va1 and va2 have different numbers of elements, the result is undefined.

12.2.4 Valarray Subset Classes in Detail

This subsection describes the subset classes for valarray in detail. However, these classes are
very simple and do not provide many operations, thus I provide only their declarations along with
a few remarks.

Class slice and Class slice_array

Objects of class slice_array are created by using a slice as the index of a nonconstant
valarray:

 namespace std {
 template<class T>
 class valarray {
 public:
 ...
 slice_array<T> operator[] (slice);
 ...
 };
 }

The exact definition of the public interface of class slice is as follows:

 namespace std {
 class slice {
 public:
 slice (); // empty subset
 slice (size_t start, size_t size, size_t stride);
 size_t start() const;
 size_t size() const;
 size_t stride() const;
 };
 }

The default constructor creates an empty subset. With the start(), size(), and stride()
member functions, you can query the properties of a slice.
The class slice_array provides the following operations:

 namespace std {
 template <class T>
 class slice_array {
 public:
 typedef T value_type;

 void operator= (const T&);
 void operator= (const valarray<T>&) const;
 void operator*= (const valarray<T>&) const;
 void operator/= (const valarray<T>&) const;
 void operator%= (const valarray<T>&) const;
 void operator+= (const valarray<T>&) const;

The C++ Standard Library

dyne-book 500

 void operator-= (const valarray<T>&) const;
 void operator~= (const valarray<T>&) const;
 void operator&= (const valarray<T>&) const;
 void operator|= (const valarray<T>&) const;
 void operator<<=(const valarray<T>&) const;
 void operator>>=(const valarray<T>&) const;
 ~slice_array();
 private:
 slice_array();
 slice_array(const slice_array&);
 slice_array& operator=(const slice_array&);
 ...
 };
 }

Note that class slice_array<> is intended purely as an internal helper class for slices and
should be transparent to the user. Thus, all constructors and the assignment operator of class
slice_array<> are private.

Class gslice and Class gslice_array

Objects of class gslice_array are created by using a gslice as the index of a nonconstant
valarray:

 namespace std {
 template<class T>
 class valarray {
 public:
 ...
 gslice_array<T> operator[] (const gslice&);
 ...
 };
 }

The exact definition of the public interface of gslice is as follows:

 namespace std {
 class gslice {
 public:
 gslice (); // empty subset
 gslice (size_t start,
 const valarray<size_t>& size,
 const valarray<size_t>& stride);
 size_t start() const;
 valarray<size_t> size() const;
 valarray<size_t> stride() const;
 };
 }

The default constructor creates an empty subset. With the start(), size(), and stride()
member functions you can query the properties of a gslice.
The class gslice_array provides the following operations:

The C++ Standard Library

dyne-book 501

 namespace std {
 template <class T>
 class gslice_array {
 public:
 typedef T value_type;

 void operator= (const T&);
 void operator= (const valarray<T>&) const;
 void operator*= (const valarray<T>&) const;
 void operator/= (const valarray<T>&) const;
 void operator%= (const valarray<T>&) const;
 void operator+= (const valarray<T>&) const;
 void operator-= (const valarray<T>&) const;
 void operator~= (const valarray<T>&) const;
 void operator&= (const valarray<T>&) const;
 void operator|= (const valarray<T>&) const;
 void operator<<=(const valarray<T>&) const;
 void operator>>=(const valarray<T>&) const;
 ~gslice_array();
 private:
 gslice_array();
 gslice_array(const gslice_array<T>&);
 gslice_array& operator=(const gslice_array<T>&);
 ...
 };
 }

As with slice_array<>, note that class gslice_array<> is intended purely as an internal
helper class for gslices and should be transparent to the user. Thus, all constructors and the
assignment operator of class gslice_array<> are private.

Class mask_array

Objects of class mask_array are created by using a valarray<bool> as the index of a
nonconstant valarray:

 namespace std {
 template<class T>
 class valarray {
 public:
 ...
 mask_array<T> operator[](const valarray<bool>&);
 ...
 };
 }

The class mask_array provides the following operations:

 namespace std {
 template <class T>
 class mask_array {
 public:

The C++ Standard Library

dyne-book 502

 typedef T value_type;

 void operator= (const T&);
 void operator= (const valarray<T>&) const;
 void operator*= (const valarray<T>&) const;
 void operator/= (const valarray<T>&) const;
 void operator%= (const valarray<T>&) const;
 void operator+= (const valarray<T>&) const;
 void operator-= (const valarray<T>&) const;
 void operator^= (const valarray<T>&) const;
 void operator&= (const valarray<T>&) const;
 void operator|= (const valarray<T>&) const;
 void operator<<=(const valarray<T>&) const;
 void operator>>=(const valarray<T>&) const;
 ~mask_array();
 private:
 mask_array();
 mask_array(const mask_array<T>&);
 mask_array& operator=(const mask_array<T>&);
 ...
 };
 }

Again, note that class mask_array<> is intended purely as an internal helper class and should
be transparent to the user. Thus, all constructors and the assignment operator of class
mask_array<> are private.

Class indirect_array

Objects of class indirect_array are created by using a valarray<size_t> as the index of
a nonconstant valarray:

 namespace std {
 template<class T>
 class valarray {
 public:
 ...
 indirect_array<T> operator[](const valarray<size_t>&);
 ...
 };
 }

The class indirect_array provides the following operations:

 namespace std {
 template <class T>
 class indirect_array {
 public:
 typedef T value_type;

 void operator= (const T&);
 void operator= (const valarray<T>&) const;

The C++ Standard Library

dyne-book 503

 void operator*= (const valarray<T>&) const;
 void operator/= (const valarray<T>&) const;
 void operator%= (const valarray<T>&) const;
 void operator+= (const valarray<T>&) const;
 void operator-= (const valarray<T>&) const;
 void operator~= (const valarray<T>&) const;
 void operator&= (const valarray<T>&) const;
 void operator|= (const valarray<T>&) const;
 void operator<<=(const valarray<T>&) const;
 void operator>>=(const valarray<T>&) const;
 ~indirect_array();
 private:
 indirect_array();
 indirect_array(const indirect_array<T>&);
 indirect_array& operator=(const indirect_array<T>&);
 ...
 };
 }

As usual, class indirect, array <> is intended purely as an internal helper class and should
he transparent to the user. Thus, all constructors and the assignment operator of
indirect_array<> are private.

12.3 Global Numeric Functions

The header files <cmath> and <cstdlib> provide the global numeric functions that are
inherited from C. Tables 12.8 and 12.9 list these functions.[8]

[8] For historical reasons, some numeric functions are defined in <cstdlib> rather than in <cmath>.

Table 12.8. Functions of the Header File <cmath>
Function Effect
pow() Power function
exp() Exponential function
sqrt() Square root
log() Natural logarithm
log10() Base 10 logarithm
sin() Sine
cos() Cosine
tan() Tangent
sinh() Hyperbolic sine
cosh() Hyperbolic cosine
tanh() Hyperbolic tangent
asin() Arc sine
acos() Arc cosine
atan() Arc tangent
atan2() Arc tangent of a quotient
ceil() Floating-point value rounded up to the next integral value
floor() Floating-point value rounded down to the next integral value

The C++ Standard Library

dyne-book 504

fabs() Absolute value of a floating-point value
fmod() Remainder after division for floating-point value (modulo)
frexp() Converts floating-point value to fractional and integral components
1dexp() Multiplies floating-point value by integral power of two
modf() Extracts signed integral and fractional values from floating-point value
In contrast to C, C++ overloads some operations for different types, which makes some numeric
functions of C obsolete. For example, C provides abs(), labs(), and fabs() to process the
absolute value of int, long, and double, respectively. In C++, abs() is overloaded for
different data types so that you can use it for all data types.

Table 12.9. Numeric Functions of the Header File <cstdlib>
Function Effect

abs() Absolute value of an int value
labs() Absolute value of a long
div() Quotient and remainder of int division
ldiv() Quotient and remainder of long division
srand() Random number generator (seed new sequence)
rand() Random number generator (next number of sequence)
In particular, all numeric functions for floating-point values are overloaded for types float,
double, and long double. However, this has an important side effect: When you pass an
integral value, the expression is ambiguous:[9] :

[9] Thanks to David Vandevoorde for pointing this out.

 std::sqrt(7) // AMBIGUOUS: sqrt (float), sqrt (double),
or
 // sqrt (long double)?

Instead, you have to write

 std::sqrt(7.0) // OK

or, if you use a variable, you must write

 int x;
 ...
 std::sqrt(float(x)) // OK

Library vendors handle this problem completely different: some don't provide the overloading,
some provide standard conforming behavior (overload for all floating-point types), some overload
for all numeric types, and some allow you to switch between different policies by using the
preprocessor. Thus, in practice, the ambiguity might or might not occur. To write portable code,
you should always write the code in a way that the arguments match exactly.

The C++ Standard Library

dyne-book 505

Chapter 13. Input/Output Using Stream Classes
The classes for I/O form an important part of the C++ standard library; a program without I/O is
not of much use. Actually, the I/O classes from the C++ standard library are not restricted to files
or to screen and keyboard. Instead, they form an extensible framework for the formatting of
arbitrary data and access to arbitrary "external representations."
The IOStream library, as the classes for I/O are called, is the only part of the C++ standard library
that was used widely prior to the standardization of C++. Early distributions of C++ systems came
with a set of classes developed at AT&T that established a de facto standard for doing I/O.
Although these classes have undergone several changes to fit consistently into the C++ standard
library and to suit new needs, the basic principles of the IOStream library remain unchanged.
This chapter first presents a general overview of the most important components and techniques,
and then demonstrates in detail how the IOStream library can be used in practice. Its use ranges
from simple formatting to the integration of new external representations (a topic that is often
addressed improperly).
This chapter does not attempt to discuss all aspects of the IOStream library in detail; to do that
would take an entire book by itself. For details not found here, please consult one of the books
that focus on the I/O stream library or the reference manual of the C++ standard library.
Many thanks to Dietmar Kühl, who is an expert on I/O and internationalization in the C++
standard library and gave very much feedback and wrote some parts of this chapter.

Recent Changes in the IOStream Library

For those already familiar with the "old-fashioned" IOStream library, this section outlines changes
introduced during the standardization process. Although the basics of the I/O stream classes
remained unchanged, some important features allowing additional customization were
introduced. Here is a brief list of the major changes:

• I/O became internationalized.
• The string stream classes for character arrays of type char* were replaced with classes

that use the string types of the C++ standard library. The former classes are still
retained for backward compatibility, but their use is deprecated.[1]

[1] Deprecated means that a feature is not recommended because some superior feature exists.
Also, deprecated features are likely to disappear from a future version of the standard.

• Exception handling was integrated into state and error handling.
• The IOStream library classes supporting assignment (those ending in _withassign)

were replaced with a different approach available to all stream classes.
• The classes from the IOStream library were made templates to support different

character representations. As a side effect, this renders simple forward declarations of
stream classes illegal. A header was introduced to provide the appropriate declarations.
So, instead of using

•
• class ostream; // wrong
•

this new header should be used:

The C++ Standard Library

dyne-book 506

 #include <iosfwd> // OK

• Like the other parts of the C++ standard library, all symbols of the IOStream library are
now declared in the namespace std.

13.1 Common Background of I/O Streams

Before going into details about stream classes, I briefly discuss the generally known aspects of
streams to provide a common background. This section could be skipped by readers familiar with
iostream basics.

13.1.1 Stream Objects

In C++, I/O is performed by using streams. A stream is a "stream of data" in which character
sequences "flow." Following the principles of object orientation, a stream is an object with
properties that are defined by a class. Output is interpreted as data flowing into a stream; input is
interpreted as data flowing out of a stream. Global objects are predefined for the standard I/O
channels.

13.1.2 Stream Classes

Just as there are different kinds of I/O (for example, input, output, and file access), there are
different classes depending on the type of I/O. The following are the most important stream
classes:

• Class istream

Defines input streams that can be used to read data.

• Class ostream

Defines output streams that can be used to write data.

Both classes are instantiations of template classes, namely of the classes basic_istream<>
and basic_ostream<> using char as the character type. Actually, the whole IOStream library
does not depend on a specific character type. Instead the character type used is a template
argument for most of the classes in the IOStream library. This parameterization corresponds to
the string classes and is used for internationalization (see also Section 14).
This section concentrates on output to and output from "narrow streams"; that is, streams dealing
with char as the character type. Later in this chapter the discussion is extended to streams that
have other character types.

13.1.3 Global Stream Objects

The IOStream library defines several global objects of type istream and ostream. These
objects correspond to the standard I/O channels:

• cin

The C++ Standard Library

dyne-book 507

cin (of class istream) is the standard input channel that is used for user input. This
stream corresponds to C's stdin. Normally, this stream is connected to the keyboard by
the operating system.

• cout

cout (of class ostream) is the standard output channel that is used for program output.
This stream corresponds to C's stdout. Normally, this stream is connected to the
monitor by the operating system.

• cerr

cerr (of class ostream) is the standard error channel that is used for all kinds of error
messages. This stream corresponds to C's stderr. Normally, this stream is also
connected to the monitor by the operating system. By default, cerr is not buffered.

• clog

clog (of class ostream) is the standard logging channel. There is no C equivalent for
this stream. By default, this stream is connected to the same destination as cerr, with
the difference that output to clog is buffered.

The separation of "normal" output and error messages makes it possible to treat these two kinds
of output differently when executing a program. For example, the normal output of a program can
be redirected into a file while the error messages are still appearing on the console. Of course,
this requires that the operating system supports redirection of the standard I/O channels (most
operating systems do). This separation of standard channels originates from the UNIX concept of
I/O redirection.

13.1.4 Stream Operators

The shift operators << for input and >> for output are overloaded for the corresponding stream
classes. For this reason, in C++ the "shift operators" became the "I/O operators."[2] Using these
operators, it is possible to chain multiple I/O operations.

[2] According to the fact that these operators insert characters into a stream or extract characters from a
stream, some people also call the I/O operators inserters and extractors.

For example, for each iteration, the following loop reads two integers from the standard input (as
long as only integers are entered) and writes them to the standard output:

 int a, b;

 // as long as input of a and b is successful
 while (std::cin >> a >> b) {
 // output a and b
 std::cout << "a: " << a << " b: " << b << std::endl;
 }

13.1.5 Manipulators

The C++ Standard Library

dyne-book 508

At the end of most output statements, a so-called manipulator is written:

 std::cout << std::endl

Manipulators are special objects that are used to, guess what, manipulate a stream. Often,
manipulators only change the way input is interpreted or output is formatted, like the manipulators
for the numeric bases dec, hex, and oct. Thus, manipulators for ostreams do not
necessarily create output, and manipulators for istreams do not necessary consume input. But
there are also manipulators that actually trigger some immediate action. For example, a
manipulator can be used to flush the output buffer or to skip whitespace in the input buffer.
The manipulator endl means "end line" and does two things:

1. Outputs a newline (that is, the character '\n')
2. Flushes the output buffer (forces a write of all buffered data for the given stream using

the stream method flush())

The most important manipulators defined by the IOStream library are provided in Table 13.1.
Section 13.6, discusses manipulators in more detail, including those that are defined in the
IOStream library, and describes how to define your own manipulators.

Table 13.1. The IOStream Library's Most Important Manipulators
Manipulator Class Meaning

endl ostream Outputs '\n' and flushes the output buffer
ends ostream Outputs '\0'
flush ostream Flushes the output buffer
ws istream Reads and discards whitespaces

13.1.6 A Simple Example

The use of the stream classes is demonstrated by the following example. This program reads two
floating-point values and outputs their product:

 // io/io1.cpp

 #include <cstdlib>
 #include <iostream>
 using namespace std;

 int main()
 {

 double x, y; // operands

 // print header string
 cout << "Multiplication of two floating point values" << endl;

 // read first operand
 cout << "first operand: ";
 if (! (cin >> x)) {
 /* input error
 * = > error message and exit program with error status
 */
 cerr << "error while reading the first floating value"

The C++ Standard Library

dyne-book 509

 << endl;
 return EXIT_FAILURE;
 }

 // read second operand
 cout << "second operand: ";
 if (! (cin >> y)) {
 /* input error
 * => error message and exit program with error status
 */
 cerr << "error while reading the second floating value"
 << endl;
 return EXIT_FAILURE;
 }

 // print operands and result
 cout << x << " times " << y << " equals " << x * y << endl;
 }

13.2 Fundamental Stream Classes and Objects

13.2.1 Classes and Class Hierarchy

The stream classes of the IOStream library form a hierarchy, as shown in Figure 13.1. For
template classes, the upper row shows the name of the template class, and the lower row
presents the names of the instantiations for the character types char and wchar_t.

Figure 13.1. Class Hierarchy of the Fundamental Stream Classes

The classes in this class hierarchy play the following roles:

The C++ Standard Library

dyne-book 510

• The base class ios_base defines the properties of all stream classes independent of the
character type and the corresponding character traits. Most of this class consists of
components and functions for state and format flags.

• The class template basic_ios<> is derived from ios_base and it defines the common
properties of all stream classes that depend on the character types and the
corresponding character traits. These properties include the definition of the buffer used
by the stream. The buffer is an object of a class derived from the template class
basic_streambuf<> with the corresponding template instantiation. It performs the
actual reading and/or writing.

• The class templates basic_istream<> and basic_ostream<> derive virtually from
basic_ios<>, and define objects that can be used for reading or writing respectively.
Like basic_ios<>, these classes are templates that are parameterized with a
character type and its traits. When internationalization does not matter, the corresponding
instantiations for the character type char (namely, istream and ostream) are used.

• The class template basic_iostream<> derives from both basic_istream<> and
basic_ostream<>. This class template defines objects that can be used for both
reading and writing.

• The class template basic_streambuf<> is the heart of the IOStream library. This class
defines the interface to all representations that can be written to or read from by streams.
It is used by the other stream classes to perform the actual reading and writing of
characters. For access to some external representation, classes are derived from
basic_strearabuf<>. See the following subsection for details.

Purpose of the Stream Buffer Classes

The IOStream library is designed with a rigid separation of responsibilities. The classes derived
from basic_ios "only" handle formatting of the data.[3] The actual reading and writing of
characters is performed by the stream buffers maintained by the basic_ios subobjects. The
stream buffers supply character buffers for reading and writing. In addition, an abstraction from
the external representation (for example files or strings) is formed by the stream buffers.

[3] Actually, they don't even do the formatting! The actual formatting is delegated to corresponding facets in
the locale library. See Section 14.2.2, and Section 14.4, for details on facets.

Thus, stream buffers play an important role when performing I/O with new external
representations (such as sockets or graphical user interface components), redirecting streams, or
combining streams to form pipelines (for example, to compress output before writing to another
stream). Also, the stream buffer synchronizes the I/O when doing simultaneous I/O on the same
external representation. The details about these techniques are explained in Section 13.10.2.
By using stream buffers it is quite easy to define access to a new "external representation" like a
new storage device. All that has to be done is to derive a new stream buffer class from
basic_streambuf<> (or an appropriate specialization) and define functions for reading and/or
writing characters for this new external representation. All options for formatted I/O are available
automatically if a stream object is initialized to use an object of the new stream buffer class.
Section 13.13, explains how to define new stream buffers for access to special storage devices.

Detailed Class Definitions

Like all template classes in the IOStream library, the template class basic_ios<> is
parameterized with two arguments and defined as

 namespace std {
 template <class charT,

The C++ Standard Library

dyne-book 511

 class traits = char_traits<charT> >
 class basic_ios;
 }

The template arguments are the character type used by the stream classes and a class
describing the traits of the character type that are used by the stream classes.
Examples of traits defined in the traits class are the value used to represent end-of-file[4] and the
instructions for how to copy or move a sequence of characters. Normally, the traits for a character
type are coupled with the character type, thereby making it reasonable to define a template class
that is specialized for specific character types. Hence, the traits class defaults to
char_traits<charT> if charT is the character type argument. The C++ standard library
provides specializations of the class char_traits for the character types char and wchar_t.
For more details about character traits, see Section 14.1.2.

[4] I use the term end-of-file for the "end of input data." This is according to the constant EOF in C.

There are two instantiations of the class basic_ios<> for the two character types used most
often:

 namespace std {
 typedef basic_ios<char> ios;
 typedef basic_ios<wchar_t> wios;
 }

The type ios corresponds to the base class of the "old-fashioned" IOStream library from AT&T
and can be used for compatibility in older C++ programs.
The stream buffer class used by basic_ios is defined similarly:

 namespace std {
 template <class charT,
 class traits = char_traits<charT> >
 class basic_streambuf;
 typedef basic_streambuf<char> streambuf;
 typedef basic_streambuf<wchar_t> wstreambuf;
 }

Of course, the class templates basic_istream<>, basic_ostream<>, and
basic_iostream<> are also parameterized with the character type and a traits class:

 namespace std {
 template <class charT,
 class traits = char_traits<charT> >
 class basic_istream;

 template <class charT,
 class traits = char_traits<charT> >
 class basic_ostream;

 template <class charT,
 class traits = char_traits<charT> >
 class basic_iostream;
 }

The C++ Standard Library

dyne-book 512

As for the other classes, there are also type definitions for the instantiations of the two most
important character types:

 namespace std {
 typedef basic_istream<char> istream;
 typedef basic_istream<wchar_t> wistream;

 typedef basic_ostream<char> ostream;
 typedef basic_ostream<wchar_t> wostream;

 typedef basic_iostream<char> iostream;
 typedef basic_iostream<wchar_t> wiostream;
 }

The types istream and ostream are the types normally used in the western hemisphere. They
are mostly compatible with the "old-fashioned" stream classes of AT&T.
The classes istream_withassign, ostream_withassign, and
iostream_withassign, which are present in some older stream libraries (derived from
istream, ostream, and iostream respectively) are not supported by the standard. The
corresponding functionality is achieved differently (see Section 13.10.3).
There are additional classes for formatted I/O with files and strings. These classes are discussed
in Section 13.9, and Section 13.11.

13.2.2 Global Stream Objects

Several global stream objects are defined for the stream classes. These objects are the objects
for access to the standard I/O channels that are mentioned previously for streams with char as
the character type and a set of corresponding objects for the streams using wchar_t as the
character type (see Table 13.2).

Table 13.2. Global Stream Objects
Type Name Purpose

istream Cin Reads input from the standard input channel
ostream cout Writes "normal" output to the standard output channel
ostream cerr Writes error messages to the standard error channel
ostream clog Writes log messages to the standard logging channel
wistream wcin Reads wide-character input from the standard input channel
wostream wcout Writes "normal" wide-character output to the standard output channel
wostream wcerr Writes wide-character error messages to the standard error channel
wostream wclog Writes wide-character log messages to the standard logging channel
By default, these standard streams are synchronized with the standard streams of C. That is, the
C++ standard library ensures that the order of mixed output with C++ streams and C streams is
preserved. Before any buffer of standard C++ streams writes data it flushes the buffer of the
corresponding C streams and vice versa. Of course, this synchronization takes some time. If it
isn't necessary you can turn it off by calling sync_with_stdio(false) before any input or
output is done (see page 682).

13.2.3 Header Files

The definitions of the stream classes are scattered among several header files:

The C++ Standard Library

dyne-book 513

• <iosfwd>

Contains forward declarations for the stream classes. This header file is necessary
because it is no longer permissible to use a simple forward declaration such as class
ostream.

• <streambuf>

Contains the definitions for the stream buffer base class (basic_streambuf <>).

• <istream>

Contains the definitions for the classes that support input only (basic_istream<>) and
for the classes that support both input and output (basic_iostream<>).[5]

[5] At first, <istream> might not appear to be a logical choice for declaration of the classes for
input and output. However, because there may be some initialization overhead at start-up for
every translation unit that includes <iostream> (see the following paragraph for details), the
declarations for input and output were put into <istream>.

• <ostream>

Contains the definitions for the output stream class (basic_ostream<>).

• <iostream>

Contains declarations of the global stream objects (such as cin and cout).

Most of the headers exist for the internal organization of the C++ standard library. For the
application programmer it should be sufficient to include <iosfwd> for the declaration of the
stream classes and <istream> or <ostream> when actually using the input or output functions
respectively. The header <iostream> should only be included if the standard stream objects are
to be used. For some implementations some code is executed at start-up for each translation unit
including this header. The actual code being executed is not that expensive but it requires loading
of the corresponding pages of the executable, which might be expensive. In general, only those
headers defining necessary "stuff" should be included. In particular, header files should only
include <iosfwd>, and the corresponding implementation files should then include the header
with the complete definition.
For special stream features, such as parameterized manipulators, file streams, or string streams,
there are additional headers (<iomanip>, <fstream>, <sstream>, and <strstream>).
The details regarding these headers are provided in the sections that introduce these special
features.

13.3 Standard Stream Operators << and >>

In C and C++, operators << and >> are used for shifting bits of an integer to the right or the left
respectively. The classes basic_istream<> and basic_ostream<> overload operators >>
and << as the standard I/O operators. Thus, in C++ the "shift operators" became the "I/O
operators."[6]

[6] Some people also call the I/O operators inserters and extractors.

The C++ Standard Library

dyne-book 514

13.3.1 Output Operator <<

The class basic_ostream (and thus also the classes ostream and wstream) defines << as an
output operator. It overloads this operator for all fundamental types, including char*, void*,
and bool.
The output operators for streams are defined to send their second argument to the corresponding
stream. Thus, the data is sent in the direction of the arrow:

 int i = 7;
 std::cout << i; // outputs: 7

 float f = 4.5;
 std::cout << f; // outputs: 4.5

The << operator can be overloaded such that the second argument is an arbitrary data type. This
allows the integration of your own data types into the I/O system. The compiler ensures that the
correct function for outputting the second argument is called. Of course, this function should in
fact transform the second argument into a sequence of characters sent to the stream.
The C++ standard library also uses this mechanism to provide output operators for strings (see
page 524), bitsets (see page 468), and complex numbers (see page 539):

 std::string s("hello");
 s += ", world";
 std::cout << s; // outputs: hello, world

 std::bitset<10> flags(7);
 std::cout << flags; // outputs: 0000000111

 std::complex<float> c(3.1,7.4);
 std::cout << c; // outputs: (3.1,7.4)

The details about writing output operators for your own data types are explained in Section
13.12.
The fact that the output mechanism can be extended to incorporate your own data types is a
significant improvement over C's I/O mechanism that uses printf(): It is not necessary to
specify the type of an object to be printed. Instead, the overloading of different types ensures that
the correct function for printing is deduced automatically. The mechanism is not limited to
standard types. Thus, the user has only one mechanism that works for all types.
Operator << can also be used to print multiple objects in one statement. By convention, the
output operators return their first argument. Thus, the result of an output operator is the output
stream. This allows you to chain calls to output operators like this:

 std::cout << x << " times " << y << " is " << x * y << std::endl;

Operator << is evaluated from left to right. Thus.

 std::cout << x

is executed first. Note that the evaluative order of the operator does not imply any specific order
in which the arguments are evaluated; only the order in which the operators are executed is
defined. This expression returns its first operand— std::cout. So,

The C++ Standard Library

dyne-book 515

 std::cout << " times "

is executed next. The object y, the string literal " is ", and the result of x * y are printed
accordingly. Note that the multiplication operator has a higher priority than operator <<, so you
need no parentheses around x * y. However, there are operators that have less priority, such
as all logical operators. In this example, if x and y are floating-point numbers with the values 2.4
and 5.1, the following is printed:

 2.4 times 5.1 is 12.24

13.3.2 Input Operator >>

The class basic_istream (and thus also the classes istream and wistream) defines >> as
an input operator. Similar to basic_ostream, this operator is overloaded for all fundamental
types including, char*, void*, and bool. The input operators for streams are defined to
store the value read in their second argument. As with operator <<, the data is sent in the
direction of the arrow:

 int i;
 std::cin >> i; // reads an int from standard input and stores it
in i

 float f;
 std::cin >> f; // reads a float from standard input and stores it
in f

Note that the second argument is modified. To make this possible, the second argument is
passed by nonconstant reference.
Like output operator << it is also possible to overload the input operator for arbitrary data types
and to chain the calls:

 float f;
 std::complex c;

 std::cin >> f >> c;

To make this possible, leading whitespace is skipped by default. However, this automatic
skipping of whitespace can be turned off (see page 625).

13.3.3 Input/Output of Special Types

The standard I/O operators are also defined for types bool, char*, and void*. In addition,
you can extend it for your own types.

Type bool

The C++ Standard Library

dyne-book 516

By default, Boolean values are printed and read numerically: false is converted from and to 0,
and true is converted from and to 1. When reading, values different from 0 and 1 are considered
to be an error. In this case the ios::failbit is set, which might throw a corresponding
exception (see page 602).
It is also possible to set up the formatting options of the stream to use character strings for the I/O
of Boolean values (see page 617). This touches on the topic of internationalization: Unless a
special locale object is used, the strings "true" and "false" are used. In other locale objects,
different strings might be used. For example, a German locale object would use the strings
"wahr" and "falsch". See Chapter 14 especially for more details.

Types char and wchar_t

When a char or wchar_t is being read with operator >>, leading whitespace is skipped by
default. To read any character (whether or not it is whitespace) you can either clear the flag
skipws (see page 625) or use the member function get() (see page 608).

Type char*

A C-string (that is, a char*) is read word wise. That is, when a C-string is being read, leading
whitespace is skipped by default and the string is read until another whitespace character or end-
of-file is encountered. Whether leading whitespace is skipped automatically can be controlled with
the flag skipws (see Section 13.7.7).
Note that this behavior means that the string you read can become arbitrarily long. It is already a
common error in C programs to assume that a string can be a maximum of 80 characters long.
There is no such restriction. Thus, you must arrange for a premature termination of the input
when the string is too long. To do this, you should always set the maximum length of the string to
be read. This normally looks something like this:

 char buffer [81]; // 80 characters and '\0'
 std::cin >> std::setw(81) >> buffer;

The manipulator setw() and the corresponding stream parameter are described in detail in
Section 13.7.3.
The type string from the C++ standard library (see Chapter 11) grows as needed to
accommodate a lengthy string. It is much easier and safer to use the string class instead of
char*. In addition, it provides a convenient function for reading line-by-line (see page 493). So,
whenever you can avoid the use of C-strings and use strings.

Type void*

Operators << and >> also provide the possibility of printing a pointer and reading it back in again.
An address is printed in an implementation-dependent format if a parameter of type void* is
passed to the output operator. For example, the following statement prints the contents of a C-
string and its address:

 char* cstring = "hello";

 std::cout << "string \"" << cstring << "\" is located at address: "
 << static_cast<void*>(cstring) << std::endl;

The result of this statement might appear as follows:

The C++ Standard Library

dyne-book 517

 string "hello" is located at address: 0x10000018

It is even possible to read an address again with the input operator. However, note that
addresses are normally transient. The same object can get a different address in a newly started
program. A possible application of printing and reading addresses may be programs that
exchange addresses for object identification or programs that share memory.

Stream Buffers

You can use operators >> and << to read directly into a stream buffer and to write directly out of a
stream buffer respectively. This is probably the fastest way to copy files by using C++ I/O
streams. See page 683 for examples.

User-Defined Types

In principle it is very easy to extend this technique to your own types. However, to be able to pay
attention to all possible formatting data and error conditions, this takes more effort than you might
think. See Section 13.12, for a detailed discussion about extending the standard I/O mechanism
for your own types.

13.4 State of Streams

Streams maintain a state. The state identifies whether I/O was successful and, if not, the reason
for the failure.

13.4.1 Constants for the State of Streams

For the general state of streams, several constants of type iostate are defined to be used as
flags (Table 13.3). The type iostate is a member of the class ios_base. The exact type of
the constants is an implementation detail (in other words, it is not defined whether iostate is an
enumeration, a type definition for an integral type, or an instantiation of the class bitset).

Table 13.3. Constants of Type iostate
Constant Meaning

goodbit Everything is OK; none of the other bits is set
eofbit End-of-file was encountered
failbit Error; an I/O operation was not successful
badbit Fatal error; undefined state
goodbit is defined to have the value 0. Thus, having goodbit set actually means that all other
bits are cleared. The name goodbit may be somewhat confusing because it doesn't mean that
one bit is set; it means that all bits are cleared.
The difference between failbit and badbit is basically that badbit indicates a more fatal
error:

• failbit is set if an operation was not processed correctly but the stream is generally
OK. Normally this flag is set as a result of a format error during reading. For example, this
flag is set if an integer is to be read but the next character is a letter.

• badbit is set if the stream is somehow corrupted or if data is lost. For example, this flag
is set when positioning a stream that refers to a file before the beginning of a file.

The C++ Standard Library

dyne-book 518

Note that eofbit normally happens with failbit because the end-of-file condition is checked
and detected when an attempt is made to read beyond end-of-file. After reading the last
character, the flag eofbit is not yet set. The next attempt to read a character sets eofbit and
failbit, because the read fails.
Some former implementations supported the flag hardfail. This flag is not supported in the
standard.
These constants are not defined globally. Instead, they are defined within the class ios_base.
Thus, you must always use them with the scope operator or with some object. For example:

 std::ios_base::eofbit

Of course, it is also possible to use a class derived from ios_base. These constants were
defined in the class ios in old implementations. Because ios is a type derived from ios_base
and its use involves less typing, the use often looks like this:

 std::ios::eofbit

These flags are maintained by the class basic_ios and are thus present in all objects of type
basic_istream or basic_ostream. However, the stream buffers don't have state flags. One
stream buffer can be shared by multiple stream objects, so the flags only represent the state of
the stream as found in the last operation. Even this is only the case if goodbit was set prior to
this operation. Otherwise the flags may have been set by some earlier operation.

13.4.2 Member Functions Accessing the State of Streams

The current state of the flags can be determined by the member functions, as presented in Table
13.4.

Table 13.4. Member Functions for Stream States
Member Function Meaning
good() Returns true if the stream is OK (goodbit is "set")
eof() Returns true if end-of-file was hit (eofbit is set)
fail() Returns true if an error has occurred (failbit or badbit is set)
bad() Returns true if a fatal error has occurred (badbit is set)
rdstate() Returns the currently set flags
clear() Clears all flags
clear(state) Clears all and sets state flags
setstate(state) Sets additional state flags
The first four member functions in Table 13.4 determine certain states and return a Boolean
value. Note that fail() returns whether failbit or badbit is set. Although this is done
mainly for historical reasons, it also has the advantage that one test suffices to determine whether
an error has occurred.
In addition, the state of the flags can be determined and modified with the more general member
functions. When clear() is called without parameters, all error flags (including eofbit) are
cleared (this is the origin of the name clear):

 // clear all error flags (including eofbit):
 strm.clear();

The C++ Standard Library

dyne-book 519

If a parameter is given to clear(), the state of the stream is adjusted to be the state given by
the parameter; that is, the flags set in the parameter are set for the stream, while the other flags
are cleared. The only exception is that the badbit is always set if there is no stream buffer (this
is the case if rdbuf() == 0; see Section 13.10.2, for details).
The following example checks whether failbit is set and clears it if necessary:

 // check whether failbit is set
 if (strm.rdstate() & std::ios::failbit) {
 std::cout << "failbit was set" << std::endl;

 // clear only failbit
 strm.clear (strm.rdstate() & ~std::ios::failbit);
 }

This example uses the bit operators & and ~: Operator ~ returns the bitwise complement of its
argument. Thus, the expression

 ~ios::failbit

returns a temporary value that has all bits except failbit set. Operator & returns a bitwise
"and" of its operands. Only the bits set in both operands remain set. Applying bitwise "and" to all
currently set flags (rdstate()) and to all bits except failbit retains the value of all other bits
while failbit is cleared.
Streams can be configured to throw exceptions if certain flags are set with clear() or
setstate() (see Section 13.4.4). Such streams always throw an exception if the
corresponding flag is set at the end of the method used to manipulate the flags.
Note that you always have to clear error bits explicitly. In C it was possible to read characters
after a format error. For example, if scanf() failed to read an integer, you could still read the
remaining characters. Thus, the read operation failed, but the input stream was still in a good
state. This is different in C++. If failbit is set, each following stream operation is a no-op until
failbit is cleared explicitly.
In general, it has to be mentioned that the set bits reflect only what happened sometime in the
past: If a bit is set after some operation this does not necessarily mean that this operation caused
the flag to be set. Instead, the flag might have been set before the operation. Thus, goodbit
should be set (if it is not known to be set) before an operation is executed if the flags arc then
used to tell you what went wrong. Also, after clearing the flags the operations may yield different
results. For example, even if eofbit was set by an operation, this does not mean that after
clearing eofbit (and any other bits set) the operation will set eofbit again. This can be the
case, for example, if the accessed file grew between the two calls.

13.4.3 Stream State and Boolean Conditions

Two functions are defined for the use of streams in Boolean expressions (Table 13.5).
Table 13.5. Stream Operators for Boolean Expressions

Member Function Meaning
operator
void*()

Returns whether the stream has not run into an error (corresponds to
!fail())

operator !() Returns whether the stream has run into an error (corresponds to fail())
With operator void*(), streams can be tested in control structures in a short and idiomatic way
for their current state:

The C++ Standard Library

dyne-book 520

 // while the standard input stream is OK
 while (std::cin) {
 ...
 }

For the Boolean condition in a control structure, the type does not need a direct conversion to
bool. Instead, a unique conversion to an integral type (such as int or char) or to a pointer type
is sufficient. The conversion to void* is often used to read objects and test for success in the
same expression:

 if (std::cin >> x) {
 // reading x wax successful
 ...
 }

As discussed earlier, the expression

 std::cin >> x

returns cin. So after x is read, the statement is

 if (std::cin) {
 ...
 }

Because cin is being used in the context of a condition, its operator void* is called, which
returns whether the stream has run into an error.
A typical application of this technique is a loop that reads and processes objects:

 // as long as obj can be read
 while (std::cin >> obj) {
 // process obj (in this case, simply output it)
 std::cout << obj << std::endl;
 }

This is C's classic filter framework for C++ objects. The loop is terminated if the failbit or
badbit is set. This happens when an error occurred or at end-of-file (the attempt to read at end-
of-file results in setting eofbit and failbit; see page 598). By default, operator >> skips
leading whitespaces. This is normally exactly what is desired. However, if obj is of type char,
whitespace is normally considered to be significant. In this case you can use the put() and
get() member functions of streams (see page 611) or, even better, an
istreambuf_iterator (see page 667) to implement an I/O filter.
With operator !, the inverse test can be performed. The operator is defined to return whether a
stream has run into an error; that is, it returns true if failbit or badbit is set. It can be used
like this:

 if (! std::cin) {
 // the stream cin is not OK
 ...
 }

The C++ Standard Library

dyne-book 521

Like the implicit conversion to a Boolean value, this operator is often used to test for success in
the same expression in which an object was read:

 if (! (std::cin >> x)) {
 // the read failed
 ...
 }

Here, the expression

 std::cin >> x

returns cin, to which operator ! is applied. The expression after ! must be placed within
parentheses. This is due to the operator precedence rules: without the parentheses, operator !
would be evaluated first. In other words, the expression

 ! std::cin >> x

is equivalent to the expression

 (!std::cin) >> x

This is probably not what is intended.
Although these operators are very convenient in Boolean expressions, one oddity has to be
noted: Double "negation" does not yield the original object:

• cin is a stream object of class istream.
• !! cin is a Boolean value describing the state of cin.

As with other features of C++, it can be argued whether the use of the conversions to a Boolean
value is good style. The use of member functions such as fail() normally yields a more
readable program:

 std::cin >> x;
 if (std::cin.fail()) {
 ...
 }

13.4.4 Stream State and Exceptions

Exception handling was introduced to C++ for the handling of errors and exceptions (see page
15). However, this was done after streams were already in wide use. To stay backward
compatible, by default, streams throw no exceptions. However, for the standardized streams, it is
possible to define, for every state flag, whether setting that flag will trigger an exception. This
definition is done by the exceptions() member function (Table 13.6).

Table 13.6. Stream Member Functions for Exceptions

The C++ Standard Library

dyne-book 522

Member Function Meaning
exceptions(flags) Sets flags that trigger exceptions
exceptions() Returns the flags that trigger exceptions
Calling exceptions() without an argument yields the current flags for which exceptions are
triggered. No exceptions are thrown if the function returns goodbit. This is the default, to
maintain backward compatibility. When exceptions() is called with an argument, exceptions
are thrown as soon as the corresponding state flags are set. If a state flag is already set when
exceptions() is called with an argument, an exceptions is thrown if the corresponding flag is
set in the argument.
The following example configures the stream so that, for all flags, an exception is thrown:

 // throw exceptions for all "errors"
 strm.exceptions (std::ios::eofbit | std::ios::failbit |
 std::ios::badbit);

If 0 or goodbit is passed as an argument, no exceptions are generated:

 // do not generate exceptions
 strm.exceptions (std::ios::goodbit);
Exceptions are thrown when the corresponding state flags are set after calling clear() or
setstate(). An exception is even thrown if the flag was already set and not cleared:

 // this call throws an exception if failbit is set on entry
 strm.exceptions (std::ios::failbit);
 ...
 // throw an exception (even if failbit was already set)
 strm.setstate (std::ios::failbit);

The exceptions thrown are objects of the class std::ios_base::failure, which is derived
from class exception (see Section 3.3.1):

 namespace std {
 class ios_base::failure : public exception {
 public:
 // constructor
 explicit failure (const string& msg);

 // destructor
 virtual ~failure();

 // return information about the exception
 virtual const char* what() const;
 };
 }

Unfortunately, the standard does not require that the exception object includes any information
about the erroneous stream or the kind of error. The only portable method that can be used to get
information about the error is the error message returned from what(). But note, only calling
what() is portable; the string it returns is not. If additional information is necessary, the
programmer must arrange to get the required information.

The C++ Standard Library

dyne-book 523

This behavior shows that exception handling is intended to be used more for unexpected
situations. It is called exception handling rather than error handling. Expected errors, such as
format errors during input from the user, are considered to be "normal" and are usually better
handled using the state flags.
The major area in which stream exceptions are useful is reading preformatted data such as
automatically written files. But even then, problems arise if exception handling is used. For
example, if it is desired to read data until end-of-file, you can't get exceptions for errors without
getting an exception for end-of-file. This is because the detection of end-of-file also sets the
failbit (meaning that reading an object was not successful). To distinguish end-of-file from an
input error you have to check the state of the stream.
The next example demonstrates how this might look. It shows a function that reads floating-point
values from a stream until end-of-file is reached. Then it returns the sum of the floating-point
values read:

 // io/sum1a.cpp

 #include <istream>

 namespace MyLib {
 double readAndProcessSum (std::istream& strm)
 {
 using std::ios;
 double value, sum;

 // save current state of exception flags
 ios::iostate oldExceptions = strm.exceptions();
 /*let failbit and badbit throw exceptions
 *-NOTE: failbit is also set at end-of-file
 */
 strm.exceptions (ios::failbit | ios::badbit);

 try {
 /*while stream is OK
 *- read value and add it to sum
 */
 sum = 0;
 while (strm >> value) {
 sum += value;
 }
 }
 catch (...) {
 /*if exception not caused by end-of-file
 *- restore old state of exception flags
 *- rethrow exception
 */
 if (!strm.eof()) {
 strm.exceptions (oldExceptions); // restore
exception flags
 throw; // rethrow
 }
 }

 // restore old state of exception flags
 strm.exceptions (oldExceptions);

The C++ Standard Library

dyne-book 524

 // return sum
 return sum;
 }
 }

First the function stores the set stream exceptions in oldExceptions to restore them later.
Then the stream is configured to throw an exception on certain conditions. In a loop, all values
are read and added as long as the stream is OK. If end-of-file is reached, the stream is no longer
OK, and a corresponding exception is thrown even though no exception is thrown for setting
eofbit. This happens because end-of-file is detected on an unsuccessful attempt to read more
data, which also sets the failbit. To avoid the behavior that end-of-file throws an exception,
the exception is caught locally to check the state of the stream by using eof(). The exception is
propagated only if eof() yields false.
Note that restoring the original exception flags may cause exceptions, exceptions() throws an
exception if a corresponding flag is set in the stream already. Thus, if the state did throw
exceptions for eofbit, failbit, or badbit on function entry, these exceptions are
propagated to the caller.
This function can he called in the simplest case from the following main function:

 // io/summain.cpp

 #include <iostream>
 #include <cstdlib>

 double MyLib::readAndProcessSum (std::istream&);

 int main()
 {
 using namespace std;
 double sum;

 try {
 sum = MyLib::readAndProcessSum(cin);
 }
 catch (const ios::failure& error) {
 cerr << "I/O exception: " << error.what() << endl;
 return EXIT_FAILURE;
 }
 catch (const exception& error) {
 cerr << "standard exception: " << error.what() << endl;
 return EXIT_FAILURE;
 }
 catch (...) {
 cerr << "unknown exception" << endl;
 return EXIT_FAILURE;
 }

 // print sum
 cout << "sum: " << sum << endl;
 }

The question arises whether this is worth the effort. It is also possible to work with streams not
throwing an exception. In this case, an exception is thrown if an error is detected. This has the
additional advantage that user-defined error messages and error classes can be used:

The C++ Standard Library

dyne-book 525

 // io/sum2a.cpp

 #include <istream>

 namespace MyLib {
 double readAndProcessSum (std::istream& strm)
 {
 double value, sum;

 /*while stream is OK
 *- read value and add it to sum
 */
 sum = 0;
 while (strm >> value) {
 sum += value;
 }

 if (!strm.eof()) {
 throw std::ios::failure
 ("input error in readAndProcessSum()");
 }

 // return sum
 return sum;
 }
 }

This looks somewhat simpler, doesn't it? This version of the function needs the header
<string> because the constructor of the class failure takes a reference to a constant
string as an argument. To construct an object of this type, the definition is needed but the
header <istream> is only required to provide a declaration.

13.5 Standard Input/Output Functions

Instead of using the standard operators for streams (operator << and operator >>), you can use
several other member functions for reading and writing, which are presented in this section.
The functions in this section read or write "unformatted" data (unlike operators >> or <<, which
read or write "formatted" data). When reading, they never skip leading whitespaces (unlike the
operators that are, by default, configured to skip leading whitespace). Also, they handle
exceptions differently than the formatted I/O functions: If an exception is thrown, either from a
called function or as a result of setting a state flag (see Section 13.4.4), the badbit flag is set.
The exception is then rethrown if the exception mask has badbit set. However, the unformatted
functions create a sentry object like the formatted functions do (see Section 13.12.4).
These functions use type streamsize to specify counts, which is defined in <ios>:

 namespace std {
 typedef ... streamsize;
 ...
 }

The C++ Standard Library

dyne-book 526

The type streamsize usually is a signed version of size_t. It is signed because it is also used
to specify negative values.

13.5.1 Member Functions for Input

In the following definitions, istream is a placeholder for the stream class used for reading. It can
stand for istream, wistream, or some other instantiation of the template class
basic_istream. The type char is a placeholder for the corresponding character type, which is
char for istream and wchar_t for wistream. Other types or values printed in italics depend
on the exact definition of the character type or on the traits class associated with the stream.
The C++ standard library provides several member functions to read character sequences. Table
13.7 compares their abilities.

Table 13.7. Abilities of Stream Operators Reading Character Sequences

Member Function Reads Until
Number of
Characters

Appends
Termin.

Returns

get (s, num) Excluding newline or end-
of-file

Up to num-1 Yes istream

get(s, num, t) Excluding t or end-of-file Up to num-1 Yes istream

getline(s, num) Including newline or end-
of-file

Up to num-1 Yes istream

getline(s, num,
t)

Including t or end-of-file Up to num-1 Yes istream

read(s, num) end-of-file num No istream

readsome(s, num) end-of-file Up to num No count
int istream::get ()

• Reads the next character.
• Returns the read character or EOF.
• In general, the return type is traits::int_type and EOF is the value returned by

traits::eof(). For istream, the return type is int and EOF is the constant EOF.
Hence, for istream this function corresponds to C's getchar() or getc().

• Note that the returned value is not necessarily of the character type but can be of a type
with a larger range of values. Otherwise, it would be impossible to distinguish EOF from
characters with the corresponding value.

istream& istream::get (char& c)

• Assigns the next character to the passed argument c.
• Returns the stream. The stream's state tells whether the read was successful.

istream& istream::get (char* str, streamsize count)
istream& istream::get (char* str, streamsize count, char delim)

• Both forms read up to count-1 characters in the character sequence pointed to by str.
• The first form terminates the reading if the next character to be read is the newline

character of the corresponding character set. For istream, it is the character '\n' and for
wistream it is wchar_t('\n') (see page 691). In general, widen('\n') is used (see
page 626).

• The second form terminates the reading if the next character to be read is delim.
• Both forms return the stream. The stream's state tells whether the read was successful.

The C++ Standard Library

dyne-book 527

• The terminating character (delim) is not read.
• The read character sequence is terminated by a string termination character.
• The caller must ensure that str is large enough for count characters.

istream& istream::getline (char* str, streamsize count)
istream& istream::getline (char* str, streamsize count, char delim)

• Both forms are identical to their previous counterparts of get() except that they
terminate the reading including but not before the newline character or delim respectively.

• Thus, the newline character or delim is read if it occurs within count-1 characters, but it is
not stored in str.

istream& istream::read (char* str, streamsize count)

• Reads count characters in the string str.
• Returns the stream. The stream's state tells whether the read was successful.
• The string in str is not terminated automatically with the string termination character.
• The caller must ensure that str has sufficient space to store count characters.
• Encountering end-of-file during reading is considered an error, and failbit is set (in

addition to eofbit).

streamsize istream::readsome (char* str, streamsize count)

• Reads up to count characters in the string str.
• Returns the number of characters read.
• The string in str is not terminated automatically with the string termination character.
• The caller must ensure that str has sufficient space to store count characters.
• In contrast to read(), readsome() reads all available characters of the stream buffer

(using the in_avail() member function of the buffer). This is useful when it is
undesirable to wait for the input because it comes from the keyboard or other processes.
Encountering end-of-file is not considered an error and sets neither eofbit nor
failbit.

streamsize istream::gcount () const

• Returns the number of characters read by the last unformatted read operation.

istream& istream::ignore ()
istream& istream::ignore (streamsize count)
istream& istream::ignore (streamsize count, int delim)

• All forms extract and discard characters.
• The first form ignores one character.
• The second form ignores up to count characters.
• The third form ignores up to count characters until delim is extracted and discarded.
• If count is numeric_limits<int>::max() (the largest int, see Section 4.3), all

characters arc discarded until either delim or end-of-file is reached.
• All forms return the stream.
• Examples:

o The following call discards the rest of the line:
o

The C++ Standard Library

dyne-book 528

o cin.ignore(numeric_limits<int>::max(),'\n');
o

o The following call discards the complete remainder of cin:
o

 cin.ignore(numeric_limits<int>::max());
int istream::peek ()

• Returns the next character to be read from the stream without extracting it. The next read
will read this character (unless the read position is modified).

• Returns EOF, if no more characters can be read.
• EOF is the value returned from traits::eof(). For istream, this is the constant EOF.

istream& istream::unget ()
istream& istream::putback (char c)

• Both functions put the last character read back into the stream so that it is read again by
the next read (unless the read position is modified).

• The difference between ungetc() and putback() is that for putback() a check is
made whether the character c passed is indeed the last character read.

• If the character cannot be put back or if the wrong character is put back with
putback(), badbit is set, which may throw a corresponding exception (see Section
13.4.4).

• The maximum number of characters that can be put back with these functions is
implementation defined. Only one call of these functions between two reads is
guaranteed to work by the standard and thus is portable.

When C-strings are read it is safer to use the functions from this section than to use operator >>.
This is because the maximum string size to be read must be passed explicitly as an argument.
Although it is possible to limit the number of characters read when using operator >> (see page
618), this is easily forgotten.
It is often better to use the stream buffer directly instead of using istream member functions.
Stream buffers provide member functions that read single characters or character sequences
efficiently without overhead due to the construction of sentry objects (see Section 13.12.4, for
more information on sentry objects). Section 13.13, explains the stream buffer interface in
detail. Another alternative is to use the template class istreambuf_iterator, which provides
an iterator interface to the stream buffer (see Section 13.13.2).
Two other functions for manipulating the read position are tellg() and seekg(). These are
relevant mainly in conjunction with files, so their descriptions are deferred until Section 13.9.2.

13.5.2 Member Functions for Output

In the following definitions ostream is a placeholder for the stream class used for writing. It can
stand for ostream, wostream, or some other instantiation of the template class
basic_ostream. The type char is a placeholder for the corresponding character type, which is
char for ostream and wchar_t for wostream. Other types or values printed in italics depend
on the exact definition of the character type or on the traits class associated with the stream.
ostream& ostream::put (char c)

• Writes the argument c to the stream.
• Returns the stream. The stream's state tells whether the write was successful.

The C++ Standard Library

dyne-book 529

ostream& ostream::write (const char* str, streamsize count)

• Writes count characters of the string str to the stream.
• Returns the stream. The stream's state tells whether the write was successful.
• The string termination character does not terminate the write and will be written.
• The caller must ensure that str really contains at least count characters; otherwise, the

behavior is undefined.

ostream& ostream::flush ()

• Flushes the buffers of the stream (forces a write of all buffered data to the device or I/O
channel to which it belongs).

Two other functions modify the write position: tellp() and seekp(). These functions are
relevant mainly in conjunction with files, so their descriptions are deferred until Section 13.9.2.
Like the input functions, it may also be reasonable to use the stream buffer directly or to use the
template class ostreambuf_iterator for unformatted writing. There is actually no point in
using the unformatted output functions, except that these functions might handle some locks in
multithreaded environments using sentry objects. See Section 13.14.3, for details.

13.5.3 Example Uses

The classic filter framework that simply writes all read characters looks like this in C++:

 // io/charcat1.cpp

 #include <iostream>
 using namespace std;

 int main()
 {

 char c;

 // while it is possible to read a character
 while (cin.get(c)) {
 // print it
 cout.put(c);
 }
 }
In C, it is necessary to use an object of type int for character processing to tell whether end of
file was reached. In this version, the read character is accessed simply by using the dereference
operator.
To perform better, you can operate directly on stream buffers. See page 667 for a version of this
example that uses stream buffer iterators for I/O and page 683 for a version that copies the whole
input in one statement.

13.6 Manipulators

Manipulators for streams were introduced in Section 13.1.5. They are objects that modify a
stream when applied with the standard I/O operators. This does not necessarily mean that

The C++ Standard Library

dyne-book 530

something is read or written. The basic manipulators defined in <istream> or <ostream> are
presented in Table 13.8.

Table 13.8. Manipulators Defined in <istream> or <ostream>
Manipulator Class Meaning
flush basic_ostream Flushes the output buffer to its device
end1 basic_ostream Inserts a newline character into the buffer and flushes the output

buffer to its device
ends basic_ostream Inserts a string termination character into the buffer
ws basic_istream Reads and ignores whitespaces
There are additional manipulators, for example, to change I/O formats. These manipulators are
introduced in Section 13.7, about formatting.

13.6.1 How Manipulators Work

Manipulators are implemented using a very simple trick. This trick not only enables the
convenient manipulation of streams, it also demonstrates the power provided by function
overloading. Manipulators are nothing more than functions that are passed to the I/O operators as
arguments. The functions are then called by the operator. For example, the output operator for
class ostream is basically overloaded like this[7] :

[7] The real implementation looks a little bit more complicated because it has to construct a sentry object
and because it is actually a function template.

 ostream& ostream::operator << (ostream& (*op) (ostream&))
 {
 // call the function passed as parameter with this stream as the
argument
 return (*op) (*this);
 }

The argument op is a pointer to a function. More precisely, it is a function that takes ostream as
an argument and returns ostream (it is assumed that the ostream given as the argument is
returned). If the second operand of operator << is such a function, this function is called with the
first operand of operator << as the argument.
This may sound very complicated, but it is actually relatively simple. An example should make it
clearer. The manipulator (that is, the function) endl() for ostream is implemented basically like
this:

std::ostream& std::endl (std::ostream& strm)
{
 // write newline
 strm.put('\n');

 // flush the output buffer
 strm.flush();

 // return strm to allow chaining
 return strm;
}

The C++ Standard Library

dyne-book 531

You can use this manipulator in an expression such as the following:

 std::cout << std::endl

Here, operator << is called for stream cout with the endl() function as the second operand.
The implementation of operator << transforms this call into a call of the passed function with the
stream as the argument:

 std::endl(std::cout)

The same effect as "writing" the manipulator can also be achieved by calling this expression
directly. There is actually an advantage in using the function notation: It is not necessary to
provide the namespace:

 endl(std::cout)

This is because functions are looked up in the namespaces where their arguments are defined if
they are not found otherwise (see page 17).
Because the stream classes are actually template classes parameterized with the character type,
the real implementation of endl() looks like this:

 template<class charT, class traits>
 std::basic_ostream<charT,traits>&
 std::endl (std::basic_ostream<charT,traits>& strm)
 {
 strm.put(strm.widen('\n'));
 strm.flush();
 return strm;
 }

The member function widen() is used to convert the newline character into the character set
currently used by the stream. See Section 13.8, for more details.
The C++ standard library also contains manipulators with arguments. How these manipulators
work exactly is implementation dependent, and there is no standard way to implement user-
defined manipulators with arguments.
The standard manipulators with arguments are defined in the header file <iomanip>, which
must be included to work with the standard manipulators taking arguments:

 #include <iomanip>

The standard manipulators taking arguments are all concerned with details of formatting, so they
are described when formatting options are described.

13.6.2 User-Defined Manipulators

You can define your own manipulators. All you need to do is to write a function such as endl().
For example, the following function defines a manipulator that ignores all characters until end-of-
line:

 // io/ignore.hpp

The C++ Standard Library

dyne-book 532

 #include <istream>
 #include <limits>

 template <class charT, class traits>
 inline
 std::basic_istream<charT,traits>&
 ignoreLine (std::basic_istream<charT,traits>& strm)
 {
 // skip until end-of-line
 strm.ignore(std::numeric_limits<int>::max(),strm.widen('\n'));

 // return stream for concatenation
 return strm;
 }

The manipulator simply delegates the work to the function ignore(), which in this case
discards all characters until end-of-line (ignore() was introduced on page 609).
The application of the manipulator is very simple:

 // ignore the rest of the line
 std::cin >> ignoreLine;

Applying this manipulator multiple times enables you to ignore multiple lines:

 // ignore two lines
 std::cin >> ignoreLine >> ignoreLine;

This works because a call to the function ignore (max, c) ignores all characters until the c is
found in the input stream (or max characters are read or the end of the stream was reached).
However, this character is discarded, too, before the function returns.

13.7 Formatting

Two concepts influence the definition of I/O formats: Most obviously, there are format flags that
define, for example, numeric precision, the fill character, or the numeric base. Apart from this,
there exists the possibility of adjusting the formats to meet special national conventions. This
section introduces the format flags. Section 13.8, and Chapter 14 describe the aspects of
internationalized formatting.

13.7.1 Format Flags

The class ios_base has several members that are used for the definition of various I/O formats.
For example, it has members that store the minimum field width, the precision of floating-point
numbers, or the fill character. A member of type ios::fmtflags stores configuration flags
defining, for example, whether positive numbers should be preceded by a positive sign or
whether Boolean values should be printed numerically or as words.
Some of the format flags form groups. For example, the flags for octal, decimal, and hexadecimal
formats of integer numbers form a group. Special masks are defined to make dealing with such
groups easier.

Table 13.9. Member Function to Access Format Flags

The C++ Standard Library

dyne-book 533

Member
Function

Meaning

setf (flags) Sets flags as additional format flags and returns the previous state of all flags
setf (flags,
mask)

Sets flags as the new format flags of the group identified by mask and returns
the previous state of all flags

unsetf (flags) Clears flags
flags() Returns all set format flags
flags (flags) Sets flags as the new format flags and returns the previous state of all flags
copyfmt
(stream)

Copies all format definitions from stream

Several member functions can be used to handle all of the format definitions of a stream. These
are presented in Table 13.9. The functions setf() and unsetf() set or clear, respectively,
one or more flags. You can manipulate multiple flags at once by combining them using the "binary
or" operator; that is, operator |. The function setf() can take a mask as the second argument
to clear all flags in a group before setting the flags of the first argument, which are also limited to
a group. This does not happen with the version of setf() that takes only one argument. For
example:

 // set flags showpos and uppercase
 std::cout.setf (std::ios::showpos | std::ios::uppercase);

 // set only the flag hex in the group basefield
 std::cout.setf (std::ios::hex, std::ios::basefield);

 // clear the flag uppercase
 std::cout.unsetf (std::ios::uppercase);

Using flags() you can manipulate all format flags at once. Calling flags() without an
argument returns the current format flags. Calling flags() with an argument takes this argument
as the new state of all format flags and returns the old state. Thus, flags() with an argument
clears all flags and sets the flags that were passed. Using flags() is useful, for example, for
saving the current state of the flags to restore the original state later. The following statements
demonstrate an example:

 using std::ios, std::cout;

 // save actual format flags
 ios::fmtflags oldFlags = cout.flags();

 // do some changes
 cout.setf(ios::showpos | ios::showbase | ios::uppercase);
 cout.setf(ios::internal, ios::adjustfield);
 cout << std::hex << x << std::endl;

 // restore saved format flag
 cout.flags(oldFlags);

The C++ Standard Library

dyne-book 534

By using copyfmt() you can copy all the format information from one stream to another. See
page 653 for an example.
You can also use manipulators to set and clear format flags. These are presented in Table
13.10.

Table 13.10. Manipulators to Access Format Flags
Manipulator Effect

setiosflags (flags) Sets flags as format flags (calls setf (flags) for the stream)
resetiosflags
(mask)

Clears all flags of the group identified by mask (calls setf (0,mask) for
the stream)

The manipulators setiosflags() and resetiosflags() provide the possibility of setting or
clearing, respectively, one or more flags in a write or read statement with operator << or >>
respectively. To use one of these manipulators, you must include the header file <iomanip>.
For example:

 #include <iostream>
 #include <iomanip>
 ...
 std::cout << resetiosflags(std::ios::adjustfield) // clear adjustm.
flags
 << setiosflags(std::ios::left); // left-adjust
values

Some flag manipulations are performed by specialized manipulators. These manipulators are
used often because they are more convenient and more readable. They are discussed in the
following subsections.

13.7.2 Input/Output Format of Boolean Values

The boolalpha flag defines the format used to read or to write Boolean values. It defines
whether a numeric or a textual representation is used for Boolean values (Table 13.11).

Table 13.11. Flag for Boolean Representation
Flag Meaning

boolalpha It set, specifies the use of textual representation; if not set, specifies the use of
numeric representation

If the flag is not set (this is the default), Boolean values are represented using numeric strings. In
this case, the value 0 is always used for false and the value 1 is always used for true. When
reading a Boolean value as a numeric string it is considered to be an error (setting failbit for
the stream) if the value is different from 0 or 1.
If the flag is set, Boolean values are written using a textual representation. When a Boolean value
is read, the string has to match the textual representation of either true or false. The stream's
locale object is used to + the strings used to represent true and false (see page 626 and page
698). The standard "C" locale object uses the strings "true" and "false" as representations
of the Boolean values.
Special manipulators are defined for the convenient manipulation of this flag (Table 13.12).

Table 13.12. Manipulation for Boolean Representation
Manipulator Meaning

boolalpha Forces textual representation (sets the flag ios::boolalpha)
noboolalpha Forces numeric representation (clears the flag ios::boolalpha)
For example, the following statements print b first in numeric representation and then in textual
representation:

The C++ Standard Library

dyne-book 535

 bool b;
 ...
 cout << noboolalpha << b << " == " << boolalpha << b << endl;

13.7.3 Field Width, Fill Character, and Adjustment

Two member functions are used to define the field width and the fill character: width() and
fill() (Table 13.13).

Table 13.13. Member Functions for the Field Width and the Fill Character
Member Function Meaning
width() Returns the actual field width
width(val) Sets the field width to val and returns the previous field width
fill() Returns the actual fill character
fill(c) Defines c as the fill character and returns the previous fill character

Using Field Width, Fill Character, and Adjustment for Output

For the output width() defines a minimum field. This definition applies only to the next formatted
field written. Calling width() without arguments returns the current field width. Calling width()
with an integral argument changes the width and returns the former value. The default value for
the minimum field width is 0, which means that the field may have any length. This is also the
value to which the field width is set after a value was written.
Note that the field width is never used to truncate output. Thus, you can't specify a maximum field
width. Instead, you have to program it. For example, you could write to a string and output only a
certain number of characters.
fill() defines the fill character that is used to fill the difference between the formatted
representation of a value and the minimum field width. The default fill character is a space.
To adjust values within a field, three flags are defined, as shown in Table 13.14. These flags are
defined in the class ios_base together with the corresponding mask.

Table 13.14. Masks to Adjust Values within a Field
Mask Flag Meaning

adjustfield left Left-adjusts the value
 right Right-adjusts the value
 internal Left-adjusts the sign and right-adjusts the value
 None Right-adjusts the value (the default)
After any formatted I/O operation is performed, the default field width is restored. The values of
the fill character and the adjustment remain unchanged until they are modified explicitly.
Table 13.15 presents the effect of the functions and the flags used for different values. The
underscore is used as the fill character.

Table 13.15. Examples of Adjustment
Adjustment width() -42 0.12 "Q" 'Q'

left 6 -42--- 0.12-- Q----- Q-----
right 6 ----42 --0.12 -----Q -----Q
internal 6 ----42 --0.12 -----Q -----Q
Note that the adjustment for single characters has changed during the standardization. Before
standardization, the field width was ignored if single characters were written. It was used for the

The C++ Standard Library

dyne-book 536

next formatted output that was not a single character. This bug was fixed. However, for programs
that used this bug as a feature, the fix breaks backward compatibility.
Several manipulators are defined to handle the field width, the fill character, and the adjustment
(Table 13.16).

Table 13.16. Manipulators for Adjustment
Manipulator Meaning
setw(val) Sets the field width for input and output to val (corresponds to width())
setfill(c) Defines c as the fill character (corresponds to fill())
left Left-adjusts the value
right Right-adjusts the value
internal Left-adjusts the sign and right-adjusts the value
The manipulators setw() and setfill() use an argument, so you must include the header file
<iomanip> to use them. For example, the statements

 #include <iostream>
 #include <iomanip>
 ...
 std::cout << std::setw(8) << std::setfill('_') <<-3.14
 << ' ' << 42 << std::endl;
 std::cout << std::setw(8) << "sum: "
 << std::setw(8) << 42 << std::endl;

produce this output:

 ----3.14 42
 ---sum: ------42

Using Field Width for Input

You can use the field width also to define the maximum number of characters read when
character sequences of type char* are read. If the value of width() is not 0, then at most
width()-1 characters are read.
Because of the fact that ordinary C-strings can't grow while values are read, width() or setw()
should always be used when reading them with operator >>. For example:

 char buffer [81];

 // read, at most, 80 characters:
 cin >> setw (sizeof (buffer)) >> buffer;

This reads, at most, 80 characters, although sizeof (buffer) is 81 because one character is
used for the string termination character (which is appended automatically). Note that the
following code is a common error:

 char* s;
 cin >> setw (sizeof (s)) >> s; //RUNTIME ERROR

The C++ Standard Library

dyne-book 537

This is because s is only declared as a pointer without any storage for characters, and
sizeof(s) is the size of the pointer instead of the size of the storage to which it points. This is a
typical example of the problems you encounter if you use C-strings. By using strings, you won't
run into these problems:

 string buffer;
 cin >> buffer; //OK

13.7.4 Positive Sign and Uppercase Letters

Two format flags are defined to influence the general appearance of numeric values: showpos
and uppercase (Table 13.17).

Table 13.17. Flags Affecting Sign and Letters of Numeric Values
Flag Meaning

showpos Writes a positive sign on positive numbers
uppercase Uses uppercase letters
ios::showpos dictates that a positive sign for positive numeric values be written. If the flag is
not set, only negative values are written with a sign, ios::uppercase dictates that letters in
numeric values be written using uppercase letters. This flag applies to integers using
hexadecimal format and to floating-point numbers using scientific notation. By default, letters are
written as lowercase and no positive sign is written. For example, the statements

 std::cout << 12345678.9 << std::endl;

 std::cout.setf (std::ios::showpos | std::ios::uppercase);
 std::cout << 12345678.9 << std::endl;

produce this output:

 1.23457e+07
 +1.23457E+07

Both flags can be set or cleared using the manipulators presented in Table 13.18.

Table 13.18. Manipulators for Sign and Letters of Numeric Values
Manipulator Meaning
showpos Forces to write a positive sign on positive numbers (sets the flag ios::showpos)
noshowpos Forces not to write a positive sign (clears the flag ios::showpos)
uppercase Forces uppercase letters (sets the flag ios::upper case)
nouppercase Forces lowercase letters (clears the flag ios::uppercase)

13.7.5 Numeric Base

A group of three flags defines which base is used for I/O of integer values. The flags are defined
in the class ios_base with the corresponding mask (Table 13.19).

Table 13.19. Flags Defining the Base of Integral Values
Mask Flag Meaning

The C++ Standard Library

dyne-book 538

basefield oct Writes and reads octal
 dec Writes and reads decimal (default)
 hex Writes and reads hexadecimal
 None Writes decimal and reads according to the leading characters of the integral

value
A change in base applies to the processing of all integer numbers until the flags are reset. By
default, decimal format is used. There is no support for binary notation. However, you can read
and write integral values in binary by using class bitset. See Section 10.4.1, for details.
If none of the base flags is set, output uses a decimal base. If more than one flag is set, decimal
is used as the base.
The flags for the numeric base also affect input. If one of the flags for the numeric base is set, all
numbers are read using this base. If no flag for the base is set when numbers are read the base
is determined by the leading characters: A number starting with 0x or 0X is read as a
hexadecimal number. A number starting with 0 is read as an octal number. In all other cases, the
number is read as a decimal value.
There are basically two ways to switch these flags:

1. Clear one flag and set another:
2.
3. std::cout.unsetf (std::ios::dec);
4. std::cout.setf (std::ios::hex);
5.

6. Set one flag and clear all other flags in the group automatically:
7. std::cout.setf (std::ios::hex, std::ios::basefield);
8.

In addition, manipulators are defined that make the handling of these flags significantly simpler
(Table 13.20).

Table 13.20. Manipulators Defining the Base of Integral Values
Manipulator Meaning

oct Writes and reads octal
dec Writes and reads hexadecimal
hex Writes and reads decimal
For example, the following statements write x and y in hexadecimal, and z in decimal:

 int x, y, z;
 ...
 std::cout << std::ios::hex << x << std::endl;
 std::cout << y << ' ' << std::ios::dec << z << std::endl;

An additional flag, showbase, lets you write numbers according to the usual C/C++ convention
for indicating numeric bases of literal values (Table 13.21).

Table 13.21. Flags to Indicate the Numeric Base
Flag Meaning

showbase If set, indicates the numeric base
If ios::showbase is set, octal numbers are preceded by a 0 and hexadecimal numbers are
preceded by 0x (or, if ios::uppercase is set, by 0X). For example, the statements

The C++ Standard Library

dyne-book 539

 std::cout << 127 << ' ' << 255 << std::endl;

 std::cout << std::hex << 127 << ' ' << 255 << std::endl;

 std::cout.setf(std::ios::showbase);
 std::cout << 127 << ' ' << 255 << std::endl;
 std::cout.setf(std::ios::uppercase);
 std::cout << 127 << ' ' << 255 << std::endl;

produce this output:

 127 255
 7f ff
 0x7f 0xff
 0X7F 0XFF

ios::showbase can also be manipulated using the manipulators presented in Table 13.22.

Table 13.22. Manipulators to Indicate the Numeric Base
Manipulator Meaning

showbase Indicates numeric base (sets the flag ios::showbase)
noshowbase Does not indicate numeric base (clears the flag ios::showbase)

13.7.6 Floating-Point Notation

Several flags and members control the output of floating-point values. The flags, presented in
Table 13.23, define whether output is written using decimal or scientific notation. These flags
are defined in the class ios_base together with the corresponding mask. If ios::fixed is set,
floatingpoint values are printed using decimal notation. If ios::scientific is set scientific
(that is, exponential) notation is used.

Table 13.23. Flags for the Floating-Point Notation
Mask Flag Meaning

floatfield fixed Uses decimal notation
 scientific Uses scientific notation
 None Uses the "best" of these two notations (default)
To define the precision, the member function precision() is provided (see Table 13.24).

Table 13.24. Member Function for the Precision of Floating-Point Values
Member Function Meaning
precision() Returns the actual precision of floating-point values
precision(val) Sets val as the new precision of floating-point values and returns the old
If scientific notation is used, precision() defines the number of decimal places in the fractional
part. In all cases, the remainder is not cut off but rounded. Calling precision() without
arguments returns the current precision. Calling it with an argument sets the precision to that
value and returns the previous precision. The default precision is six decimal places.
By default, neither ios::fixed nor ios::scientific is set. In this case, the notation used
depends on the value written. All meaningful but, at most, precision() decimal places are
written as follows: A leading zero before the decimal point and/or all trailing zeros, and potentially
even the decimal point, are removed. If precision() places are sufficient, decimal notation is
used; otherwise, scientific notation is used.

The C++ Standard Library

dyne-book 540

Using the flag showpoint, you can force the stream to write a decimal point and trailing zeros
until precision() places are written (Table 13.25).

Table 13.25. Flags to Force Decimal Point
Flag Meaning

showpoint Always writes a decimal point
Table 13.26 shows the somewhat complicated dependencies between flags and precision,
using two concrete values as an example.

Table 13.26. Example of Floating-Point Formatting
 precision() 421.0 0.0123456789

Normal 2 4.2e+02 0.012
 6 421 0.0123457
With showpoint 2 4.2e+02 0.012
 6 421.000 0.0123457
fixed 2 421.00 0.01
 6 421.000000 0.012346
scientific 2 4.21e+02 1.23e-02
 6 4.210000e+02 1.234568e-02
As for integral values, ios::showpos can be used to write a positive sign, ios::uppercase
can be used to dictate whether the scientific notation should use an uppercase E or a lowercase
e.
The flag ios::showpoint, the notation, and the precision can be configured using the
manipulators presented in Table 13.27.
For example, the statement

 std::cout << std::scientific << std::showpoint
 << std::setprecision(8)
 << 0.123456789 << std::endl;

produces this output:

 1.23456789e-001

Table 13.27. Manipulators for Floating-Point Values
Manipulator Meaning

showpoint Always writes a decimal point (sets the flag ios::showpoint)
noshowpoint Does not require a decimal point (clears the flag showpoint)
setprecision(val) Sets val as the new value for the precision
fixed Uses decimal notation
scientific Uses scientific notation
setprecision() is a manipulator with an argument, so you must include the header file
<iomanip> to use it.

13.7.7 General Formatting Definitions

Two more format flags complete the list of formatting flags: skipws and unitbuf (Table
13.28).

The C++ Standard Library

dyne-book 541

Table 13.28. Other Formatting Flags
Flag Meaning

skipws Skips leading whitespaces automatically when reading a value with operator >>
unitbuf Flushes the output buffer after each write operation
ios::skipws is set by default, meaning that by default leading whitespaces are skipped by
certain read operations. Normally, it is useful to have this flag set. For example, with it set,
reading the separating spaces between numbers explicitly is not necessary. However, this implies
reading space characters using operator >> is not possible because leading whitespaces are
always skipped.
ios::unitbuf controls the buffering of the output. With ios::unitbuf set, output is basically
unbuffered. The output buffer is flushed after each write operation. By default, this flag is not set.
However, for the streams cerr and wcerr this flag is set initially.
Both flags can be manipulated using the manipulators presented in Table 13.29.

13.8 Internationalization

You can adapt I/O formats to national conventions. The class ios_base defines for this purpose
the member functions presented in Table 13.30.
Each stream uses an associated locale object. The initial default locale object is a copy of the
global locale object at the construction time of the stream. The locale object defines, for example,
details about numeric formatting, such as the character used as the decimal point or the strings
used for the textual representation of Boolean values.

Table 13.29. Manipulators for Other Formatting Flags
Manipulator Meaning
skipws Skips leading whitespaces with operator >> (sets the flag ios::skipws)
noskipws Does not skip leading whitespaces with operator >> (clears the flag ios::skipws)
unitbuf Flushes the output buffer after each write operation (sets the flag ios::unitbuf)
nounitbuf Does not flush the output buffer after each write operation (clears the flag

ios::unitbuf)
Table 13.30. Member Functions for Internationalization

Member Function Meaning
imbue (loc) Sets the locale object
getloc() Returns the current locale object
In contrast to the C localization facilities, you can configure each stream individually with a
specific locale object. This capability can be used, for example, to read floating-point values
according to American format and to write them using German format (in German, a comma is
used as the "decimal point)." Section 14.2.1, presents an example and discusses the details.
Several characters, mainly special characters, are often needed in the character set of the
stream. For this reason, some conversion functions are provided by streams (Table 13.31).

Table 13.31. Stream Functions for the Internationalization of Characters
Member
Function

Meaning

widen (c) Converts the char character c to a character of the stream's character set
narrow (c,def) Converts character c from the stream's character set to a char (if there is no

such char, def is returned)
For example, to get the newline character from the character set of the stream strm, you can
use a statement like

 strm.widen('\n')

The C++ Standard Library

dyne-book 542

For additional details on locales and on internationalization in general, see Chapter 14.

13.9 File Access

Streams can be used to access files. The C++ standard library provides three class templates for
which the following standard specializations are predefined:

1. The template class basic_ifstream<> with the specializations ifstream and
wifstream is for read access to files ("input file stream").

2. The template class basic_ofstream<> with the specializations ofstream and
wofstream is for write access to files ("output file stream").

3. The template class basic_fstream<> with the specializations fstream and
wfstream is for access to files that should be both read and written.

4. The template class basic_filebuf<> with the specializations filebuf and
wfilebuf is used by the other file stream classes to perform the actual reading and
writing of characters.

The classes are related to the stream base classes, as depicted in Figure 13.2.

Figure 13.2. Class Hierarchy of the File Stream Classes

These classes are declared in the header rile <fstream> as follows:

The C++ Standard Library

dyne-book 543

 namespace std {
 template <class charT,
 class traits = char_traits<charT> >
 class basic_ifstream;
 typedef basic_ifstream<char> ifstream;
 typedef basic_ifstream<wchar_t> wifstream;

 template <class charT,
 class traits = char_traits<charT> >
 class basic_ofstream;
 typedef basic_ofstream<char> ofstream;
 typedef basic_ofstream<wchar_t> wofstream;

 template <class charT,
 class traits = char_traits<charT> >
 class basic_fstream;
 typedef basic_fstream<char> fstream;
 typedef basic_fstream<wchar_t> wfstream;

 template <class charT,
 class traits = char_traits<charT> >
 class basic_filebuf;
 typedef basic_filebuf<char> filebuf;
 typedef basic_filebuf<wchar_t> wfilebuf;
 }

Compared with the mechanism of C, a major advantage of the file stream classes for file access
is the automatic management of files. The files are automatically opened at construction time and
closed at destruction time. This is possible, of course, through appropriate definitions of
corresponding constructors and destructors.
It is important to note for streams that are both read and written that it is not possible to switch
arbitrarily between reading and writing![8] Once you started to read or to write a file you have to
perform a seek operation, potentially to the current position, to switch from reading to writing or
vice versa. The only exception to this rule is if you have read until end-of-file. In this case you can
continue with writing characters immediately. Violating this rule can lead to all kinds of strange
effects.

[8] This is a restriction inherited from C. However, it is likely that implementations of the standard C++ library
make use of this restriction.

If a file stream object is constructed with a C-string (type char*) as an argument, opening the file
for reading and/or writing is attempted automatically. Whether this attempt was successful is
reflected in the stream's state. Thus, the state should be examined after construction.
The following program opens the file charset.out and writes the current character set (all
characters for the values between 32 and 255) into this file:

 // io/charset.cpp
 #include <string> // for strings
 #include <iostream> // for I/O
 #include <fstream> // for file I/O
 #include <iomanip> // for setw()
 #include <cstdlib> // for exit()
 using namespace std;

 // forward declarations

The C++ Standard Library

dyne-book 544

 void writeCharsetToFile (const string& filename);
 void outputFile (const string& filename);

 int main()
 {
 writeCharsetToFile("charset.out");
 outputFile("charset.out");
 }

 void writeCharsetToFile (const string& filename)
 {
 // open output file
 ofstream file (filename.c_str());

 // file opened?
 if (! file) {
 // NO, abort program
 cerr << "can't open output file \"" << filename << "\""
 << endl;
 exit (EXIT_FAILURE);
 }

 // write character set
 for (int i=32; i<256; i++) {
 file << "value: " << setw(3) << i << " "
 << "char: " << static_cast<char> (i) << endl;
 }

 } // closes file automatically

 void outputFile (const string& filename)
 {
 // open input file
 ifstream file (filename.c_str());

 // file opened?
 if (! file) {
 // NO, abort program
 cerr << "can't open input file \"" << filename << "\""
 << endl;
 exit(EXIT_FAILURE);
 }

 // copy file contents to cout
 char c;
 while (file.get(c)) {
 cout.put(c);
 }

 } // closes file automatically

In writeCharsetToFile(), the constructor of the class of stream takes care of opening the
file named by the given file name:

 std::ofstream file(filename.c_str());

The C++ Standard Library

dyne-book 545

The file name is a string, so c_str() is used to convert it to const char* (see page 484 for
details about c_str()). Unfortunately, there is no constructor for the file stream classes that
takes string as the argument type. After this, it is determined whether the stream is in a good
state:

 if (! file) {
 ...
 }

If opening the stream was not successful, this test will fail. After this check, a loop prints the
values 32 to 255 together with the corresponding characters.
In the function outputFile(), the constructor of the class ifstream opens the file. Then the
contents of the file are written characterwise.
At the end of both functions the file opened locally is closed automatically when the
corresponding stream goes out of scope. The destructors of the classes ifstream and
ofstream take care of closing the file if it is still open at destruction time.
If a file should be used longer than the scope in which it was created, you can allocate the file
object on the heap and delete it later when it is no longer needed:

 std::ofstream* filePtr = new std::ofstream('xyz");
 ...
 delete filePtr;

In this case, some smart pointer class, such as CountedPtr (see Section 6.8) or auto_ptr
(see Section 4.2), should be used.
Instead of copying the file contents character-by-character, you could also output the whole
contents in one statement by passing a pointer to the stream buffer of the file as an argument to
operator <<:

 // copy file contents to cout
 std::cout << file.rdbuf();

See page 683 for details.

13.9.1 File Flags

For precise control over the processing mode of a file, a set of flags is defined in the class
ios_base (Table 13.32). These flags are of type openmode, which is a bit mask type similar
to fmtflags.

Table 13.32. Flags for Opening Files
Flag Meaning

in Opens for reading (default for ifstream)
out Opens for writing (default for ofstream)
app Always appends at the end when writing
ate Positions at the end of the file after opening ("at end")
trunc Removes the former file contents
binary Does not replace special characters

The C++ Standard Library

dyne-book 546

binary configures the stream to suppress conversion of special characters or character
sequences such as end-of-line or end-of-file. In operating systems, such as MS-DOS or OS/2, a
line end in text files is represented by two characters (CR and LF). In normal text mode (binary
is not set), newline characters are replaced by the two-character sequence, and vice versa, when
reading or writing to avoid special processing. In binary mode (binary is set), none of these
conversions take place.
binary should always be used if the contents of a file do not consist of a character sequence but
are processed as binary data. An example is the copying of files by reading the file to be copied
character-by-character and writing those characters without modifying them. If the file is
processed as text, the flag should not be set because special handling of newlines would be
required. For example, a newline would still consist of two characters.
Some implementations provide additional flags such as nocreate (the file must exist when it is
opened) and noreplace (the file must not exist). However, these flags are not standard and thus
are not portable.
The flags can be combined by using operator |. The resulting openmode can be passed as an
optional second argument to the constructor. For example, the following statement opens a file
for appending text at the end:

 std::ofstream file("xyz.out", std::ios::out|std::ios::app);

Table 13.33 correlates the various combinations of flags with the strings used in the interface of
C's function for opening files: fopen(). The combinations with the binary and the ate flags
set are not listed. A set binary corresponds to strings with b appended, and a set ate
corresponds to a seek to the end of the file immediately after opening. Other combinations not
listed in the table, such as trunc | app, are not allowed.

Table 13.33. Meaning of Open Modes in C++
ios_base Flags Meaning CMode

in Reads (file must exist) "r"
out Empties and writes (creates if necessary) "w"
out | trunc Empties and writes (creates if necessary) "w"
out | app Appends (creates if necessary) "a"
in I out Reads and writes; initial position is the start (file must exist) "r+"
in | out | trunc Empties, reads, and writes (creates if necessary) "w+"
Whether a file is opened for reading and/or for writing is independent of the corresponding stream
object's class. The class only determines the default open mode if no second argument is used.
This means that files used only by the class if stream or the class of stream can be opened
for reading and writing. The open mode is passed to the corresponding stream buffer class, which
opens the file. However, the operations possible for the object are determined by the stream's
class.
The file owned by a file stream can also be opened or closed explicitly. For this, three member
functions are defined (Table 13.34).
These functions are useful mainly if a file stream is created without being initialized. The following
example demonstrates their use. It opens all files with names that are given as arguments to the
program, and writes their contents (this corresponds to the UNIX program cat).

Table 13.34. Member Functions to Open and Close Files
Member Function Meaning

open(name) Opens a file for the stream using the default mode
open (name, flags) Opens a file for the stream using flags as the mode
close() Closes the streams file
is_open() Returns whether the file is opened

The C++ Standard Library

dyne-book 547

 // io/cat1. cpp

 // header files for file I/O
 #include <fstream>
 #include <iostream>
 using namespace std;

 /* for all file names passed as command-line arguments
 * - open, print contents, and close file
 */
 int main (int argc, char* argv[])
 {
 ifstream file;

 // for all command-line arguments
 for (int i=1; i<argc; ++i) {

 // open file
 file.open(argv[i]);

 // write file contents to cout
 char c;
 while (file.get(c)) {
 cout.put(c);
 }

 // clear eofbit and failbit set due to end-of-file
 file.clear();

 // close file
 file.close();
 }
 }

Note that after the processing of a file, clear() must be called to clear the state flags that are
set at end-of-file. This is required because the stream object is used for multiple files. The
member function open() does not clear the state flags. open() open() never clears any state
flags. Thus, if a stream was not in a good state, after closing and reopening it you still have to call
clear() to get to a good state. This is also the case, if you open a different file.
Instead of processing character-by-character, you could also print the entire contents of the file in
one statement by passing a pointer to the stream buffer of the file as an argument to operator
<<:

 // write file contents to cout
 std::cout << flie.rdbuf();

See page 683 for details.

13.9.2 Random Access

Table 13.35 lists the member function defined for positioning within C++ streams.
Table 13.35. Member Functions for Stream Positions

The C++ Standard Library

dyne-book 548

Class Member Function Meaning
basic_istream<> tellg()

seekg(pos)
seekg(offset, rpos)

Returns the read position
Sets the read position as an absolute value
Sets the read position as a relative value

basic_ostream<> tellp()
seekp(pos)
seekp(offset, rpos)

Returns the write position
Sets the write position as an absolute value
Sets the write position as a relative value

These functions distinguish between read and write position (g stands for get and p stands for
put). Read position functions are defined in basic_istream, and write position functions are
defined in basic_ostream. However, not all stream classes support positioning. For example,
positioning the streams cin, cout, and cerr is not defined. The positioning of files is defined
in the base classes because, usually, references to objects of type istream and ostream are
passed around.
The functions seekg() and seekp() can be called with absolute or relative positions. To handle
absolute positions, you must use tellg() and tellp(). They return an absolute position as
the value of type pos_type. This value is not an integral value or simply the position of the
character as an index. This is because the logical position and the real position can differ. For
example, in MS-DOS text files, newline characters are represented by two characters in the file
even though it is logically only one character. Things are even worse if the file uses some
multibyte representation for the characters.
The exact definition of pos_type is a bit complicated: The C++ standard library defines a global
template class fpos<> for file positions. Class fpos<> is used to define types streampos for
char and wstreampos for wchar_t streams. These types are used to define the pos_type of
the corresponding character traits (see Section 14.1.2). And the pos_type member of the
traits is used to define pos_type of the corresponding stream classes. Thus, you could also use
streampos as the type for the stream positions. However, using long or unsigned long is
wrong because streampos is not an integral type (anymore).[9] For example:

[9] Formerly, streampos was used for stream positions, and it was simply defined as unsigned long.

 // save current file position
 std::ios::pos_type pos = file.tellg();
 ...
 // seek to file position saved in pos
 file.seekg(pos);

Instead of

 std::ios::pos_type pos;

you could also write:

 std::streampos pos;

For relative values, the offset can be relative to three positions, for which corresponding
constants are defined (Table 13.36). The constants are defined in class ios_base and are of
type seekdir.

Table 13.36. Constants for Relative Positions
Constant Meaning

The C++ Standard Library

dyne-book 549

beg Position is relative to the beginning ("beginning")
cur Position is relative to the current position ("current")
end Position is relative to the end ("end")
The type for the offset is off _type, which is an indirect definition of streamoff. Similar to
pos_type, streamoff is used to define off_type of the traits (see page 689) and the stream
classes. However, streamoff is a signed integral type, so you can use integral values as
stream offsets. For example:

 // seek to the beginning of the file
 file.seekg (0, std::ios::beg);
 ...
 // seek 20 character forward
 file.seekg (20, std::ios::cur);
 ...
 // seek 10 characters before the end
 file.seekg (-10, std::ios::end);

In all cases, care must be taken to position only within a file. If a position ends up before the
beginning of a file or beyond the end, the behavior is undefined.
The following example demonstrates the use of seekg(). It uses a function that writes the
contents of a file twice:

 // io/cat2.cpp

 // header files for file I/O
 #include <iostream>
 #include <fstream>

 void printFileTwice (const char* filename)
 {
 // open file
 std::ifstream file(filename);

 // print contents the first time
 std::cout << file.rdbuf();

 // clear eofbit and failbit set due to end-of-file
 file.clear();

 // seek to the beginning
 file.seekg(0);

 // print contents the second time
 std::cout << file.rdbuf();
 }

 int main (int argc, char* argv[])
 {
 // print all files passed as a command-line argument twice
 for (int i=1; i<argc; ++i) {
 printFileTwice (argv[i]);
 }
}

The C++ Standard Library

dyne-book 550

Note that ios::eofbit and ios::failbit are set when end-of-file is reached. Hence, the
stream is no longer in a good state. It has to be restored to a good state via clear() before it
can be manipulated in any way (including changes of the read position).
Different functions are provided for the manipulation of the read and the write positions; but for
the standard streams, the same position is maintained for the read and write positions in the
same stream buffer. This is important if multiple streams use the same stream buffer. It is
explained in more detail in Section 13.10.2.

13.9.3 Using File Descriptors

Some implementations provide the possibility of attaching a stream to an already opened I/O
channel. To do this, you initialize the file stream with a file descriptor.
File descriptors are integers that identify an open I/O channel. In UNIX-like systems, file
descriptors are used in the low-level interface to the I/O functions of the operating system. Three
tile descriptors are predefined:

1. 0 for the standard input channel
2. 1 for the standard output channel
3. 2 for the standard error channel

These channels may be connected to files, the console, other processes, or some other I/O
facility.
The C++ standard library unfortunately does not provide this possibility of attaching a stream to
an I/O channel using file descriptors. This is because the language is supposed to be
independent of any operating system. In practice, though, the possibility probably still exists. The
only drawback is that using it is not portable to all systems. What is missing at this point is a
corresponding specification in a standard of operating system interfaces such as POSIX or
X/OPEN. However, such a standard is not yet planned.
However, it is possible to initialize a stream by a file descriptor. See Section 13.13.3, for a
description and implementation of a possible solution.

13.10 Connecting Input and Output Streams

Often you need to connect two streams. For example, you may want to ensure that text asking for
input is written on the screen before the input is read. Another example is reading from and
writing to the same stream. This is mainly of interest regarding files. A third example is the need
to manipulate the same stream using different formats. This section discusses all of these
techniques.

13.10.1 Loose Coupling Using tie()

You can tie a stream to an output stream. This means the buffers of both streams are
synchronized in a way that the buffer of the output stream is flushed before each input or output
of the other stream. That is, for the output stream, the function flush() is called. Table 13.37
lists the member functions defined in basic_ios for tieing one stream to another.
Calling the function tie() without any argument returns a pointer to the output stream that is
currently tied to a stream. To tie a new output stream to a stream, a pointer to that output stream
must be passed as the argument to tie(). The argument is a pointer because you can also
pass 0 or NULL as an argument. This argument means "no tie," and unties any tied output
stream. 0 is also returned by tie() if no output stream is tied. For each stream, you can only

The C++ Standard Library

dyne-book 551

have one output stream that is tied to this stream. However, you can tie an output stream to
different streams.

Table 13.37. Tieing One Stream to Another
Member
Function

Meaning

tie() Returns a pointer to the output stream that is tied to the stream
tie (ostream*
strm)

Ties the output stream to which the argument refers to the stream and returns a
pointer to the previous output stream that was tied to the stream (if any)

By default, the standard input is connected to the standard output using this mechanism:

 // predefined connections:
 std::cin.tie (&std::cout);
 std::wcin.tie (&std::wcout);

This ensures that a message asking for input is flushed before requesting the input. For example,
during the statements

 std::cout << "Please enter x: ";
 std::cin >> x;

the function flush() is called implicitly for cout before reading x.
To remove the connection between two streams, you pass 0 or NULL to tie(). For example:

 // decouple cin from any output stream
 std::cin.tie (static_cast<std::ostream*>(0));

This might improve the performance of a program because it avoids unnecessary additional
flushing of streams (see Section 3, page 683, for a discussion of stream performance).
You can also tie one output stream to another output stream. For example, the following
statement arranges that before something is written to the error stream, the normal output is
flushed:

 // tieing cout to cerr
 cerr.tie (&cout);

13.10.2 Tight Coupling Using Stream Buffers

Using the function rdbuf(), you can couple streams tightly by using a common stream buffer
(Table 13.38). These functions suit several purposes, which are discussed in this and the
following subsections.
rdbuf() allows several stream objects to read from the same input channel or to write to the
same output channel without garbling the order of the I/O. The use of multiple stream buffers
does not work smoothly because the I/O operations are buffered. Thus, when using different
streams with different buffers for the same I/O channel means that I/O may pass other I/O. An
additional constructor of basic_istream and basic_ostream is used to initialize the stream
with a stream buffer passed as the argument. For example:

Table 13.38. Stream Buffer Access
Member Meaning

The C++ Standard Library

dyne-book 552

Function
rdbuf() Returns a pointer to the stream buffer
rdbuf
(streambuf*)

Installs the stream buffer pointed to by the argument and returns a pointer to
the previously used stream buffer

 // io/rdbuf1.cpp

 #include <iostream>
 #include <fstream>
 using namespace std;

 int main()
 {
 // stream for hexadecimal standard output
 ostream hexout(cout.rdbuf());
 hexout.setf (ios::hex, ios::basefield);
 hexout.setf (ios::showbase);

 // switch between decimal and hexadecimal output
 hexout << "hexout: " << 177 << " ";
 cout << "cout: " << 177 << " ";
 hexout << "hexout: " << -49 << " " ;
 cout << "cout: " << -49 " ";
 hexout << endl;
 }

Note that the destructor of the classes basic_istream and basic_ostream does not delete
the corresponding stream buffer (it was not opened by these classes anyway). Thus, you can
pass a stream device by using a pointer to the stream buffer instead of a stream reference:

 // io/rdbuf2.cpp

 #include <iostream>
 #include <fstream>

 void hexMultiplicationTable (std::streambuf* buffer, int num)
 {
 std::ostream hexout(buffer);
 hexout << std::hex << std::showbase;

 for (int i=1; i<=num; ++i) {
 for (int j=1; j<=10; ++j) {
 hexout << i*j << ' ';
 }
 hexout << std::endl;
 }

 } // does NOT close buffer

 int main()
 {
 using namespace std;
 int num = 5;

The C++ Standard Library

dyne-book 553

 cout << "We print " << num
 << " lines hexadecimal" << endl;

 hexMultiplicationTable(cout.rdbuf(),num);

 cout << "That was the output of " << num
 << " hexadecimal lines " << endl;
 }

The advantage of this approach is that the format does not need to be restored to its original state
after it is modified because the format applies to the stream object, not to the stream buffer. Thus,
the corresponding output of the program is as follows:

 We print 5 lines hexadecimal
 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa
 0x2 0x4 0x6 0x8 0xa 0xc 0xe 0x10 0x12 0x14
 0x3 0x6 0x9 0xc 0xf 0x12 0x15 0x18 0x1b 0x1e
 0x4 0x8 0xc 0x10 0x14 0x18 0xlc 0x20 0x24 0x28
 0x5 0xa 0xf 0x14 0x19 0xle 0x23 0x28 0x2d 0x32
 That was the output of 5 hexadecimal lines

However, this has the disadvantage that construction and destruction of a stream object involves
more overhead than just setting and restoring some format flags. Also note that the destruction of
a stream object does not flush the buffer. To make sure that an output buffer is flushed, it has to
be flushed manually.
The fact that the stream buffer is not destroyed applies only to basic_istream and
basic_ostream. The other stream classes destroy the stream buffers they allocated originally,
but they do not destroy stream buffers set with rdbuf() (for more details see the next
subsection).

13.10.3 Redirecting Standard Streams

In the old implementation of the IOStream library, the global streams cin, cout, cerr, and
clog were objects of the classes istream_withassign and ostream_withassign. It was
therefore possible to redirect the streams by assigning streams to other streams. This possibility
was removed from the C++ standard library. However, the possibility to redirect streams was
retained and extended to apply to all streams. A stream can be redirected by setting a stream
buffer.
The setting of stream buffers means the redirection of I/O streams controlled by the program
without help from the operating system. For example, the following statements set things up such
that output written to cout is not sent to the standard output channel but rather to the file
cout.txt:

 std::ofstream file ("cout.txt");
 std::cout.rdbuf (file.rdbuf());

The function copyfmt() can be used to assign all format information of a given stream to
another stream object:

 std::ofstream file ("cout.txt");
 file.copyfmt (std::cout);
 std::cout.rdbuf (file.rdbuf());

The C++ Standard Library

dyne-book 554

Caution! The object file is local and is destroyed at the end of the block. This also destroys the
corresponding stream buffer. This differs from the "normal" streams because file streams allocate
their stream buffer objects at construction time and destroy them on destruction. Thus, in this
example, cout can no longer be used for writing. Actually, it cannot even be destroyed safely at
program termination. Thus, the old buffer should always be saved and restored later! The
following example does this in the function redirect():

 // io/redirect.cpp

 #include <iostream>
 #include <fstream>
 using namespace std;

 void redirect(ostream&);

 int main()
 {
 cout << "the first row" << endl;

 redirect (cout);

 cout << "the last row" << endl;
 }

 void redirect (ostream& strm)
 {
 ofstream file("redirect.txt");

 // save output buffer of the stream
 streambuf* strm_buffer = strm.rdbuf();

 // redirect ouput into the file
 strm.rdbuf (file.rdbuf());

 file << "one row for the file" << endl;
 strm << "one row for the stream" << endl;

 // restore old output buffer
 strm.rdbuf (strm_buffer);

 } // closes file AND its buffer automatically

The output of the program is this

 the first row
 the last row

and the contents of the file redirect.txt are

 one row for the file
 one row for the stream

The C++ Standard Library

dyne-book 555

As you can see, the output written in redirect() to cout (using the parameter name strm) is
sent to the file. The output written after the execution of redirect() in main() is sent to the
restored output channel.

13.10.4 Streams for Reading and Writing

A final example of the connection between streams is the use of the same stream for reading and
writing. Normally, a file can be opened for reading and writing using the class fstream:

 std::fstream file ("example.txt", std::ios::in | std::ios::out);

It is also possible to use two different stream objects, one for reading and one for writing. This
can be done, for example, with the following declarations:

 std::ofstream out ("example.txt", ios::in | ios::out);
 std::istream in (out.rdbuf());

The declaration of out opens the file. The declaration of in uses the stream buffer of out to read
from it. Note that out must be opened for both reading and writing. If it is only opened for writing,
reading from the stream will result in undefined behavior. Also note that in is not of type if stream
but only of type istream. The file is already opened and there is a corresponding stream buffer.
All that is needed is a second stream object. As in previous examples, the file is closed when the
file stream object out is destroyed.
It is also possible to create a file stream buffer and install it in both stream objects. The code
looks like this:

 std::filebuf buffer;
 std::ostream out (&buffer);
 std::istream in (&buffer);
 buffer.open("example.txt", std::ios::in | std::ios::out);

filebuf is the usual specialization of the class basic.filebuf<> for the character type char.
This class defines the stream buffer class used by file streams.
The following program is a complete example. In a loop, four lines are written to a file. After each
writing of a line, the whole contents of the file are written to standard output:

 // io/rw1. cpp

 #include <iostream>
 #include <fstream>
 using namespace std;

 int main()
 {
 // open file "example.dat" for reading and writing
 filebuf buffer;
 ostream output(&buffer);
 istream input(&buffer);
 buffer.open ("example.dat", ios::in | ios::out | ios::trunc);

 for (int i=1; i<=4; i++) {

The C++ Standard Library

dyne-book 556

 // write one line
 output << i << ". line" << endl;

 // print all file contents
 input.seekg(0); //seek to the beginning
 char c;
 while (input.get(c)) {
 cout.put(c);
 }
 cout << endl;
 input.clear(); //clear eofbit and failbit
 }
 }

The output of the program is as follows:

 1. line

 1. line
 2. line

 1. line
 2. line
 3. line

 1. line
 2. line
 3. line
 4. line

Although two different stream objects are used for reading and writing, the read and write
positions are tightly coupled. seekg() and seekp() call the same member function of the
stream buffer.[10] Thus, the read position must always be set to the beginning of the file in order
for the complete contents of the file to be written. After the whole contents of the file are written,
the read/write position is again at the end of the file so that new lines are appended to the file.

[10] Actually, this function can distinguish whether the read position, the write position, or both positions are
to he modified. Only the standard stream buffers maintain one position for reading and writing.

It is important to perform a seek between read and write operations to the same file unless you
have reached the end of the file while reading. Without this seek you are likely to end up with a
garbled file or with even more fatal errors.
As mentioned before, instead of processing character-by-character, you could also print the entire
contents in one statement by passing a pointer to the stream buffer of the file as an argument to
operator << (see page 683 for details):

 std::cout << input.rdbuf();

13.11 Stream Classes for Strings

The C++ Standard Library

dyne-book 557

The mechanisms of stream classes can also be used to read from strings or to write to strings.
String streams provide a buffer but don't have an I/O channel. This buffer/string can be
manipulated with special functions. A major use of this is the processing of I/O independent of the
actual I/O. For example, text for output can be formatted in a string and then sent to an output
channel sometime later. Another use is reading input line-by-line and processing each line using
string streams.
The original stream classes for strings are replaced by a set of new ones in the C++ standard
library. Formerly, the string stream classes used type char* to represent a string. Now, type
string (or in general basic_string<>) is used. The old string stream classes are also part of
the C++ standard library, but they are deprecated. They are retained for backward compatibility,
but they might be removed in future versions of the standard. Thus, they should not be used in
new code and should be replaced in legacy code. Still, a brief description of these classes is
found at the end of this section.

13.11.1 String Stream Classes

The following stream classes are defined for strings (they correspond to the stream classes for
files):

• The class basic_istringstream with the specializations istringstream and
wistringstream for reading from strings ("input string stream")

• The class basic_ostringstream with the specializations ostringstream and
wostringstream for writing to strings ("output string stream")

• The class basic_stringstream with the specializations stringstream and
wstringstream for reading from and writing to strings

• The template class basic_stringbuf<> with the specializations stringbuf and
wstringbuf is used by the other string stream classes to perform the actual reading
and writing of characters.

These classes have a similar relationship to the stream base classes, as do the file stream
classes. The class hierarchy is depicted in Figure 13.3.

Figure 13.3. Class Hierarchy of the String Stream Classes

The C++ Standard Library

dyne-book 558

The classes are declared in the header file <sstream> like this:

 namespace std {
 template <class charT,
 class traits = char_traits<charT>,
 class Allocator = allocator<charT> >
 class basic_istringstream;
 typedef basic_istringstream<char> istringstream;
 typedef basic_istringstream<wchar_t> wistringstream;

 template <class charT,
 class traits = char_traits<charT>,
 class Allocator = allocator<charT> >
 class basic_ostringstream;
 typedef basic_ostringstream<char> ostringstream;
 typedef basic_ostringstream<wchar_t> wostringstream;

 template <class charT,
 class traits = char_traits<charT>,
 class Allocator = allocator<charT> >
 class basic_stringstream;
 typedef basic_stringstream<char> stringstream;
 typedef basic_stringstream<wchar_t> wstringstream;

 template <class charT,
 class traits = char_traits<charT>,
 class Allocator = allocator<charT> >
 class basic_stringbuf;

The C++ Standard Library

dyne-book 559

 typedef basic_stringbuf<char> stringbuf;
 typedef basic_stringbuf<wchar_t> wstringbuf;
 }

The major function in the interface of the string stream classes is the member function str().
This function is used to manipulate the buffer of the string stream classes (Table 13.39).

Table 13.39. Fundamental Operations for String Streams
Member Function Meaning

str() Returns the buffer as a string
str(string) Sets the contents of the buffer to string
The following program demonstrates the use of string streams:

 // io/sstr1.cpp

 #include <iostream>
 #include <sstream>
 #include <bitset>
 using namespace std;

 int main()
 {
 ostringstream os;

 // decimal and hexadecimal value
 os << "dec: " << 15 << hex << " hex: " << 15 << endl;
 cout << os.str() << endl;

 // append floating value and bitset
 bitset<15> b(5789);
 os << "float: " << 4.67 << " bitset: " << b << endl;

 //overwrite with octal value
 os.seekp(0);
 os << "oct: " << oct << 15;
 cout << os.str() << endl;
 }

The output of this program is as follows:

 dec: 15 hex: f

 oct: 17 hex: f
 float: 4.67 bitset: 001011010011101

First a decimal and a hexadecimal value are written to os. Next a floating-point value and a
bitset (written in binary) are appended. Using seekp(), the write position is moved to the
beginning of the stream. So, the following call of operator << writes at the beginning of the string,
thus overwriting the beginning of the existing string stream. However, the characters that are not
overwritten remain valid. If you want to remove the current contents from the stream, you can use
the function str() to assign new contents to the buffer:

 strm.str(" ");

The C++ Standard Library

dyne-book 560

The first lines written to os are each terminated with endl. This means that the string ends with
a newline. Because the string is printed followed by endl, two adjacent newlines are written.
This explains the empty lines in the output.
A typical programming error when dealing with string streams is to forget to extract the string with
the function str(), and instead to write to the stream directly. This is, from a compiler's point of
view, a possible and reasonable thing to do in that there is a conversion to void*. As a result,
the state of the stream is written in the form of an address (see page 596).
A typical use for writing to an output string stream is to define output operators for user-defined
types (see Section 13.12.1).
Input string streams are used mainly for formatted reading from existing strings. For example, it is
often easier to read data line-by-line and then analyze each line individually. The following lines
read the integer x with the value 3 and the floating-point f with the value 0.7 from the string s:

 int x;
 float f;
 std::string s = "3.7";

 std::istringstream is(s);
 is >> x >> f;

A string stream can be created with the flags for the file open modes (see Section 13.9.1,)
and/or an existing string. With the flag ios::app or ios::ate, the characters written to a string
stream can be appended to an existing string:

 std::string s;
 ...
 std::ostringstream os (s, ios::out|ios::app);
 os << 77 << std::hex << 77;

However, this means that the string returned from str() is a copy of the string s, with a decimal
and a hexadecimal version of 77 appended. The string s itself is not modified.

13.11.2 char* Stream Classes

The char* stream classes are retained only for backward compatibility. Their interface is error
prone and they are rarely used correctly. However, they are still in heavy use and thus are
described briefly here. Note that the standard version described here has slightly modified the old
interface.
In this subsection, the term character sequence will be used instead of string. This is because the
character sequence maintained by the char* stream classes is not always terminated with the
string termination character (and thus it is not really a string).
The char* stream classes are defined only for the character type char. They include

• The class istrstream for reading from character sequences (input string stream)
• The class ostrstream for writing to character sequences (output string stream)
• The class strstream for reading from and writing to character sequences
• The class strstreambuf used as a stream buffer for char* streams

The char* stream classes are defined in the header file <strstream>.

The C++ Standard Library

dyne-book 561

An istrstream can be initialized with a character sequence (of type char*) that is either
terminated with the string termination character 0 or for which the number of characters is passed
as the argument. A typical use is the reading and processing of whole lines:

 char buffer [1000] ; // buffer for at most 999 characters

 // read line
 std::cin.get(buffer,sizeof(buffer));

 // read/process line as stream
 std::istrstream input(buffer);
 ...
 input >> x;

A char* stream for writing can either maintain a character sequence that grows as needed or it
can be initialized with a buffer of fixed size. Using the flag ios::app or ios:ate, you can
append the characters written to a character sequence that is already stored in the buffer.
Care must be taken when using char* stream as a string. In contrast to string streams, char*
streams are not always responsible for the memory used to store the character sequence.
With the member function str(), the character sequence is made available to the caller
together with the responsibility for the corresponding memory. Unless the stream is initialized with
a buffer of fixed size (for which the stream is never responsible), the following three rules have to
be obeyed:

1. Because ownership of the memory is transferred to the caller, unless the stream was
initialized with a buffer of fixed size, the character sequence has to be released.
However, there is no guarantee how the memory was allocated,[11] thus it is not always
safe to release it using delete[]. Your best bet is to return the memory to the stream
by calling the member function freeze() with the argument false (the following
paragraphs present an example).

[11] There is actually a constructor that takes two function pointers as an argument: a function to
allocate memory and a function to release memory.

2. With the call to str(), the stream is no longer allowed to modify the character
sequence. It calls the member function freeze() implicitly, which freezes the character
sequence. The reason for this is to avoid complications if the allocated buffer is not
sufficiently large and new memory has to be allocated.

3. The member function str() does not append a string termination character ('\0'). This
character has to be appended explicitly to the stream to terminate the character
sequence. This can be done using the ends manipulator. Some implementations append
a string termination character automatically, but this behavior is not portable.

The following example demonstrates the use of a char* stream:

 float x;
 ...
 /* create and fill char* stream
 /* - don't forget ends or '\0' !!!
 */
 std::ostrstream buffer; // dynamic stream buffer
 buffer << "float x: " << x << std::ends;

 // pass resulting C-string to foo() and return memory to buffer

The C++ Standard Library

dyne-book 562

 char* s = buffer.str();
 foo(s);
 buffer.freeze(false);

A frozen char* stream can be restored to its normal state for additional manipulation. To do so,
the member function freeze() has to be called with the argument false. With this operation,
ownership of the character sequence is returned to the stream object. This is the only safe way to
release the memory for the character sequence. The next example demonstrates this:

 float x;
 ...
 std::ostrstream buffer; // dynamic char* stream

 // fill char* stream
 buffer << "float x: " << x << std::ends;

 /* pass resulting C-string to foo()
 * - freezes the char* stream
 */
 foo(buffer.str());

 // unfreeze the char* stream
 buffer.freeze(false);

 // seek writing position to the beginning
 buffer.seekp (0, ios::beg);

 // refill char* stream
 buffer << "once more float x: " << x << std::ends;

 /* pass resulting C-string to foo() again
 * - freezes the char* stream
 */
 foo(buffer.str());

 // return memory to buffer
 buffer.freeze(false);

The problems related to freezing the stream are removed from the string stream classes. This is
mainly because the strings are copied and because the string class takes care of the used
memory.

13.12 Input/Output Operators for User-Defined Types

As mentioned earlier in this chapter, a major advantage of streams over the old I/O mechanism of
C is the possibility that the stream mechanism can be extended to user-defined types. To do this,
you must overload operators << and >>. This is demonstrated using a class for fractions in the
following subsection.

13.12.1 Implementing Output Operators

In an expression with the output operator, the left operand is a stream and the right operand is
the object to be written:

The C++ Standard Library

dyne-book 563

 stream << object

According to language rules this can be interpreted in two ways:

1. As stream. operator<<(object)
2. As operator<<(stream,object)

The first way is used for built-in types. For user-defined types you have to use the second way
because the stream classes are closed for extensions. All you have to do is implement global
operator << for your user-defined type. This is rather easy, unless access to private members of
the objects is necessary (which I cover later).
For example, to print an object of class Fraction with the format numerator/denominator, you
can write the following function:

 // io/frac1out.hpp

 #include <iostream>

 inline
 std::ostream& operator << (std::ostream& strm, const Fraction& f)
 {
 strm << f.numerator() << '/' << f.denominator();
 return strm;
 }

The function writes the numerator and the denominator, separated by the character '/', to the
stream that is passed as the argument. The stream can be a file stream, a string stream, or some
other stream. To support the chaining of write operations or the access to the streams state in the
same statement, the stream is returned by the function.
This simple form has two drawbacks:

1. Because ostream is used in the signature, the function applies only to streams with the
character type char. If the function is intended only for use in Western Europe or in
North America, this is no problem. On the other hand, a more general version requires
only a little extra work, so it should at least be considered.

2. Another problem arises if a field width is set. In this case, the result is probably not what
might be expected. The field width applies to the immediately following write; in this case,
to the numerator. Thus, the statements

3.
4. Fraction vat(16,100); // I'm German and we have a uniform VAT

of 16%...
5. std::cout << "VAT: \"" << std::left << std::setw(8)
6. << vat << '"' << std::endl;
7.

result in this output:

 VAT: "16 /100"

The C++ Standard Library

dyne-book 564

The next version solves both of these problems:

 // io/frac2out.hpp

 #include <iostream>
 #include <sstream>

 template <class charT, class traits>
 inline
 std::basic_ostream<charT,traits>&
 operator << (std::basic_ostream<charT,traits>& strm,
 const Fraction& f)
 {
 /* string stream
 * - with same format
 * - without special field width
 */
 std::basic_ostringstream<charT,traits> s;
 s.copyfmt(strm);
 s.width(0);

 // fill string stream
 s << f.numerator() << '/' << f.denominator();

 // print string stream
 strm << s.str();

 return strm;
 }

The operator has become a template function that is parameterized to suit all kinds of streams.
The problem with the field width is addressed by writing the fraction first to a string stream without
setting any specific width. The constructed string is then sent to the stream passed as the
argument. This results in the characters representing the fraction being written with only one write
operation, to which the field width is applied. Thus, the statements

 Fraction vat (16,100); // I'm German...
 std::cout << "VAT: \"" << std::left << std::setw(8)
 << vat << '"' << std::endl;

now produce the following output:

 VAT: "15/100 "

13.12.2 Implementing Input Operators

Input operators are implemented according to the same principle as output operators (described
in the previous subsection). However, input incurs the likely problem of read failures. Input
functions normally need special handling of cases in which reading might fail.

The C++ Standard Library

dyne-book 565

When implementing a read function you can choose between simple or flexible approaches. For
example, the following function uses a simple approach. It reads a fraction without checking for
error situations:

 // io/frac1in.hpp

 #include <iostream>

 inline
 std::istream& operator >> (std::istream& strm, Fraction& f)
 {
 int n, d;

 strm >> n; // read value of the numerator
 strm.ignore(); // skip '/'
 strm >> d; // read value of the denominator

 f = Fraction(n,d); // assign the whole fraction

 return strm;
 }

This implementation has the problem that it can be used only for streams with the character type
char. In addition, whether the character between the two numbers is indeed the character '/'
is not checked.
Another problem arises when undefined values are read. When reading a zero for the
denominator, the value of the read fraction is not well-defined. This problem is detected in the
constructor of the class Fraction that is invoked by the expression Fraction(n,d).
However, handling inside class Fraction means that a format error automatically results in an
error handling of the class Fraction. Because it is common practice to record format errors in
the stream, it might be better to set ios_base::failbit in this case.
Lastly, the fraction passed by reference might be modified even if the read operation is not
successful. This can happen, for example, when the read of the numerator succeeds, but the
read of the denominator fails. This behavior contradicts common conventions established by the
predefined input operators, and thus is best avoided. A read operation should be successful or
have no effect.
The following implementation is improved to avoid these problems. It is also more flexible
because it is parameterized to be applicable to all stream types:

 // io/frac2in.hpp

 #include <iostream>

 template <class charT, class traits>
 inline
 std::basic_istream<charT,traits>&
 operator >> (std::basic_istream<charT,traits>& strm, Fraction& f)
 {
 int n, d;

 // read value of numerator
 strm >> n;

 /* if available

The C++ Standard Library

dyne-book 566

 * - read '/' and value of demonimator
 */
 if (strm.peek() == '/') {
 strm.ignore();
 strm >> d;
 }
 else {
 d = 1;
 }

 /* if denominator is zero
 * - set failbit as I/O format error
 */
 if (d == 0) {
 strm.setstate(std::ios::failbit);
 return strm;
 }

 /* if everything is fine so far
 * change the value of the fraction
 */
 if (strm) {
 f = Fraction(n,d);
 }

 return strm;
 }

Here the denominator is read only if the first number is followed by the character '/'; otherwise,
a denominator of one is assumed and the integer read is interpreted as the whole fraction.
Hence, the denominator is optional.
This implementation also tests whether a denominator with value 0 was read. In this case, the
ios_base::failbit is set, which might trigger a corresponding exception (see Section
13.4.4). Of course, the behavior can be implemented differently if the denominator is zero. For
example, an exception could be thrown directly, or the check could be skipped so that the fraction
is initialized with zero, which would throw the appropriate exception by class Fraction.
Lastly, the state of the stream is checked and the new value is assigned to the fraction only if no
input error occurred. This final check should always be done to make sure that the value of an
object is changed only if the read was successful.
Of course, it can be argued whether it is reasonable to read integers as fractions. In addition,
there are other subtleties that may be improved. For example, the numerator must be followed by
the character '/' without separating whitespaces. But the denominator may be preceded by
arbitrary whitespaces because normally these are skipped. This hints at the complexity involved
in reading nontrivial data structures.

13.12.3 Input/Output Using Auxiliary Functions

If the implementation of an I/O operator requires access to the private data of an object, the
standard operators should delegate the actual work to auxiliary member functions. This technique
also allows polymorphic read and write functions. This might look as follows:

 class Fraction {
 ...
 public:

The C++ Standard Library

dyne-book 567

 virtual void printOn (std::ostream& strm) const; // output
 virtual void scanFrom (std::istream& strm); // input
 ...
 };

 std::ostream& operator << (std::ostream& strm, const Fraction& f)
 {
 f.printOn (strm);
 return strm;
 }

 std::istream& operator >> (std::istream& strm, Fraction& f)
 {
 f.scanFrom (strm);
 return strm;
 }

A typical example is the direct access to the numerator and denominator of a fraction during
input:

 void Fraction::scanFrom (std::istream& strm)
 {
 ...
 // assign values directly to the components
 num = n;
 denom = d;
 }

If a class is not intended to be used as a base class, the I/O operators can be made friends of
the class. However, note that this approach reduces the possibilities significantly when
inheritance is used. Friend functions cannot be virtual; so as a result, the wrong function might be
called. For example, if a reference to a base class actually refers to an object of a derived class
and is used as an argument for the input operator, the operator for the base class is called. To
avoid this problem, derived classes should not implement their own I/O operators. Thus, the
implementation sketched previously is more general than the use of friend functions. It should be
used as a standard approach, although most examples use friend functions instead.

13.12.4 User-Defined Operators Using Unformatted Functions

The I/O operators implemented in the previous subsections delegate most of the work to some
predefined operators for formatted I/O. That is, operators << and >> are implemented in terms of
the corresponding operators for more basic types.
The I/O operators defined in the C++ standard library are defined differently. The common
scheme used for these operators is as follows: First, with some preprocessing the stream is
prepared for actual I/O. Then the actual I/O is done, followed by some postprocessing. This
scheme should be used for your own I/O operators, too, to provide consistency for I/O operators.
The classes basic_istream and basic_ostream each define an auxiliary class sentry.
The constructor of these classes does the preprocessing, and the destructor does the
corresponding postprocessing. These classes replace the member functions that were used in
former implementations of the IOStream library (ipfx(), isfx(), opfx(), and osfx()).
Using the new classes ensures that the postprocessing is invoked even if the I/O is aborted with
an exception.

The C++ Standard Library

dyne-book 568

If an I/O operator uses a function for unformatted I/O or operates directly on the stream buffer, the
first thing to be done should be the construction of a corresponding sentry object. The
remaining processing should then depend on the state of this object, which indicates whether the
stream is OK. This state can be checked using the conversion of the sentry object to bool.
Thus, I/O operators generally look like this:

 sentry se(strm); // indirect pre- and postprocessing
 if (se) {
 ... // the actual processing
 }

The sentry object takes the stream strm, on which the preprocessing and postprocessing
should be done, as the constructor argument.
The additional processing is used to arrange general tasks of the I/O operators. These tasks
include synchronizing several streams, checking whether the stream is OK, and skipping
whitespaces, as well as possibly implementation-specific tasks. For example, in a multithreaded
environment, the additional processing can be used for corresponding locking.
For input streams, the sentry object can be constructed with an optional Boolean value that
indicates whether skipping of whitespace should be avoided even though the flag skipws is set:

 sentry se(strm,true); // don't skip whitespaces during the
additional processing

The following examples demonstrate this for class Row, which is used to represent the lines in a
text processor or editor:

• The output operator writes a line by using the stream buffer's member function
sputn():

•
• std::ostream& operator<< (std::ostream& strm, const Row& row)
• {
• // ensure pre- and postprocessing
• std::ostream::sentry se(strm);
• if (se) {
• // perform the output
• strm.write(row.c_str(),row.len());
• }
•
• return strm;
• }
•

• The input operator reads a line character-by-character in a loop. The argument true is
passed to the constructor of the sentry object to avoid the skipping of whitespaces:

•
• std::istream& operator>> (std::istream& strm, Row& row)
• {
• /* ensure pre- and postprocessing
• * - true: Yes, don't ignore leading whitespaces

The C++ Standard Library

dyne-book 569

• */
• std::istream::sentry se(strm,true);
• if (se) {
• // perform the input
• char c;
• row.clear();
• while (strm.get(c) && c != '\n') {
• row.append(c);
• }
• }
•
• return strm;
• }
•

Of course, it is also possible to use this framework even if functions do not use unformatted
functions for their implementation but use I/O operators instead. However, using
basic_istream or basic_ostream members for reading or writing characters within code
guarded by sentry objects is unnecessarily expensive. Whenever possible, the corresponding
basic_streambuf should be used instead.

13.12.5 User-Defined Format Flags

When user-defined I/O operators are being written, it is often desirable to have formatting flags
specific to these operators, probably set by using a corresponding manipulator. For example, it
would be nice if the output operator for fractions, shown previously, could be configured to place
spaces around the slash that separates numerator and denominator.
The stream objects support this by providing a mechanism to associate data with a stream. This
mechanism can be used to associate corresponding data (for example, using a manipulator), and
later retrieve the data. The class ios_base defines the two functions iword() and pword(),
each taking an int argument as the index, to access a specific long& or void*& respectively.
The idea is that iword() and pword() access long or void* objects in an array of arbitrary
size stored with a stream object. Formatting flags to be stored for a stream are then placed at the
same index for all streams. The static member function xalloc() of the class ios_base is used
to obtain an index that is not yet used for this purpose.
Initially, the objects accessed with iword() or pword() are set to 0. This value can be used to
represent the default formatting or to indicate that the corresponding data was not yet accessed.
Here is an example:

 // get index for new ostream data
 static const int iword_index = std::ios_base::xalloc();

 // define manipulator that sets this data
 std::ostream& fraction_spaces (std::ostream& strm)
 {
 strm.iword(iword_index) = true;
 return strm;
 }
 std::ostream& operator<< (std::ostream& strm, const Fraction& f)
 {
 /* query the ostream data
 * - if true, use spaces between numerator and denominator
 * - if false, use no spaces between numerator and denominator

The C++ Standard Library

dyne-book 570

 */
 if (strm.iword(iword_index)) {
 strm << f.numerator() << " / " << f.denominator();
 }
 else {
 strm << f.numerator() << "/" << f.denominator();
 }
 return strm;
 }

This example uses a simple approach to the implementation of the output operator because the
main feature to be exposed is the use of the function iword(). The format flag is considered to
be a Boolean value that defines whether spaces between numerator and denominator should be
written.
In the first line, the function ios_base::xalloc() is used to obtain an index that can be used
to store the format flag. The result of this call is stored in a constant because it is never modified.
The function fraction_spaces() is a manipulator that sets the int value that is stored at the
index iword_index in the integer array associated with the stream strm to true. The output
operator retrieves that value and writes the fraction according the value stored. If the value is
false, the default formatting using no spaces is used. Otherwise, spaces are placed around the
slash.
When iword() and pword() are used, references to int or void* objects are returned. These
references stay valid only until the next call of iword() or pword() for the corresponding
stream object or until the stream object is destroyed. Normally, the results from iword() and
pword() should not be saved. It is assumed that the access is fast, although it is not required
that the data is really represented by using an array.
The function copyfmt() copies all format information (see page 615). This includes the arrays
accessed with iword() and pword(). This may pose a problem for the objects stored with a
stream using pword(). For example, if a value is the address of an object, the address is copied
instead of the object. If you copy only the address, it may happen that if the format of one stream
is changed, the format of other streams would be affected. In addition, it may be desirable that an
object associated with a stream using pword() is destroyed when the stream is destroyed. So, a
deep copy rather than a shallow copy may be necessary for such an object.
A callback mechanism is defined by ios_base to support behavior, such as making a deep copy
if necessary or deleting an object when destroying a stream. The function
register_callback() can be used to register a function that is called if certain operations are
performed on the ios_base object. It is declared as follows:

 namespace std {
 class ios_base {
 public:
 // kinds of callback events
 enum event { erase_event, imbue_event, copyfmt_event };
 // type of callbacks
 typedef void (*event_callback) (event e, ios_base& strm,
 int arg);
 // function to register callbacks
 void register_callback (event_callback cb, int arg);
 ...
 };
 }

The C++ Standard Library

dyne-book 571

register_callback() takes a function pointer as the first argument and an int argument as
the second. The int argument is passed as the third argument when a registered function is
called. It can, for example, be used to identify an index for pword() to signal which member of
the array has to be processed. The argument strm that is passed to the callback function is the
ios_base object that caused the call to the callback function. The argument e identifies the
reason why the callback function was called. The reasons for calling the callback functions are
listed in Table 13.40.

Table 13.40. Reasons for Callback Events
Event Reason

ios_base::imbue_event A locale is set with imbue()
ios_base::erase_event The stream is destroyed or copyfmt() is used
ios_base::copy_event copyfmt() is used
If copyfmt() is used, the callbacks are called twice for the object on which copyfmt() is
called. First, before anything is copied, the callbacks are invoked with the argument
erase_event to do all the cleanup necessary (for example, deleting objects stored in the
pword() array). The callbacks called are those registered for the object. After the format flags
are copied, which includes the list of callbacks from the argument stream, the callbacks are called
again, this time with the argument copy_event. This pass can, for example, be used to arrange
for deep copying of objects stored in the pword() array. Note that the callbacks are also copied
and the original list of callbacks is removed. Thus, the callbacks invoked for the second pass are
the callbacks just copied.
The callback mechanism is very primitive. It does not allow callback functions to be unregistered,
except by using copyfmt() with an argument that has no callbacks registered. Also, registering
a callback function twice, even with the same argument, results in calling the callback function
twice. It is, however, guaranteed that the callbacks are called in the opposite order of registration.
This has the effect that a callback function registered from within some other callback function is
not called before the next time the callback functions are invoked.

13.12.6 Conventions for User-Defined Input/Output Operators

Several conventions that should be obeyed by the implementations of your own I/O operators
have been presented. They correspond to the behavior that is typical for the predefined I/O
operators. To summarize, these conventions are the following:

• The output format should allow an input operator that can read the data without loss of
information. Especially for strings, this is close to impossible because a problem with
spaces arises. A space character in the string cannot be distinguished from a space
character between two strings.

• The current formatting specification of the stream should be taken into account when
doing I/O. This applies especially to the width for writing.

• If an error occurs, an appropriate state flag should be set.
• The objects should not be modified in case of an error. If multiple data is read, the data

should first be stored in auxiliary objects before the value of the object passed to the read
operator is set.

• Output should not be terminated with a newline, mainly because it is otherwise
impossible to write other objects on the same line.

• Even values that are too large should be read completely. After the read, a corresponding
error flag should be set, and the value returned should be some meaningful value, such
as the maximum value.

• If a format error is detected, no character should be read, if possible.

The C++ Standard Library

dyne-book 572

13.13 The Stream Buffer Classes

As mentioned in Section 13.2.1, the actual reading and writing is not done by the streams
directly, but is delegated to stream buffers. This section describes how these classes operate.
The discussion not only gives a deeper understanding of what is going on when I/O streams are
used, but also provides the basis to define new I/O channels. Before going into the details of
stream buffer operation, the public interface is presented for those only interested in using stream
buffers.

13.13.1 User's View of Stream Buffers

To the user of a stream buffer the class basic_streambuf is not much more than something
that characters can be sent to or extracted from. Table 13.41 lists the public function for writing
characters.

Table 13.41. Public Members for Writing Characters
Member Function Meaning

sputc(c) Sends the character c to the stream buffer
sputn(s, n) Sends n character from the sequence s to the stream buffer
The function sputc() returns traits_type::eof() in case of an error, where traits_type
is a type definition in the class basic_streambuf. The function sputn() writes the number of
characters specified by the second argument unless the stream buffer cannot consume them. It
does not care about string termination characters. This function returns the number of characters
written.
The interface to reading characters from a stream buffer is a little bit more complex (Table
13.42). This is because for input it is necessary to have a look at a character without consuming
it. Also, it is desirable that characters can be put back into the stream buffer when parsing. Thus,
the stream buffer classes provide corresponding functions.

Table 13.42. Public Members for Reading Characters
Member Function Meaning

in_avail() Returns a lower bound on the characters available
sgetc() Returns the current character without consuming it
sbumpc() Returns the current character and consumes it
snextc() Consumes the current character and returns the next character
sgetn(b, n) Reads n characters and stores them in the buffer b
sputbackc(c) Returns the character c to the stream buffer
sungetc() Steps one step back to the previous character
The function in_avail() can be used to determine how many characters are at least available.
This can be used, for example, to make sure that reading does not block when reading from the
keyboard. However, there can be more characters available.
Until the stream buffer has reached the end of the stream, there is a current character. The
function sgetc() is used to get the current character without moving on to the next character.
The function sbumpc() reads the current character and moves on to next character, making this
the new current character. The last function reading a single character, snextc() makes the
next character the current one and then reads this character. All three functions return
traits_type::eof() to indicate failure. The function sgetn() reads a sequence of
characters into a buffer. The maximum number of characters to be read is passed as an
argument. The function returns the number of characters read.
The two functions sputbackc() and sungetc() are used to move one step back, making the
previous character the current one. The function sputbackc() can be used to replace the

The C++ Standard Library

dyne-book 573

previous character by some other character. These two functions should only be used with care.
Often it is only possible to put back just one character.
Finally, there are functions to access the imbued locale object, to change the position, and to
influence buffering. Table 13.43 lists these functions.

Table 13.43. Miscellaneous Public Stream Buffer Functions
Member Function Meaning
pubimbue(loc) Imbues the stream buffer with the locale loc
getloc() Returns the current locale
Pubseekpos(pos Repositions the current position to an absolute position
pubseekpos(pos, which) Same with specifying the I/O direction
pubseekoff(offset, rpos) Repositions the current position relative to another position
pubseekoff(offset, rpos, which) Same with specifying the I/O direction
pubsetbuf(b, n) Influences buffering
pubimbue() and getloc() are used for internationalization (see page 625). pubimbue()
installs a new locale object in the stream buffer returning the previously installed locale object.
getloc() returns the currently installed locale object.
The function pubsetbuf() is intended to provide some control over the buffering strategy of
stream buffers. However, whether it is honored depends on the concrete stream buffer class. For
example, it makes no sense to use pubsetbuf() for string stream buffers. Even for file stream
buffers the use of this function is only portable if it is called before the first I/O operation is
performed and if it is called as pubsetbuf(0,0) (that is, no buffer is to be used). This function
returns 0 on failure and the stream buffer otherwise.
The functions pubseekoff() and pubseekpos() are used to manipulate the current position
used for reading and/or writing. Which position is manipulated depends on the last argument,
which is of type ios_base::openmode and which defaults to
ios_base::in|ios_base::out if it is not specified. If ios_base::in is set, the read position
is modified. Correspondingly, the write position is modified if ios_base::out is set. The
function pubseekpos() moves the stream to an absolute position specified as the first argument
whereas the function pubseekoff() moves the stream relative to some other position. The
offset is specified as the first argument. The position used as starting point is specified as the
second argument and can be either ios_base::cur, ios_base::beg, or ios_base::end
(see page 635 for details). Both functions return the position to which the stream was positioned
or an invalid stream position. The invalid stream position can be detected by comparing the result
with the object pos_type(off_type(-1)) (pos_type and off_type are types for handling
stream positions; see page 634). The current position of a stream can be obtained using
pubseekoff():

 sbuf.pubseekoff(0, std::ios::cur)

13.13.2 Stream Buffer Iterators

An alternative way to use a member function for unformatted I/O is to use the stream buffer
iterator classes. These classes provide iterators that conform to input iterator or output iterator
requirements and read or write individual characters from stream buffers. This fits character-level
I/O into the algorithm library of the C++ standard library.
The template classes istreambuf_iterator and ostreambuf_iterator are used to read
or to write individual characters from or to objects of type basic_streambuf. The classes are
defined in the header <iterator> like this:

The C++ Standard Library

dyne-book 574

 namespace std {
 template <class charT,
 class traits = char_traits<charT> >
 istreambuf_iterator;
 template <class charT,
 class traits = char_traits<charT> >
 ostreambuf_iterator;
 }

These iterators are special forms of stream iterators, which are described in Section 7.4.3. The
only difference is that their elements are characters.

Output Stream Buffer Iterators

Here is how a string can be written to a stream buffer using an ostreambuf_iterator:

 // create iterator for buffer of output stream cout
 std::ostreambuf_iterator<char> bufWriter(std::cout);

 std::string hello("hello, world\n");
 std::copy(hello.begin(), hello.end(), // source: string
 bufWriter); // destination: output buffer
of cout

The first line of this example constructs an output iterator of type ostreambuf_iterator from
the object cout. Instead of passing the output stream you could also pass a pointer to the
stream buffer directly. The remainder constructs a string object and copies the characters in
this object to the constructed output iterator.
Table 13.44 lists all operations of output stream buffer iterators. The implementation is similar to
ostream iterators (see page 278). In addition, you can initialize the iterator with a buffer and you
can call failed() to query whether the iterator is able to write. If any prior writing of a character
failed, failed() yields true. In this case, any writing with operator = has no effect.

Table 13.44. Operations of Output Stream Buffer Iterators
Expression Effect

ostreambuf_iterator<char>(ostream) Creates an output stream buffer iterator for ostream
ostreambuf_iterator<char>(buffer_ptr) Creates an output stream buffer iterator for the buffer

to which buffer_ptr refers
*iter No-op (returns iter)
iter = c Writes character c to the buffer by calling sputc(c) for

it
++iter No-op (returns iter)
iter++ No-op (returns iter)
failed() Returns whether the output stream iterator is not

able to write anymore

Input Stream Buffer Iterators

Table 13.45 lists all operations of input stream buffer iterators. The implementation is similar to
istream iterators (see page 280). In addition, you can initialize the iterator with a buffer, and a
member function, equal(), is provided, which returns whether two input stream buffer iterators

The C++ Standard Library

dyne-book 575

are equal. Two input stream buffer iterators are equal when they are both end-of-stream iterators
or when neither is an end-of-stream iterator.
What is somewhat obscure is what it means for two objects of type istreambuf_iterator to
be equivalent: Two istreambuf_iterator objects are equivalent if both iterators are end-of-
stream iterators or if neither of them is an end-of-stream iterator (whether the output buffer is the
same doesn't matter). One possibility to get an end-of-stream iterator is to construct an iterator
with the default constructor. In addition, an istreambuf_iterator becomes an end-of-stream
iterator when an attempt is made to advance the iterator past the end of the stream (in other
words, if sbumpc() returns traits_type::eof(). This behavior has two major implications:

Table 13.45. Operations of Input Stream Buffer Iterators
Expression Effect

istreambuf _iterator<char>() Creates an end-of-stream iterator
istreambuf_iterator<char>(istream) Creates an input stream buffer iterator for istream

and might read the first character using sgetc()
istreambuf_iterator<char>(buffer_ptr) Creates an input stream buffer iterator for the buffer

to which buffer_ptr refers and might read the first
character using sgetc()

*iter Returns the actual character, read with sgetc()
before (reads the first character if not done by the
constructor)

++iter Reads the next character with sbumpc() and
returns its position

iter++ Reads the next character with sbumpc() but returns
an iterator for the previous character

iter1.equal (iter2) Returns whether both iterators are equal
iter1== iter2 Tests iter1 and iter2 for equality
iter1 ! = iter2 Tests iter1 and iter2 for inequality

1. A range from the current position in a stream to the end of the stream is defined by the
two iterators istreambuf_iterator<charT,traits> (stream) (for the current
position) and istreambuf_iterator<charT,traits>() (for the end of the stream),
where stream is of type basic_istream<charT,traits> or
basic_streambuf<charT,traits>.

2. It is not possible to create subranges using istreambuf_iterators.

Example Use of Stream Buffer Iterators

The following example is the classic filter framework that simply writes all read characters with
stream buffer iterators. It is a modified version of the example on page 611:

 // io/charcat2.cpp

 #include <iostream>
 #include <iterator>
 using namespace std;

 int main()
 {
 // input stream buffer iterator for cin
 istreambuf_iterator<char> inpos(cin);

The C++ Standard Library

dyne-book 576

 // end-of-stream iterator
 istreambuf_iterator<char> endpos;

 // output stream buffer iterator for cout
 ostreambuf_iterator<char> outpos(cout);

 // while input iterator is valid
 while (inpos != endpos) {
 *outpos = *inpos; // assign its value to the output
iterator
 ++inpos;
 ++outpos;
 }
 }

13.13.3 User-Defined Stream Buffers

Stream buffers are buffers for I/O. Their interface is defined by class basic_streambuf<>. For
the character types char and wchar_t, the specializations streambuf and wstreambuf,
respectively, are predefined. These classes are used as base classes when implementing the
communication over special I/O channels. However, doing this requires an understanding of the
stream buffer's operation.
The central interface to the buffers is formed by three pointers for each of the two buffers. The
pointers returned from the functions eback(), gptr(), and egptr() form the interface to the
read buffer. The pointers returned from the functions pbase(), pptr(), and epptr() form
the interface to the write buffer. These pointers are manipulated by the read and write operations,
which may result in corresponding reactions in the corresponding read or write channel. The
exact operation is examined separately for reading and writing.

User-Defined Output Buffers

A buffer used to write characters is maintained with three pointers that can be accessed by the
three functions pbase(), pptr(), and epptr() (Figure 13.4). Here is what these pointers
represent:

Figure 13.4. The Interface to the Output Buffer

1. pbase()("put base") is the beginning of the output buffer.
2. pptr()("put pointer") is the current write position.
3. epptr()("end put pointer") is the end of the output buffer. This means that epptr()

points to one past the last character that can be buffered.

The C++ Standard Library

dyne-book 577

The characters in the range from pbase() to pptr() (not including the character pointed to by
pptr()) are already written but not yet transported (flushed) to the corresponding output
channel.
A character is written using the member function sputc(). This character is copied to the
current write position if there is a spare write position. Then the pointer to the current write
position is incremented. If the buffer is full (pptr() == epptr()), the contents of the output
buffer are sent to the corresponding output channel. This is done by calling the virtual function
overflow(). This function is effectively responsible for the actual sending of the characters to
some "external representation" (which may actually be internal, as in the case of string streams).
The implementation of overflow() in the base class basic_streambuf only returns end-of-
file, which indicates that no more characters could be written.
The member function sputn() can be used to write multiple characters at once. This function
delegates the work to the virtual function xsputn(), which can be implemented for more
efficient writing of multiple characters. The implementation of xsputn() in class
basic_streambuf basically calls sputc() for each character. Thus, overriding xsputn() is
not necessary. However, often, writing multiple characters can be implemented more efficiently
than writing characters one at a time. Thus, this function can be used to optimize the processing
of character sequences.
Writing to a stream buffer does not necessarily involve using the buffer. Instead, the characters
can be written as soon as they are received. In this case, the value 0 or NULL has to be assigned
to the pointers that maintain the write buffer. The default constructor does this automatically.
With this information, the following example of a simple stream buffer can be implemented. This
stream buffer does not use a buffer. Thus, the function overflow() is called for each character.
Implementing this function is all that is necessary:

 // io/outbuf1.hpp

 #include <streambuf>
 #include <locale>
 #include <cstdio>

 class outbuf : public std::streambuf
 {
 protected:
 /* central output function
 * - print characters in uppercase mode
 */
 virtual int_type overflow (int_type c) {
 if (c != EOF) {
 // convert lowercase to uppercase
 c = std::toupper(c,getloc());

 // and write the character to the standard output
 if (putchar(c) == EOF) {
 return EOF;
 }
 }
 return c;
 }
 };

In this case, each character sent to the stream buffer is written using the C function putchar().
However, before the character is written it is turned into an uppercase character using

The C++ Standard Library

dyne-book 578

toupper() (see page 718). The function getloc() is used to get the locale object that is
associated with the stream buffer (see also page 626).
In this example, the output buffer is implemented specifically for the character type char
(streambuf is the specialization of basic_streambuf<> for the character type char). If other
character types are used, you have to implement this function using character traits, which are
introduced in Section 14.1.2. In this case, the comparison of c with end-of-file looks different.
traits::eof() has to be returned instead of EOF, and if the argument c is EOF, the value
traits::not_eof (c) should be returned (where traits is the second template argument to
basic_streambuf). This might look as follows:

 // io/outbuf1x.hpp

 #include <streambuf >
 #include <locale>
 #include <cstdio>

 template <class charT, std::class traits = char_traits<charT> >
 class basic_outbuf : public std::basic_streambuf<charT,traits>
 {
 protected:
 /* central output function
 * - print characters in uppercase mode
 */
 virtual int_type overflow (int_type c) {
 if (!traits::eq_int_type(c,traits::eof())) {
 // convert lowercase to uppercase
 c = std::toupper(c,getloc());

 // and write the character to the standard output
 if (putchar(c) == EOF) {
 return traits::eof();
 }
 }
 return traits::not_eof(c);
 }
 };

 typedef basic_outbuf<char> outbuf;
 typedef basic_outbuf<wchar_t> woutbuf;

Using this stream buffer in the following program:

 // io/outbuf1.cpp

 #include <iostream>
 #include "outbuf1.hpp"

 int main()
 {
 outbuf ob; //create special output buffer
 std::ostream out (&ob) ; // initialize output stream with that
output buffer

 out << "31 hexadecimal: " << std::hex << 31 << std::endl;
 }

The C++ Standard Library

dyne-book 579

produces the following output:

 31 HEXADECIMAL: 1F

The same approach can be used to write to other arbitrary destinations. For example, the
constructor of a stream buffer may take a file descriptor, the name of a socket connection, or two
other stream buffers used for simultaneous writing to initialize the object. Writing to the
corresponding destination requires only that overflow() be implemented. In addition, the
function xsputn() should also be implemented to make writing to the stream buffer more
efficient.
For convenient construction of the stream buffer, it is also reasonable to implement a special
stream class that mainly passes the constructor argument to the corresponding stream buffer.
The next example demonstrates this. It defines a stream buffer class initialized with a file
descriptor, to which characters are written with the function write() (a low-level I/O function
used on UNIX- like operating systems). In addition, a class derived from ostream is defined that
maintains such a stream buffer, to which the file descriptor is passed:

 // io/outbuf2.hpp

 #include <iostream>
 #include <streambuf>
 #include <cstdio>

 extern "C" {
 int write (int fd, const char* buf, int num);
 }

 class fdoutbuf : public std::streambuf {
 protected:
 int fd; // file descriptor
 public:
 // constructor
 fdoutbuf (int_fd) : fd(_fd) {
 }
 protected:
 // write one character
 virtual int_type overflow (int_type c) {
 if (c != EOF) {
 char z = c;
 if (write (fd, &z, 1) ! = 1) {
 return EOF;
 }
 }
 return c;
 }
 // write multiple characters
 virtual
 std::streamsize xsputn (const char* s,
 std::streamsize num) {
 return write(fd,s,num);
 }
 };
 class fdostream : public std::ostream {

The C++ Standard Library

dyne-book 580

 protected:
 fdoutbuf buf;
 public:
 fdostream (int fd) : buf(fd), std::ostream(&buf) {
 }
 };

This stream buffer also implements the function xsputn() to avoid calling overflow() for each
character if a character sequence is sent to this stream buffer. This function writes the whole
character sequence with one call to the file identified by the file descriptor fd. The function
xsputn() returns the number of characters written successfully. Here is a sample application:

 // io/outbuf2.cpp

 #include <iostream>
 #include "outbuf2.hpp"

 int main()
 {
 fdostream out(1); // stream with buffer writing to file
descriptor 1

 out << "31 hexadecimal: " << std::hex << 31 << std::endl;
}

This program creates a output stream that is initialized with the file descriptor 1. This file
descriptor, by convention, identifies the standard output channel. Thus, in this example the
characters are simply printed. If some other file descriptor is available (for example, for a file or a
socket), it can also be used as the constructor argument.
To implement a stream buffer that really buffers, the write buffer has to be initialized using the
function setp(). This is demonstrated by the next example:

 // io/outbuf3.hpp

 #include <cstdio>
 #include <streambuf>

 extern "C" {
 int write (int fd, const char* buf, int num);
 }
 class outbuf : public std::streambuf {
 protected:
 static const int bufferSize = 10; // size of data buffer
 char buffer [bufferSize] ; // data buffer

 public:
 /* constructor
 * - initialize data buffer
 * - one character less to let the bufferSizeth character
 * cause a call of overflow()
 */
 outbuf() {
 setp (buffer, buffer+(bufferSize-1));
 }

The C++ Standard Library

dyne-book 581

 /* destructor
 * - flush data buffer
 */
 virtual ~outbuf() {
 sync();
 }

 protected:
 // flush the characters in the buffer
 int flushBuffer() {
 int num = pptr()-pbase();
 if (write (1, buffer, num) != num) {
 return EOF;
 }
 pbump (-num); // reset put pointer accordingly
 return num;
 }

 /* buffer full
 * - write c and all previous characters
 */
 virtual int_type overflow (int_type c) {
 if (c != EOF) {
 // insert character into the buffer
 *pptr() = c;
 pbump(1);
 }
 // flush the buffer
 if (flushBuffer() == EOF) {
 // ERROR
 return EOF;
 }
 return c;
 }

 /* synchronize data with file/destination
 * - flush the data in the buffer
 */
 virtual int sync() {
 if (flushBuffer() == EOF) {
 // ERROR
 return -1;
 }
 return 0;
 }
 };

The constructor initializes the write buffer with setp():

setp (buffer, buffer+(size-1));

The write buffer is set up such that overflow() is already called when there is still room for one
character. If overflow() is not called with EOF as the argument, the corresponding character
can be written to the write position because the pointer to the write position is not increased

The C++ Standard Library

dyne-book 582

beyond the end pointer. After the argument to overflow() is placed in the write position, the
whole buffer can be emptied.
The member function flushBuffer() does exactly this. It writes the characters to the standard
output channel (file descriptor 1) using the function write(). The stream buffer's member
function pbump() is used to move the write position back to the beginning of the buffer.
The function overflow() inserts the character that caused the call of overflow() into the
buffer if it is not EOF. Then, pbump() is used to advance the write position to reflect the new end
of the buffered characters. This moves the write position beyond the end position (epptr())
temporarily.
This class also features the virtual function sync() that is used to synchronize the current state
of the stream buffer with the corresponding storage medium. Normally, all that needs to be done
is to flush the buffer. For the unbuffered versions of the stream buffer, overriding this function was
not necessary because there was no buffer to be flushed.
The virtual destructor ensures that data is written that is still buffered when the stream buffer is
destroyed.
These are the functions that are overridden for most stream buffers. If the external representation
has some special structure, overriding additional functions may be useful. For example, the
functions seekoff() and seekpos() may be overridden to allow manipulation of the write
position.

User-Defined Input Buffers

The input mechanism works basically the same as the output mechanism. However, for input
there is also the possibility of undoing the last read. The functions sungetc() (called by
unget() of the input stream) or sputbackc() (called by putback() of the input stream) can
be used to restore the stream buffer to its state before the last read. It is also possible to read the
next character without moving the read position beyond this character. Thus, you must override
more functions to implement reading from a stream buffer than is necessary to implement writing
to a stream buffer.
A stream buffer maintains a read buffer with three pointers that can be accessed through the
member function eback(), gptr() and egptr() (Figure 13.5):

Figure 13.5. The Interface for Reading from Stream Buffers

1. eback() ("end back") is the beginning of the input buffer, or (this is where the name
comes from) the end of the putback area. The character can only be put back up to this
position without taking special action.

2. gptr() ("get pointer") is the current read position.
3. egptr() ("end get pointer") is the end of the input buffer.

The characters between the read position and the end position have been transported from the
external representation to the program's memory, but they still await processing by the program.

The C++ Standard Library

dyne-book 583

Single characters can be read using the function sgetc() or sbumpc(). These two functions
differ in that the read pointer is incremented by sbumpc(), but not by sgetc(). If the buffer is
read completely (gptr() == egptr()), there is no character available and the buffer has to be
refilled. This is done by a call of the virtual function underflow(). This function is responsible
for the reading of data. The function sbumpc() calls the virtual function uflow() instead, if no
characters are available. The default implementation of uflow() is to call underflow() and
then increment the read pointer. The default implementation of underflow() in the base class
basic_streambuf is to return EOF. This means it is impossible to read characters with the
default implementation.
The function sgetn() is used for reading multiple characters at once. This function delegates the
processing to the virtual function xsgetn(). The default implementation of xsgetn() simply
extracts multiple characters by calling sbumpc() for each character. Like the function xsputn()
for writing, xsgetn() can be implemented to optimize the reading of multiple characters.
For input it is not sufficient just to override one function as it is the case of output. Either a buffer
has to be set up, or at the very least underflow() and uflow() have to implemented. This is
because underflow() does not move past the current character, but underflow() may be
called from sgetc(). Moving on to the next character has to be done using buffer manipulation
or using a call to uflow(). In any case, underflow() has to be implemented for any stream
buffer capable of reading characters. If both underflow() and uflow() are implemented, there
is no need to set up a buffer.
A read buffer is set up with the member function setg(), which takes three arguments in this
order:

1. A pointer to the beginning of the buffer (eback())
2. A pointer to the current read position (gptr())
3. A pointer to the end of the buffer (egptr())

Unlike setp(), setg() takes three arguments. This is necessary to be able to define the room
for storing characters that are put back into the stream. Thus, when the pointers to the read buffer
are being set up, it is reasonable to have some characters (at least one) that are already read but
still stored in the buffer.
As mentioned, characters can be put back into the read buffer using the functions sputbackc()
and sungetc(). sputbackc() gets the character to be put back as its argument and ensures
that this character was indeed the character read. Both functions decrement the read pointer, if
possible. Of course, this only works as long as the read pointer is not at the beginning of the read
buffer. If you attempt to put a character back after the beginning of the buffer is reached, the
virtual function pbackfail() is called. By overriding this function you can implement a
mechanism to restore the old read position even in this case. In the base class
basic_streambuf, no corresponding behavior is defined. Thus, in practice, it is not possible to
go back an arbitrary number of characters. For streams that do not use a buffer, the function
pbackfail() should be implemented because it is generally assumed that at least one
character can be put back into the stream.
If a new buffer was just read, another problem arises: Not even one character can be put back if
the old data is not saved in the buffer. Thus, the implementation of underflow() often moves
the last few characters (for example, four characters) of the current buffer to the beginning of the
buffer and appends the newly read characters thereafter. This allows some characters to be
moved back before pbackfail() is called.
The following example demonstrates how such an implementation might look. In the class
inbuf, an input buffer with ten characters is implemented. This buffer is split into a maximum of
four characters for the putback area and six characters for the "normal" input buffer:

 // io/inbuf1.hpp

The C++ Standard Library

dyne-book 584

 #include <cstdio>
 #include <cstring>
 #include <streambuf>

 extern "C" {
 int read (int fd, char* buf, int num);
 }

 class inbuf : public std::streambuf {
 protected:
 /* data buffer:
 * - at most, four characters in putback area plus
 * - at most, six characters in ordinary read buffer
 */
 static const int bufferSize = 10; // size of the data
buffer
 char buffer[bufferSize] ; // data buffer

 public:
 /* constructor
 * - initialize empty data buffer
 * - no putback area
 * => force underflow()
 */
 inbuf() {
 setg (buffer+4, // beginning of putback area
 buffer+4, // read position
 buffer+4); // end position
 }

 protected:
 // insert new characters into the buffer
 virtual int_type underflow() {

 // is read position before end of buffer?
 if (gptr() < egptr()) {
 return *gptr();
 }
 /* process size of putback area
 * - use number of characters read
 * - but at most four
 */
 int numPutback;
 numPutback = gptr() - eback();
 if (numPutback > 4) {
 numPutback = 4;
 }

 /* copy up to four characters previously read into
 * the putback buffer (area of first four characters)
 */
 std::memcpy (buffer+(4-numPutback), gptr()-numPutback,
 numPutback);

 // read new characters
 int num;
 num = read (0, buffer+4, bufferSize-4);

The C++ Standard Library

dyne-book 585

 if (num <= 0) {
 // ERROR or EOF
 return EOF;
 }

 // reset buffer pointers
 setg (buffer+(4-numPutback), // beginning of putback
area
 buffer+4, // read position
 buffer+4+num); // end of buffer

 // return next character
 return *gptr();
 }
 };

The constructor initializes all pointers so that the buffer is completely empty (Figure 13.6). If a
character is read from this stream buffer, the function underflow() is called. This function is
always used by this stream buffer to read the next characters. It starts by checking for read
characters in the input buffer. If characters are present, they are moved to the putback area using
the function memcpy(). These are, at most, the last four characters of the input buffer. Then
POSIX's low-level I/O function read() is used to read the next character from the standard input
channel. After the buffer is adjusted to the new situation, the first character read is returned.

Figure 13.6. Get Buffer After Initialization

For example, if the characters 'H', 'a', 'l', 'l', 'o', and 'w' are read by the first call
to read(), the state of the input buffer changes, as shown in Figure 13.7. The putback area is
empty because the buffer was filled for the first time, and there are no characters yet that can be
put back.

Figure 13.7. Get Buffer After Reading H a l l o w

The C++ Standard Library

dyne-book 586

After these characters are extracted, the last four characters are moved into the putback area and
new characters are read. For example, if the characters 'e', 'e', 'n', and '\n' are read by
the next call of read() the result is as shown in Figure 13.8.

Figure 13.8. Get Buffer After Reading Four More Characters

Here is an example of the use of this stream buffer:

 // io/inbuf1.cpp

 #include <iostream>
 #include "inbuf1.hpp"

 int main()
 {
 inbuf ib; // create special stream buffer
 std::istream in(&ib) ; // initialize input stream with
that buffer

 char c;
 for (int i=1; i<=20; i++) {
 // read next character (out of the buffer)
 in.get(c);

 // print that character (and flush)
 std::cout << c << std::flush;

 // after eight characters, put two characters back into the
stream
 if (i == 8) {
 in.unget();
 in.unget();
 }
 }
 std::cout << std::endl;
 }

The program reads characters in a loop and writes them out. After the eighth character is read,
two characters are put back. Thus, the seventh and eighth characters are printed twice.

13.14 Performance Issues

The C++ Standard Library

dyne-book 587

This section specifically addresses issues that focus on performance. In general the stream
classes should be pretty efficient, but performance can be improved further in applications in
which I/O is performance critical.
One performance issue was mentioned in Section 13.2.3, already: You should only include
those headers that are necessary to compile your code. In particular, you should avoid including
<iostream> if the standard stream objects are not used.

13.14.1 Synchronization with C's Standard Streams

By default, the eight C++ standard streams (the four narrow character streams cin, cout,
cerr, and clog, and their wide-character counterpart) are synchronized with the corresponding
files from the C standard library (stdin, stdout, and stderr). By default clog and wclog
use the same stream buffer as cerr and wcerr respectively. Thus, they are also synchronized
with stderr by default, although there is no direct counterpart in the C standard library.
Depending on the implementation, this synchronization might imply some often unnecessary
overhead. For example, if the standard C++ streams are implemented using the standard C files,
this basically inhibits buffering in the corresponding stream buffers. However, the buffer in the
stream buffers is necessary for some optimizations especially during formatted reading (see
Section 13.14.2). To allow switching to a better implementation, the static member function
sync_with_stdio() is defined for the class ios_base (Table 13.46).

Table 13.46. Synchronizing Standard C++ and Standard C Streams
Static Function Meaning

Sync_with_stdio() Returns whether the standard stream objects are synchronized
with standard C streams

Sync_with_stdio(false) Disables the synchronization of C++ and C streams provided it is
called before any I/O

sync_with_stdio() takes an optional Boolean value as argument that determines whether the
synchronization with the standard C streams should be turned on. Thus, to turn the
synchronization off you have to pass false as the argument:

 std::ios::sync_with_stdio(false); // disable synchronization

Note that you have to disable the synchronization before any other I/O operation. Calling this
function after any I/O has occurred results in implementation-defined behavior.
The function returns the previous value with which the function was called. If not called before, it
always returns true to reflect the default setup of the standard streams.

13.14.2 Buffering in Stream Buffers

Buffering I/O is important for efficiency. One reason for this is that system calls are, in general,
relatively expensive and it pays to avoid them if possible. There is, however, another more subtle
reason in C++ for doing buffering in stream buffers, at least for input: The functions for formatted
I/O use stream buffer iterators to access the streams, and operating on stream buffer iterators is
slower than operating on pointers. The difference is not that big, but it is sufficient to justify
improved implementations for frequently used operations like formatted reading of numeric
values. However, for such improvements it is essential that stream buffers are buffered.
Thus, all I/O is done using stream buffers, which implement a mechanism for buffering. However,
it is not sufficient to rely solely on this buffering because there arc three aspects that conflict with
effective buffering:

The C++ Standard Library

dyne-book 588

1. It is often simpler to implement stream buffers without buffering. If the corresponding
streams are not used frequently or are only used for output (for output the difference
between stream buffer iterators and pointers is not as bad as for input; the main problem
is comparing stream buffer iterators), buffering is probably not that important. However,
for stream buffers that are used extensively, buffering should definitely be implemented.

2. The flag unitbuf causes output streams to flush the stream after each output operation.
Correspondingly, the manipulators flush and endl also flush the stream. For the best
performance all three should probably be avoided. However, when writing to the console,
for example, it is probably still reasonable to flush the stream after writing complete lines.
If you are stuck with a program that makes heavy use of unitbuf, flush, or endl,
you might consider using a special stream buffer that does not use sync() to flush the
stream buffer but uses some other function that is called when appropriate.

3. Tieing streams with the tie() function (see Section 13.10.1,) also results in additional
flushing of streams. Thus, streams should only be tied if it is really necessary.

When implementing new stream buffers, it may be reasonable to implement them without
buffering first. Then, if the stream buffer is identified as a bottleneck, it is still possible to
implement buffering without affecting anything in the remainder of the application.

13.14.3 Using Stream Buffers Directly

All member functions of the class basic_istream and basic_ostream that read or write
characters operate according to the same schema: First, a corresponding sentry object is
constructed, then the actual operation is performed. The construction of the sentry object
results in flushing of potentially tied objects, skipping of whitespace (for input only), and
implementation-specific operations like locking in multithreaded environments (see Section
13.12.4).
For unformatted I/O, most of the operations are normally useless anyway. Only the locking
operation might be useful if the streams are used in multithreaded environments (note that the
C++ standard does not address multithreading). Thus, when doing unformatted I/O it is normally
much better to use stream buffers directly.
To support this behavior, you can use operators << and >> with stream buffers as follows:

• By passing a pointer to a stream buffer to operator <<, you can output all input of its
device. This is probably the fastest way to copy files by using C++ I/O streams. For
example:

•
• // io/copy1.cpp
•
• #include <iostream>
•
• int main()
• {
• // copy all standard input to standard output
• std::cout << std::cin.rdbuf();
• }
•

Here, rdbuf() yields the buffer of cin (see page 638). Thus, the program copies all
standard input to standard output.

The C++ Standard Library

dyne-book 589

• By passing a pointer to a stream buffer to operator >>, you can read directly into a
stream buffer.

For example, you could also copy all standard input to standard output in the following
way:

 // io/copy2.cpp

 #include <iostream>

 int main()
 {
 // copy all standard input to standard output
 std::cin >> std::cout.rdbuf();
 }

Note that you have to clear the flag skipws. Otherwise, leading whitespace of the input
is skipped.

Even for formatted I/O it may be reasonable to use stream buffers directly. For example, if lots of
numeric values are read in a loop, it is sufficient to construct just one sentry object that exists
for the whole time the loop is executed. Then, within the loop, whitespace is skipped manually
(using the ws manipulator would also construct a sentry object) and then the facet num_get
(see Section 14.4.1,) is used for reading the numeric values directly.
Note that a stream buffer has no error state of its own. It also has no knowledge of the input or
ouput stream that might connect to it. So, inside of:

//copy contents of in to out
out « in.rdbuf();

there is no way to change the error state of in due to a failure of end-of-file.

The C++ Standard Library

dyne-book 590

Chapter 14. Internationalization
As the global market has increased in importance, so has internationalization (or i18n for short)[1]
become more important for software development. As a consequence, the C++ standard library
provides concepts to write code for international programs. These concepts influence mainly the
use of I/O and string processing. This chapter describes these concepts. Many thanks to Dietmar
Kühl, who is an expert on I/O and internationalization in the C++ standard library and wrote major
parts of this chapter.

[1] i18n is a common abbreviation for internationalization. It stands for the letter i, followed by 18 characters,
followed by the letter n.

The C++ standard library provides a general approach to support national conventions without
being bound to specific conventions. This goes to the extent, for example, that strings are not
bound to a specific character type to support 16-bit characters in Asia. For the internationalization
of programs, two related aspects are important:

1. Different character sets have different properties. Handling them requires flexible
solutions for problems, such as what is considered to be a letter or, worse, what type to
use to represent characters. For character sets with more than 256 characters, type
char is not sufficient as a representation.

2. The user of a program expects to see national or cultural conventions obeyed (for
example, the formatting of dates, monetary values, numbers, and Boolean values).

For both aspects, the C++ standard library provides related solutions.
The major approach toward internationalization is to use locale objects to represent an extensible
collection of aspects to be adapted to specific local conventions. Locales are already used in C to
adapt to specific local conventions. In the C++ standard, this mechanism was generalized and
made more flexible. Actually, the C++ locale mechanism can be used to address all kinds of
customization, depending on the user's environment or preferences. For example, it can be
extended to deal with measurement systems, time zones, or paper size.
Most of the mechanisms of internationalization involve no or only minimal additional work for the
programmer. For example, when doing I/O with the C++ stream mechanism, numeric values are
formatted according to the rules of some locale. The only work for the programmer is to instruct
the I/O stream classes to use the user's preferences.
In addition to such automatic use, the programmer may use locale objects directly for formatting,
collation, character classification, and so on. Some internationalized aspects supported by the
C++ standard library are not used by the C++ standard library itself, and to use them the
programmer has to call those functions manually. For example, there are no stream functions
defined in the C++ standard library that do time, date, or monetary formatting. To use these
services, it is necessary to call them directly (for example, in user-defined stream operators
writing objects of a money class).
Strings and streams use another concept for internationalization: character traits. They define
fundamental properties and operations that differ for different character sets, such as the value of
"end-of-file" as well as functions to compare, assign, and copy strings.
The classes for internationalization were introduced to the standard relatively late. Although the
general approach is extremely flexible, it still needs some work to make it really complete. For
example, the functions for string collation (that is, comparing strings for sorting according to some
locale conventions) use only iterators of type const charT*, where charT is some character
type. Although it is very likely that basic_string<charT> uses this type as an iterator type, it is
not at all guaranteed. Thus, it is not guaranteed that string iterators can be used as arguments to
the functions for string collation. However, it is possible to use the result of basic_string
data() member functions with the string collation functions.

The C++ Standard Library

dyne-book 591

14.1 Different Character Encodings

One area internationalization addresses is how to handle different character encodings. This
issue arises mainly in Asia, where different encodings are used to represent the same character
set. The issue normally comes in conjunction with character encodings that use more than 8 bits.
To process such characters, it is necessary to use new concepts and functions for text
processing.

14.1.1 Wide-Character and Multibyte Text

Two different approaches are common to address character sets that have more than 256
characters: multibyte representation and wide-character representation:

1. With multibyte representation, the number of bytes used for a character is variable. A 1 -
byte character, such as an ISO Latin-1 character, can be followed by a 3-byte character,
such as a Japanese ideogram.

2. With wide-character representation, the number of bytes used to represent a character is
always the same, independent of the character being represented. Typical
representations use 2 or 4 bytes. Conceptually, this does not differ from representations
that use just I byte for locales, where ISO Latin-1 or even ASCII is sufficient.

This multibyte representation is more compact than the wide-character representation. Thus, the
multibyte representation is normally used to store data outside of programs. Conversely, it is
much easier to process characters of fixed size, so the wide-character representation is usually
used inside programs.
Like ISO C, ISO C++ uses the type wchar_t to represent wide characters. However in C++,
wchar_t is a keyword rather than a type definition. Thus, it is possible to overload all functions
with this type.
In a multibyte string, the same byte may represent a character or even just a part of the
character. During iteration through a multibyte string, each byte is interpreted according to a
current "shift state." Depending on the value of the byte and the current shift state, a byte may
represent a certain character or a change of the current shift state. A multibyte string always
starts in some defined initial shift state. For example, in the initial shift state the bytes may
represent ISO Latin-1 characters until an escape character is encountered. The character
following the escape character identifies the new shift state. For example, that character may
switch to a shift state in which the bytes are interpreted as Arabic characters until the next escape
character is encountered.
The class template codecvt<> (described in Section 14.4.4,) is used to convert between
different character encodings. This class is used mainly by the class basic_filebuf <> (see
page 627) to convert between internal and external representations. The C++ standard actually
makes no assumptions about multibyte character encodings, but it supports the notion of shift
states. The members of the codecvt<> class support an argument that may be used to store an
arbitrary state of a string. They also support a function intended to determine the character
sequence used to return to the initial shift state.

14.1.2 Character Traits

The different representations of character sets imply variations that are relevant for the
processing of strings and I/O. For example, the value used to represent "end-of-file" or the details
of comparing characters may differ for representations.
The string and stream classes are intended to be instantiated with built-in types, especially with
char and wchar_t. The interface of built-in types cannot be changed. Thus, the details on how
to deal with aspects that depend on the representation are factored into a separate class, a so-

The C++ Standard Library

dyne-book 592

called "traits class." Both the string and stream classes take a traits class as a template
argument. This argument defaults to the class char_traits, parameterized with the template
argument that defines the character type of the string or stream:

 namespace std {
 template<class charT,
 class traits = char_traits<charT>,
 class Allocator = allocator<charT> >
 class basic_string;
 }
 namespace std {
 template <class charT,
 class traits = char_traits<charT> >
 class basic_istream;
 template <class charT,
 class traits = char_traits<charT> >
 class basic_ostream;
 ...
 }

The character traits have type char_traits<>. This type is defined in <string> and is
parameterized for the specific character type:

 namespace std {
 template <class charT>
 struct char_traits {
 ...
 };
 }

The traits classes define all fundamental properties of the character type and the corresponding
operations necessary for the implementation of strings and streams as static components. Table
14.1 lists the members of char_traits.
The functions that process strings or character sequences are present for optimization only. They
could also be implemented by using the functions that process single characters. For example,
copy() can be implemented using assign(). However, there might be more efficient
implementations when dealing with strings.
Note that counts used in the functions are exact counts, not maximum counts. That is, string
termination characters within these sequences are ignored.
The last group of functions cares about the special processing of the character that represents
end-of-file (EOF). This character extends the character set by an artificial character to indicate
special processing. For some representations, the character type may be insufficient to
accommodate this special character because it has to have a value that differs from the values of
all "normal" characters of the character set. C established the convention to return a character as
int instead of as char from functions reading characters. This technique was extended in C++.
The character traits define char_type as the type to represent all characters, and int_type as
the type to represent all characters plus EOF. The functions to_char_type(),
to_int_type(), not_eof(), and eq_int_type() define the corresponding conversions
and comparisons. It is possible that char_type and int_type are identical for some character
traits. This can be the case if not all values of char_type are necessary to represent characters
so that there is a spare value that can be used for end-of-file.
pos_type and off_type are used to define file positions and offsets (see page 634 for details).

Table 14.1. Character Traits Members

The C++ Standard Library

dyne-book 593

Expression Meaning
char_type The character type (that is, the template argument for char_traits)
int_type A type large enough to represent an additional, otherwise unused value for

end-of-file
pos_type A type used to represent positions in streams
off_type A type used to represent offsets between positions in streams
state_type A type used to represent the current state in multibyte streams
assign (c1,c2) Assigns character c2 to c1
eq(c1,c2) Returns whether the characters c1 and c2 are equal
It(c1,c2) Returns whether character c1 is less than character c2
length (s) Returns the length of the string s
compare (s1 ,s2
,n)

Compares up to n characters of strings s1 and s2

copy (s1,s2, n) Copies n characters of string s2 to string s1
move(s1,s2,n) Copies n characters of string s2 to string s1, where s1 and s2 may overlap
assign (s, n,c) Assigns the character c to n characters of string s
find(s,n,c) Returns a pointer to the first character in string s that is equal to c, or returns

zero, if there is no such character among the first n characters
eof() Returns the value of end-of-file
to_int_type(c) Converts the character c into the corresponding representation as int_type
to_char_type(i) Converts the representation i as int_type to a character (the result of

converting EOF is undefined)
not_eof (i) Returns the value i unless i is the value for EOF; in this case an

implementation-dependent value different from EOF is returned
eq_int_type(i1
,i2)

Tests the equality of the two characters i1 and i2 represented as int_type
(that is, the characters may be EOF)

The C++ standard library provides specializations of char_traits<> for types char and
wchar_t:

 namespace std {
 template<> struct char_traits<char>;
 template<> struct char_traits<wchar_t>;
}

The specialization for char is usually implemented by using the global string functions of C that
are defined in <cstring> or <string.h>. An implementation might look as follows:

 template<> struct char_traits<char> {
 //type definitions:
 typedef char char_type;
 typedef int int_type;
 typedef streampos pos_type;
 typedef streamoff off_type;
 typedef mbstate_t state_type;

 //functions:
 static void assign(char& c1, const char& c2) {
 c1 = c2;

The C++ Standard Library

dyne-book 594

 }
 static bool eq(const char& c1, const char& c2) {
 return c1 == c2;
 }
 static bool It(const char& c1, const char& c2) {
 return c1 < c2;
 }
 static size_t length(const char* s) {
 return strlen(s);
 }
 static int compare(const char* s1, const char* s2, size_t n) {
 return memcmp(s1,s2,n);
 }
 static char* copy(char* s1, const char* s2, size_t n) {
 return (char*)memcpy(s1,s2,n);
 }
 static char* move(char* s1, const char* s2, size_t n) {
 return (char*)memmove(s1,s2,n);
 }
 static char* assign(char* s, size_t n, char c) {
 return (char*)memset(s,c,n);
 }
 static const char* find(const char* s, size_t n,
 const char& c) {
 return (const char*)memchr(s,c,n);
 }
 static int eof() {
 return EOF;
 }
 static int to_int_type(const char& c) {
 return (int)(unsigned char)c;
 }
 static char to_char_type(const int& i) {
 return (char)i;
 }
 static int not_eof(const int& i) {
 return i!=EOF ? i : !EOF;
 }
 static bool eq_int_type(const int& i1, const int& i2) {
 return i1 == i2;
 }
 };

See Section 11.2.14, for the implementation of a user-defined traits class that lets strings
behave in a case-insensitive manner.

14.1.3 Intelnationalization of Special Characters

One issue in conjunction with character encodings remains: How are special characters such as
the newline or the string termination character internationalized? The class basic_ios has
members widen() and narrow() that can be used for this purpose. Thus, the newline
character in an encoding appropriate for the stream strm can be written as follows:

 strm. widen ('\n') // internationalized newline character

The C++ Standard Library

dyne-book 595

The string termination character in the same encoding can be created like this:

 strm. widen ('\0') // internationalized string termination
character

See the implementation of the end1 manipulator on page 613 for an example use.
The functions widen() and narrow() actually use a locale object, more precisely the ctype
facet of this object. This facet can be used to convert all characters between char and some other
character representations. It is described in Section 14.4.4,. For example, the following
expression converts the character c of type char into an object of type char_type by using the
locale object loc[2] :

[2] Note that you have to put a space between the two ">" characters. ">>" would be parsed as shift
operator, which would result in a syntax error.

 std::use_facet<std::ctype<char_type> >(loc).widen(c)

The details of the use of locales and their facets are described in the following sections.

14.2 The Concept of Locales

A common approach to internationalization is to use environments, called locales, to encapsulate
national or cultural conventions. The C community uses this approach. Thus, in the context of
internationalization, a locale is a collection of parameters and functions used to support national
or cultural conventions. According to X/Open conventions,[3] the environment variable LANG is
used to define the locale to be used. Depending on this locale, different formats for floating-point
numbers, dates, monetary values, and so on are used.

[3] POSIX and X/Open are standards for operating system interfaces.

The format of the string defining a locale is normally this:

 language [_area [.code]]

language represents the language, such as English or German, area is the area, country, or
culture where this language is used. It is used, for example, to support different national
conventions even if the same language is used in different nations. code defines the character
encoding to be used. This is mainly important in Asia, where different character encodings are
used to represent the same character set.
Table 14.2 presents a selection of typical language strings. However, note that these strings are
not yet standardized. For example, sometimes the first character of language is capitalized. Some
implementations deviate from the format mentioned previously and, for example, use english to
select an English locale. All in all, the locales that are supported by a system are implementation
specific.
For programs, it is normally no problem that these names are not standardized! This is because
the locale information is provided by the user in some form. It is common that programs simply
read environment variables or some similar database to determine which locales to use. Thus,
the burden of finding the correct locale names is put on the users. Only if the program always
uses a special locale does the name need to be hard coded in the program. Normally, for this

The C++ Standard Library

dyne-book 596

case, the C locale is sufficient, and is guaranteed to be supported by all implementations and to
have the name C.
The next section presents the use of different locales in C++ programs. In particular, it introduces
facets of locales that are used to deal with specific formatting details.
C also provides an approach to handle the problem of character sets with more than 256
characters. This approach is to use the character type wchar_t, a type definition for one of the
integral types with language support for wide-character constants and wide-character string
literals. However, apart from this, only functions to convert between wide characters and narrow
characters are supported. This approach was also incorporated into C++ with the character type
wchar_t, which is, unlike the C approach, a distinct type in C++. However, C++ provides more
library support than C, because basically everything available for char is also available for
wchar_t, and any other type may be used as a character type.

Table 14.2. Selection of Locale Names
Locale Meaning

c Default: ANSI-C conventions (English, 7 bit)
de_DE German in Germany
de_DE. 88591 German in Germany with ISO Latin-1 encoding
de_AT German in Austria
de_CH German in Switzerland
en_US English in the United States
en_GB English in Great Britain
en_AU English in Australia
en_CA English in Canada
fr_FR French in France
fr_CH French in Switzerland
fr_CA French in Canada
ja_JP. jis Japanese in Japan with Japanese Industrial Standard (JIT) encoding
ja_JP. sjis Japanese in Japan with Shift JIS encoding
ja_JP.ujis Japanese in Japan with UNIXized JIS encoding
ja_JP.EUC Japanese in Japan with Extended UNIX Code encoding
ko_KR Korean in Korea
zh_CN Chinese in China
zh_TW Chinese in Taiwan
lt_LN.bit7 ISO Latin, 7 bit
lt_LN.bit8 ISO Latin, 8 bit
POSIX POSIX conventions (English, 7 bit)

14.2.1 Using Locales

Using translations of textual messages is normally not sufficient for true internationalization. For
example, different conventions for numeric, monetary, or date formatting also have to be used. In
addition, functions manipulating letters should depend on character encoding to ensure the
correct handling of all characters that are letters in a given language.
According to the POSIX and X/Open standards, it is already possible in C programs to set a
locale. This is done using the function setlocale(). Changing the locale influences the results
of character classification and manipulation functions, such as isupper() and toupper(),
and the I/O functions, such as printf().

The C++ Standard Library

dyne-book 597

However, the C approach has several limitations. Because the locale is a global property, using
more than one locale at the same time (for example, when reading floating-point numbers in
English and writing them in German) is either not possible or is possible only with a relatively
large effort. Also, locales cannot be extended. They provide only the facilities the implementation
chooses to provide. If something the C locales do not provide must also be adapted to national
conventions, a different mechanism has to be used to do this. Finally, it is not possible to define
new locales to support special cultural conventions.
The C++ standard library addresses all of these problems with an object-oriented approach. First,
the details of a locale are encapsulated in an object of type locale. Doing this immediately
provides the possibility of using multiple locales at the same time. Operations that depend on
locales are configured to use a corresponding locale object. For example, a locale object can be
installed for each I/O stream, which is then used by the different member functions to adapt to the
corresponding conventions. This is demonstrated by the following example:

 // i18n/loc1.cpp

 #include <iostream>
 #include <locale>
 using namespace std;

 int main()
 {
 // use classic C locale to read data from standard input
 cin.imbue(locale::classic());

 // use a German locale to write data to standard ouput
 cout.imbue(locale("de_DE"));

 // read and output floating-point values in a loop

 double value;
 while (cin >> value) {
 cout << value << endl;
 }
 }

The statement

 cin.imbue(locale::classic());

assigns the "classic" C locale to the standard input channel. For the classic C locale, formatting of
numbers and dates, character classification, and so on is handled as it is in original C without any
locales. The expression

 std::locale::classic()

obtains a corresponding object of class locale. Using the expression

 std::locale("C")

instead would yield the same result. This last expression constructs a locale object from a
given name. The name "C" is a special name, and actually is the only one a C++ implementation

The C++ Standard Library

dyne-book 598

is required to support. There is no requirement to support any other locale, although it is assumed
that C++ implementations also support other locales.
Correspondingly, the statement

 cout.imbue (locale("de_DE"));

assigns the locale de_DE to the standard output channel. This is, of course, successful only if the
system supports this locale. If the name used to construct a locale object is unknown to the
implementation, an exception of type runtime_error is thrown.
If everything was successful, input is read according to the classic C conventions and output is
written according to the German conventions. The loop thus reads floating-point values in the
normal English format, for example

 47.11

and prints them using the German format, for example

 47,11

Yes, the Germans really use a comma as a "decimal point".
Normally, a program does not predefine a specific locale except when writing and reading data in
a fixed format. Instead, the locale is determined using the environment variable LANG. Another
possibility is to read the name of the locale to be used. The following program demonstrates this:

 // i18n/loc2.cpp

 #include <iostream>
 #include <locale>
 #include <string>
 #include <cstdlib>
 using namespace std;

 int main()
 {
 //create the default locale from the user's environment
 locale langLocale("');

 //and assign it to the standard ouput channel
 cout.imbue(langLocale);

 //process the name of the locale
 bool isGerman;
 if (langLocale.name() == "0de_DE" ||
 langLocale.name() == "de" ||
 langLocale.name() == "german") {
 isGerman = true;
 }
 else {
 isGerman = false;
 }

The C++ Standard Library

dyne-book 599

 //read locale for the input
 if (isGerman) {
 cout << "Sprachumgebung fuer Eingaben: ";
 }
 else {
 cout << "Locale for input: ";
 }
 string s;
 cin >> s;
 if (!cin) {
 if (isGerman) {
 cerr << "FEHLER beim Einlesen der Sprachumgebung"
 << endl;
 }
 else {
 cerr << "ERROR while reading the locale" << endl;
 }
 return EXIT.FAILURE;
 }
 locale cinLocale(s.c_str());

 //and assign it to the standard input channel
 cin.imbue(cinLocale);

 //read and output floating-point values in a loop
 double value;
 while (cin >> value) {
 cout << value << endl;
 }
 }

In this example, the following statement creates an object of the class locale:

 locale langLocale("");

Passing an empty string as the name of the locale has a special meaning: The default locale from
the user's environment is used (this is often determined by the environment variable LANG). This
locale is assigned to the standard input stream with the statement

 cout.imbue(langLocale);

The expression

 langLocale.name()

is used to retrieve the name of the default locale, which is returned as an object of type string
(see Chapter 11).
The following statements construct a locale from a name read from standard input:

The C++ Standard Library

dyne-book 600

 string s;
 cin >> s;
 ...
 locale cinLocale(s.c_str());

To do this, a word is read from the standard input and used as the constructor's argument. If the
read fails, the ios_base:: failbit is set in the input stream, which is checked and handled in
this program:

 if (!cin) {
 if (isGerman) {
 cerr << "FEHLER beim Einlesen der Sprachumgebung"
 << endl;
 }
 else {
 cerr << "ERROR while reading the locale" << endl;
 }
 return EXIT_FAILURE;
 }

Again, if the string is not a valid value for the construction of a locale, a runtime_error
exception is thrown.
If a program wants to honor local conventions, it should use corresponding locale objects. The
static member function global() of the class locale can be used to install a global locale
object. This object is used as the default value for functions that take an optional locale object as
an argument. If the locale object set with the global() function has a name, it is also arranged
that the C functions dealing with locales react correspondingly. If the locale set has no name, the
consequences for the C functions depend on the implementation.
Here is an example of how to set the global locale object depending on the environment in which
the program is running:

 / * create a locale object depending on the program's environment
and
 * set it as the global object
 */
 std::locale::global(std::locale(""));

Among other things, this arranges for the corresponding registration for the C functions to be
executed. That is, the C functions are influenced as if the following call was made:

 std::setlocale(LC_ALL,"")

However, setting the global locale does not replace locales already stored in objects. It only
modifies the locale object copied when a locale is created with a default constructor. For
example, the stream objects store locale objects that are not replaced by a call to
locale::global(). If you want an existing stream to use a specific locale, you have to tell the
stream to use this locale using the imbue() function.
The global locale is used if a locale object is created with the default constructor. In this case, the
new locale behaves as if it is a copy of the global locale at the time it was constructed. The
following three lines install the default locale for the standard streams:

 // register global locale object for streams

The C++ Standard Library

dyne-book 601

 std::cin.imbue(std::locale());
 std::cout.imbue(std::locale());
 std::cerr.imbue(std::locale());

When using locales in C++, it is important to remember that the C++ locale mechanism is only
loosely coupled to the C locale mechanism. There is only one relation to the C locale mechanism:
The global C locale is modified if a named C++ locale object is set as the global locale. In
general, you should not assume that the C and the C++ functions operate on the same locales.

14.2.2 Locale Facets

The actual dependencies on national conventions are separated into several aspects that are
handled by corresponding objects. An object dealing with a specific aspect of internationalization
is called a facet. A locale object is used as a container of different facets. To access an aspect of
a locale, the type of the corresponding facet is used as the index. The type of the facet is passed
explicitly as a template argument to the template function use_facet(), accessing the desired
facet. For example, the expression

 std::use_facet<std::numpunct<char> >(loc)

accesses the facet type numpunct for the character type char of the locale object loc. Each
facet type is defined by a class that defines certain services. For example, the facet type
numpunct provides services used in conjunction with the formatting of numeric and Boolean
values. For example, the following expression returns the string used to represent true in the
locale loc.

 std::use_facet<std::numpunct<char> >(loc).truename()

Table 14.3 provides an overview over the facets predefined by the C++ standard library. Each
facet is associated with a category. These categories are used by some of the constructors of
locales to create new locales as the combination of other locales.

Table 14.3. Facet Types Predefined by the C++ Standard Library
Category Facet Type Used for
numeric num_get<>() Numeric input
 num_put<>() Numeric output
 numpunct<>() Symbols used for numeric I/O
time time_get<>() Time and date input
 time_put<>() Time and date output
monetary money_get<>() Monetary input
 money_put<>() Monetary output
 moneypunct <>() Symbols used for monetary I/O
ctype ctype<>() Character information(toupper() , isupper())
 codecvt<>() Conversion between different character encodings
collate collate<>() String collation
messages messages<> Message string retrieval
It is possible to define your own versions of the facets to create specialized locales. The following
examples demonstrates how this is done. It defines a facet using German representations of the
Boolean values:

The C++ Standard Library

dyne-book 602

 class germanBoolNames : public std::numpunct_byname<char> {
 public:
 germanBoolNames (const char *name)
 : std::numpunct_byname<char>(name) {
 }
 protected:
 virtual std::string do_truename() const {
 return "wahr";
 }
 virtual std::string do_falsename() const {
 return "falsch";
 }
 };

The class germanBoolNames derives from the class numpunct_byname, which is defined by
the C++ standard library. This class defines punctuation properties depending on the locale used
for numeric formatting. Deriving from numpunct_byname instead of from numpunct lets you
customize the members not overridden explicitly. The values returned from these members still
depend on the name used as the argument to the constructor. If the class numpunct had been
used as the base class, the behavior of the other functions would be fixed. However, the class
germanBoolNames overrides the two functions used to determine the textual representation of
true and false.
To use this facet in a locale, you need to create a new locale using a special constructor of the
class locale. This constructor takes a locale object as its first argument and a pointer to a facet
as its second argument. The created locale is identical to the first argument except for the facet
that is passed as the second argument. This facet is installed in the newly create locale after the
first argument is copied:

 std::locale loc (std::locale(""), new germanBoolNames(""));

The new expression creates a facet that is installed in the new locale. Thus, it is registered in loc
to create a variation of locale(""). Since locales are immutable, you have to create a new
locale object if you want to install a new facet to a locale. This locale object can be used like any
other locale object. For example,

 std::cout.imbue(loc);
 std::cout << std::boolalpha << true << std::endl;

would have the following output:

 wahr

You also can create a completely new facet. In this case, the function has_facet() can be
used to determine whether such a new facet is registered for a given locale object.

14.3 Locales in Detail

A C++ locale is an immutable container for facets. It is defined in the <locale> header file as
follows:

The C++ Standard Library

dyne-book 603

 namespace std {
 class locale {
 public:
 // global locale objects
 static const locale& classic(); //classic C locale
 static locale global(const locale&); //set global locale

 // internal types and values
 class facet;
 class id;
 typedef int category;
 static const category none, numeric, time, monetary,
 ctype, collate, messages, all;

 // constructors
 locale() throw();
 explicit locale (const char* name);

 // create locale based on other locales
 locale (const locale& loc) throw();
 locale (const locale& loc, const char* name, category);
 template <class Facet>
 locale (const locale& loc, Facet* fp);
 locale (const locale& loc, const locale& loc2, category);

 // assignment operator
 const locale& operator= (const locale& loc) throw();
 template <class Facet>
 locale combine (const locale& loc);

 // destructor
 ~locale() throw();

 //name (if any)
 basic_string<char> name() const;

 // comparisons
 bool operator== (const locale& loc) const;
 bool operator!= (const locale& loc) const;

 //sorting of strings
 template <class charT, class Traits, class Allocator>
 bool operator() (
 const basic_string<charT,Traits,Allocator>& s1,
 const basic_string<charT,Traits,Allocator>& s2) const;
 };

 //facet access
 template <class Facet>
 const Facet& use_facet (const locale&);
 template <class Facet>
 bool has_facet (const locale&) throw();
 }

The strange thing about locales is how the objects stored in the container are accessed. A facet
in a locale is accessed using the type of the facet as the index. Because each facet exposes a

The C++ Standard Library

dyne-book 604

different interface and suits a different purpose, it is desirable to have the access function to
locales return a type corresponding to the index. This is exactly what can be done with a type as
the index. Using the facet's type as an index has the additional advantage of having a type-safe
interface.
Locales are immutable. This means the facets stored in a locale cannot be changed (except
when locales are being assigned). Variations of locales are created by combining existing locales
and facets to create a new locale. Table 14.4 lists the constructors for locales.

Table 14.4. Constructing Locales
Expression Effect

locale() Creates a copy of the current global locale
locale (name) Creates a locale from the string name
locale (loc) Creates a copy of locale loc
locale (loc1,loc2, cat) Creates a copy of locale loc1, with all facets from category cat

replaced with facets from locale loc2
locale (loc,name,cat) Equivalent to locale(loc, locale (name) ,cat)
locale (loc,fp) Creates a copy of locale loc and installs the facet to which fp refers
loc1 = loc2 Assigns locale loc2 to locale loc1
loc1. template
combined<F > (loc2)

Creates a copy of locale loc1 but with the facet of type F taken
from loc2

Almost all constructors create a copy of some other locale. Merely copying a locale is considered
to be a cheap operation. Basically, it consists of setting a pointer and increasing a reference
count. Creating a modified locale is more expensive. In this case, a reference count for each facet
stored in the locale has to be adjusted. Although the standard makes no guarantees about such
efficient behavior, it is likely that all implementations will be rather efficient for copying locales.
Two of the constructors listed in Table 14.4 take names of locales. The names accepted are not
standardized, with the exception of the name C. However, the standard requires that the
documentation with the C++ standard library lists the accepted names. It is assumed that most
implementations will accept names as outlined in Section 14.2.
The member function combine() needs some explanation because it uses a feature that was
implemented in compilers only recently. It is a member function template with an explicitly
specified template argument. This means the template argument is not deduced implicitly from an
argument because there is no argument from which the type can be deduced. Instead, the
template argument is specified explicitly (type F in (his case).
The two functions that access facets in a locale object use the same technique (Table 14.5).
The major difference is that these two functions are global template functions, thereby making
this ugly syntax involving the template keyword unnecessary.
The function use_facet() returns a reference to a facet. The type of this reference is the type
passed explicitly as the template argument. If the locale passed as the argument does not contain
a corresponding facet, the function throws a bad_cast exception. The function has_facet()
can be used to test whether a particular facet is present in a given locale.

Table 14.5. Accessing Facets
Expression Effect

has_facet<F>(loc) Returns true if a facet of type F is stored in locale loc
use_facet<F> (loc) Returns a reference to the facet of type F stored in locale loc
The remaining operations of locales are listed in Table 14.6. The name of a locale is maintained
if the locale was constructed from a name, or one or more named locales. However, again, the
standard makes no guarantees about the construction of a name resulting from combining two
locales. Two locales are considered to be identical if one is a copy of the other or if both locales
have the same name. It is natural to consider two objects to be identical if one is a copy of the
other. But what about this naming stuff? The idea behind this is basically that the name of the
locale reflects the names used to construct the named facets. For example, the locale's name

The C++ Standard Library

dyne-book 605

might be constructed by joining the names of the facets in a particular order, separating the
individual names by separation characters. Using this scheme it would possible to identify two
locale objects as identical if they are constructed by combining the same named facets into locale
objects. In other words, the standard basically requires that two locales consisting of the same set
of named facets be considered identical. Thus, the names will probably be constructed carefully
to support this notion of equality.

Table 14.6. Operations of Locales
Expression Effect

loc.name() Returns the name of locale loc as string
loc1 == loc2 Returns true if loc1 and loc2 are identical locales
loc1 != loc2 Returns true if loc1 and loc2 are different locales
loc(str1 ,str2) Returns the Boolean result of comparing strings str1 and str2 for ordering

(whether str1 is less than str2)
locale::classic() Returns locale("C")
locale::global
(loc)

Installs loc as the global locale and returns the previous global locale

The parentheses operator makes it possible to use a locale object as a comparator for strings.
This operator uses the string comparison from the collate facet to compare the strings passed
as the argument for ordering. Thus, it returns whether one string is less than the other string
according to the locale object. This is the behavior of an STL function object (see Section 8.1,),
so you can use a locale object as a sorting criterion for STL algorithms that operate on strings.
For example, a vector of strings can be sorted according to the rules for string collation of the
German locale as follows:

 std::vector<std::string> v;
 ...
 // sort strings according to the German locale
 std::sort (v.begin(),v.end(), //range
 locale("de_DE")); //sorting criterion

14.4 Facets in Detail

The important aspect of locales are the contained facets. All locales are guaranteed to contain
certain standard facets. The description of the individual facets in the following subsections
provides which instantiations of the corresponding facet are guaranteed. In addition to these
facets, an implementation of the C++ standard library may provide additional facets in the locales.
What is important is that the user can also install her own facets or replace standard ones.
Section 14.2.2, discussed how to install a facet in a locale. For example, the class
germanBoolNames was derived from the class numpunct_byname<char>, one of the
standard facets, and installed in a locale using the constructor, taking a locale and a facet as
arguments. But what do you need to create your own facet? Every class F that conforms to the
following two requirements can be used as a facet:

1. F derives publically from class locale::facet. This base class mainly defines some
mechanism for reference counting that is used internally by the locale objects. It also
declares the copy constructor and the assignment operator to be private, thereby making
it infeasible to copy or to assign facets.

2. F has a publically accessible static member named id of type locale::id. This
member is used to look up a facet in a locale using the facet's type. The whole issue of

The C++ Standard Library

dyne-book 606

using a type as the index is to have a type-safe interface. Internally, a normal container
with an integer as the index is used to maintain the facets.

The standard facets conform not only to these requirements but also to some special
implementation guidelines. Although conforming to these guidelines is not required, doing so is
useful. The guidelines are as follows:

1. All member functions are declared to be const. This is useful because use_facet()
returns a reference to a const facet. Member functions that are not declared to be
const can't be invoked.

2. All public functions are nonvirtual and delegate each request to a protected virtual
function. The protected function is named like the public one, with the addition of a
leading do_. For example, numpunct::truename() calls
numpunct::do_truename(). This style is used to avoid hiding member functions
when overriding only one of several virtual member functions that has the same name.
For example, the class num_put has several functions named put(). In addition, it
gives the programmer of the base class the possibility of adding some extra code in the
nonvirtual functions, which is executed even if the virtual function is overridden.

The following description of the standard facets concerns only the public functions. To modify the
facet you have always to override the corresponding protected functions. If you define functions
with the same interface as the public facet functions, they would only overload them because
these functions are not virtual.
For most standard facets, a "_byname" version is defined. This version derives from the
standard facet and is used to create an instantiation for a corresponding locale name. For
example, the class numpunct_byname is used to create the numpunct facet for a named locale.
For example, a German numpunct facet can be created like this:

 std::numpunct_byname("de_DE")

The _byname classes are used internally by the locale constructors that take a name as an
argument. For each of the standard facets supporting a name, the corresponding _byname class
is used to construct an instant of the facet.

14.4.1 Numeric Formatting

Numeric formatting converts between the internal representation of numbers and the
corresponding textual representations. The iostream operators delegate the actual conversion to
the facets of the locale::numeric category. This category is formed by three facets:

1. numpunct, which handles punctuation symbols used for numeric formatting and parsing
2. num_put, which handles numeric formatting
3. num_get, which handles numeric parsing

In short, the facet num_put does the numeric formatting described for iostreams in Section
13.7, and num_get parses the corresponding strings. Additional flexibility not directly accessible
through the interface of the streams is provided by the numpunct facet.

Numeric Punctuation

The C++ Standard Library

dyne-book 607

The numpunct facet controls the symbol used as the decimal point, the insertion of optional
thousands separators, and the strings used for the textual representation of Boolean values.
Table 14.7 lists the members of numpunct.

Table 14.7. Members of the numpunct Facet
Expression Meaning

np.decimal_point() Returns the character used as the decimal point
np.thousands_sep() Returns the character used as the thousands separator
np.grouping() Returns a string describing the positions of the thousands separators
np.truename() Returns the textual representation of true
np.falsename() Returns the textual representation of false
numpunct takes a character type charT as the template argument. The characters returned
from decimal_point() and thousand.sep() are of this type, and the functions truename()
and falsename() return a basic_string<charT>. The two instantiations numpunct<char>
and numpunct<wchar_t> are required.
Because long numbers are hard to read without intervening characters, the standard facets for
numeric formatting and numeric parsing support thousands separators. Often, the digits
representing an integer are grouped into triples. For example, one million is written like this:

 1,000,000

Unfortunately, it is not used everywhere exactly like that. For example, in German a period is
used instead of a comma. Thus, a German would write one million like this:

 1.000.000

This difference is covered by the thousands_sep() member. But this is not sufficient because
in some countries digits are not put into triples. For example, in Nepal people would write

 10.00.000

using even different numbers of digits in the groups. This is where the string returned from the
function grouping() comes in. The number stored at index i gives the number of digits in the ith
group, where counting starts with zero for the rightmost group. If there are fewer characters in the
string than groups, the size of the last specified group is repeated. To create unlimited groups,
you can use the value numeric_limits<char>: :max() or, if there is no group at all, the
empty string.Table 14.8 lists some examples of the formatting of one million.

Table 14.8. Examples of Numeric Punctuation of One Million
String Result

{ 0 } or "" (the default for grouping()) 1000000
{ 3, 0 } or "\3" 1,000,000
{ 3, 2, 3, 0 } or "\3\2\3" 10,00,000
{ 2, CHAR_MAX, 0 } 10000,00
Note that normal digits are usually not very useful. For example, the string "2" specifies groups
of 50 digits for ASCII encoding because the character '2' has the integer value 50 in the ASCII
character set.

Numeric Formatting

The C++ Standard Library

dyne-book 608

The num_put facet is used for textual formatting of numbers. It is a template class that takes two
template arguments: the type charT of the characters to be produced and the type OutIt of an
output iterator to the location at which the produced characters are written. The output iterator
defaults to ostreambuf _iterator<charT>. The num_put facet provides a set of functions,
all called put() and differing only in the last argument. You can use the facet as follows:

 std::locale loc;
 OutIt to = ...;
 std: : ios_base& fmt = ...;
 charT fill = ...;
 T value = ...;

 //get numeric output facet of the loc locale
 const std::num_put<charT,OutIt>& np
 = std::use_facet<std::num_put<charT,OutIt>(loc);

 //write value with numeric output facet
 np.put(to, fmt, fill, value);

These statements would produce a textual representation of the value value using characters of
type charT written to the output iterator to. The exact format is determined from the formatting
flags stored in fmt, where the character fill is used as a fill character. The put() function
returns an iterator pointing immediately after the last character written.
The facet num_put provides member functions that take objects of types bool, long,
unsigned long, double, long double, and void* as the last argument. It does not
provide member functions, for example, for short or int. This is no problem because
corresponding values of built-in types are promoted to supported types if necessary.
The standard requires that the two instantiations num_put<char> and num_put<wchar_t> are
stored in each locale (both using the default for the second template argument). In addition, the
C++ standard library supports all instantiations that take a character type as the first template
argument and an output iterator type as the second. Of course, it is not required that all of these
instantiations are stored in each locale because this would be an infinite amount of facets.

Numeric Parsing

The facet num_get is used to parse textual representations of numbers. Corresponding to the
facet num_put, it is a template that takes two template arguments: the character type charT
and an input iterator type InIt, which defaults to istreambuf _iterator<charT>. It
provides a set of get() functions that differ only in the last argument. You can use the facet as
follows:

 std::locale loc;
 InIt from = ...;
 InIt end = ...;
 std::ios_base& fmt = ...;
 std::ios_base::ios_state err;
 T value;

 //get numeric input facet of the loc locale
 const std::num_get<charT,InIt>& ng
 = std::use_facet<std::num_get<charT,InIt>(loc);

The C++ Standard Library

dyne-book 609

 // read value with numeric input facet
 ng.get(from, end, fmt, err, value);

These statements attempt to parse a numeric value corresponding to the type T from the
sequence of characters between from and end. The format of the expected numeric value is
defined by the argument fmt. If the parsing fails, err is modified to contain the value
ios_base: :failbit. Otherwise, ios_base: :goodbit is stored in err and the parsed
value in value. The value of value is modified only if the parsing is successful. get() returns
the second parameter (end) if the sequence was used completely. Otherwise, it returns an
iterator pointing to the first character that could not be parsed as part of the numeric value.
The facet num_get supports functions to read objects of the types bool, long, unsigned
short, unsigned int, unsigned long, float, double, long double, and
void*. There are some types for which there is no corresponding function in the num_put facet;
for example, unsigned short. This is because writing a value of type unsigned short
produces the same result as writing a value of type unsigned short promoted to an
unsigned long. However, reading a value as type unsigned long and then converting it to
unsigned short may yield a different value than reading it as type unsigned short directly.
The standard requires that the two instantiations num_get<char> and num_get<wchar_t> be
stored in each locale (both using the default for the second template argument). In addition, the
C++ standard library supports all instantiations that take a character type as the first template
argument and an input iterator type as the second. As with num_put, not all supported
instantiations are required to be present in all locale objects.

14.4.2 Time and Date Formatting

The two facets time_get and time_put in the category time provide services for parsing and
formatting times and dates. This is done by the member functions that operate on objects of type
tm. This type is defined in the header tile <ctime>. The objects are not passed directly; rather,
a pointer to them is used as the argument.
Both facets in the time category depend heavily on the behavior of the function strftime()
(also defined in the header file <ctime>). This function uses a string with conversion specifiers to
produce a string from a tm object. Table 14.9 provides a brief summary of the conversion
specifiers. The same conversion specifiers are also used by the time_put facet.
Of course, the exact string produced by strftime() depends on the C locale in effect. The
examples in the table are given for the "C" locale.

Time and Date Parsing

The facet time_get is a template that takes a character type charT and an input iterator type
InIt as template arguments. The input iterator type defaults to istreambuf
_iterator<charT>. Table 14.10 lists the members defined for the time_get facet. All of
these members, except date_order(), parse the string and store the results in the tm object
pointed to by the argument t. If the string could not be parsed correctly, either an error is
reported (for example, by modifying the argument err) or an unspecified value is stored. This
means that a time produced by a program can be parsed reliably but user input cannot. With the
argument fmt, other facets used during parsing are determined. Whether other flags from fmt
have any influence on the parsing is not specified.
All functions return an iterator that has the position immediately after the last character read. The
parsing stops if parsing is complete or if an error occurs (for example, because a string could not
be parsed as a date).

The C++ Standard Library

dyne-book 610

A function reading the name of a weekday or a month reads both abbreviated names and full
names. If the abbreviation is followed by a letter, which would be legal for a full name, the
function attempts to read the full name. If this fails, the parsing fails, even though an abbreviated
name was already parsed successfully.

Table 14.9. Conversion Specifiers for strftime()
Specifier Meaning Example
%a Abbreviated weekday Mon
%A Full weekday Monday
%b Abbreviated month name Jul
%B Full month name July
%c Locale's preferred date and time representation Jul 12 21:53:22 1998
%d Day of the month 12
%H Hour of the day using a 24-hour clock 21
%I Hour of the day using a 12-hour clock 9
%j Day of the year 193
%m Month as decimal number 7
%M Minutes 53
%P Morning or evening (am or pm) pm
%S Seconds 22
%U Week number starting with the first Sunday 28
%W Week number starting with the first Monday 28
%w Weekday as a number (Sunday == 0) 0
%x Locale's preferred date representation Jul 12 1998
%X Locale's preferred time representation 21:53:22
%y The year without the century 98
%Y The year with the century 1998
%Z The time zone MEST
%% The literal % 7.
Whether a function that is parsing a year allows two-digit years is unspecified. The year that is
assumed for a two-digit year, if it is allowed, is also unspecified.
date_order() returns the order in which the day, month, and year appear in a date string. This
is necessary for some dates because the order cannot be determined from the string
representing a date. For example, the first day in February in the year 2003 may be printed either
as 3/2/1 or as 1/2/3. Class time_base, which is the base class of the facet time_get,
defines an enumeration called dateorder for possible dale order values. Table 14.11 lists
these values.
The standard requires that the two instantiations time_get<char> and time_get<wchar_t>
are stored in each locale. In addition, the C++ standard library supports all instantiations that take
char or wchar_t as the first template argument, and a corresponding input iterator as the
second. All of these instantiations are not required to be stored in each locale object.

Table 14.10. Members of the time_get Facet
Expression Meaning

tg.get_time (from , to , fmt ,
err , t)

Parses the string between from and to as the time
produced by the X specifier for strftime()

tg.get_date(from,to,fmt ,err,t) Parses the string between from and to as the date
produced by the x specifier for strftime()

tg.get weekday (from, to , fmt , Parses the string between from and to as the name

The C++ Standard Library

dyne-book 611

err , t) of the weekday
tg.get_monthname (from , to , fmt
, err , t)

Parses the string between from and to as the name
of the month

tg.get_year (from, to , fmt , err
, t)

Parses the string between from and to as the year

tg.date_order() Returns the date order used by the facet
Table 14.11. Members of the Enumeration dateorder

Value Meaning
no_order No particular order (for example, a date may be in Julian format)
dmy The order is day, month, year
mdy The order is month, day, year
ymd The order is year, month, day
ydm The order is year, day, month

Time and Date Formatting

The facet time_put is used for formatting times and dates. It is a template that takes as
arguments a character type charT and an optional output iterator type Out It. The latter
defaults to type ostreambuf_iterator (see page 665).
The facet time_put defines two functions called put(), which are used to convert the date
information stored in an object of type tm into a sequence of characters written to an output
iterator. Table 14.12 lists the members of the facet time_put.

Table 14.12. Members of the time_put Facet
Expression Meaning

tp.put (oit , fmt ,fill , t , cbeg ,
cend)

Converts according to the string
[cbeg,cend)

tp.put (oit , fmt , fill , t , cvt ,mod) Converts using the conversion specifier
cvt

Both functions write their results to the output iterator oit and return an iterator pointing
immediately after the last character produced. The argument I is of type ios_base and is used to
access other facets and potentially additional formatting information. The character fill is used
when a space character is needed and for filling. The argument t points to an object of type tm
that is storing the date to be formatted.
The version of put() that takes two characters as the last two arguments formats the date found
in the tm object to which t refers, interpreting the argument cvt like a conversion specifier to
strftime(). This put() function does only one conversion; namely, the one specified by the
cvt character. This function is called by the other put() function for each conversion specifier
found. For example, using 'X' as the conversion specifier results in the time that is stored in *t
being written to the output iterator. The meaning of the argument mod is not defined by the
standard. It is intended to be used as a modifier to the conversion as found in several
implementations of the strftime() function.
The version of put() that takes a string defined by the range [cbeg,cend) to guide the
conversion behaves very much like strftime(). It scans the string and writes every character
that is not part of a conversion specification to the output iterator oit. If it encounters a
conversion specification introduced by the character %, it extracts an optional modifier and a
conversion specifier. The function continues by calling the other version of put(), using the
conversion specifier and the modifier as the last two arguments. After processing a conversion
specification, put() continues to scan the string.

The C++ Standard Library

dyne-book 612

Note that this facet is somewhat unusual because it provides a nonvirtual member function;
namely, the function put(), which uses a string as the conversion specification. This function
cannot be overridden in classes derived from time_put. Only the other put() function can be
overridden.
The standard requires that the two instantiations time_put<char> and time_put<wchar_t>
are stored in each locale. In addition, the C++ standard library supports all instantiations that take
char or wchar_t as the first template argument and a corresponding output iterator as the
second. There is no guaranteed support for instantiations using a type other than char or
wchar_t as the first template argument. Also, it is not guaranteed that any instantiations other
than time_put<char> and time_put<wchar_t> be stored in locale objects by default.

14.4.3 Monetary Formatting

The category monetary consists of the facets moneypunct, money_get, and money_put.
The facet moneypunct defines the format of monetary values. The other two use this information
to format or to parse a monetary value.

Monetary Punctuation

Monetary values are printed differently depending on the context. The formats used in different
cultural communities differ widely. Examples of the varying details are the placement of the
currency symbol (if present at all), the notation for negative or positive values, the use of national
or international currency symbols, and the use of thousands separators. To provide the
necessary flexibility, the details of the format are factored into the facet moneypunct.
The facet moneypunct is a template that takes as arguments a character type charT and a
Boolean value that defaults to false. The Boolean value indicates whether local (false) or
international (true) currency symbols are to be used. Table 14.13 lists the members of the
facet moneypunct.

Table 14.13. Members of the moneypunct Facet
Expression Meaning

mp.decimal_point() Returns a character to be used as the decimal point
mp.thousands _
sep()

Returns a character to be used as the thousands separator

mp.grouping() Returns a string specifying the placement of the thousands
separators

mp.curr_symbol() Returns a string with the currency symbol
mp.positive_sign() Returns a string with the positive sign
mp.negative_sign() Returns a string with the negative sign
mp.frac_digits() Returns the number of fractional digits
mp.pos_format() Returns the format to be used for non-negative values
mp.neg_format() Returns the format to be used for negative values
moneypunct derives from the class money_base. This base class defines an enumeration
called part, which is used to form a pattern for monetary values. The class also defines a
type called pattern (which is actually a type definition for char [4]). This type is used to store
four values of type part that form a pattern describing the layout of a monetary value. Table
14.14 lists the five possible parts that can be placed in a pattern.

Table 14.14. Parts of Monetary Layout Patterns
Value Meaning

none At this position, spaces may appear but are not required

The C++ Standard Library

dyne-book 613

space At this position, at least one space is required
sign At this position, a sign may appear
symbol At this position, the currency symbol may appear
value At this position, the value appears
moneypunct defines two functions that return patterns: the function neg_format() for negative
values and the function pos_format() for non-negative values. In a pattern, each of the parts
sign, symbol, and value is mandatory, and one of the parts none and space has to appear.
This does not mean, however, that there is really a sign or a currency symbol printed. What is
printed at the positions indicated by the parts depends on the values returned from other
members of the facet and on the formatting flags passed to the functions for formatting.
Only the value always appears. Of course, it is placed at the position where the part value
appears in the pattern. The value has exactly frac_digits() fractional digits, with
decimal_point() used as the decimal point (unless there are no fractional digits, in which
case no decimal point is used).
The value may be interspersed with thousands separators, unless the string that is returned from
grouping() is empty. The character used for the thousands separator is the one returned from
thousands_sep(). The rules for the placement of the thousands separators are identical to the
rules for numeric formatting (see page 705). When monetary values are printed, thousands
separators are always inserted according to the string returned from grouping(). When
monetary values are read, thousands separators are optional unless the grouping string is empty.
The correct placement of thousands separators is checked after all other parsing is successful.
The parts space and none control the placement of spaces. space is used at a position where
at least one space is required. During formatting, if ios_base: :internal is specified in the
format flags, fill characters are inserted at the position of the space or the none part. Of course,
filling is done only if the minimum width specified is not used with other characters. The character
used as the space character is passed as the argument to the functions for the formatting of
monetary values. If the formatted value does not contain a space, none can be placed at the last
position. space and none may not appear as the first part in a pattern, and space may not be the
last part in a pattern.
Signs for monetary values may consist of more than one character. For example, in certain
contexts parentheses around a value are used to indicate negative values. At the position where
the sign part appears in the pattern, the first character of the sign appears. All other characters
of the sign appear at the end after all other components. If the string for a sign is empty, no
character indicating the sign appears. The character that is to be used as a sign is determined
with the function positive_sign() for non-negative values and negative_sign() for
negative values.
At the position of the symbol part, the currency symbol appears. The symbol is present only if
the formatting flags used during formatting or parsing have the ios_base::showbase flag set.
The string returned from the function curr_symbol() is used as the currency symbol. The
currency symbol is a local symbol to be used to indicate the currency if the second template
argument is false (the default). Otherwise, an international currency symbol is used.
Table 14.15 illustrates all of this, using the value $-1234.56 as an example. Of course, this
means that frac_digits() returns 2. In addition, a width of 0 is always used.
The standard requires that the instantiations moneypunct<char>, moneypunct<wchar_t>,
moneypunct<char, true>, and moneypunct<wchar_t, true> are stored in each locale.
The C++ standard library does not support any other instantiation.

Monetary Formatting

The facet money_put is used to format monetary values. It is a template that takes a character
type charT as the first template argument and an output iterator OutIt as the second. The
output iterator defaults to ostreambuf _iterator<charT>. The two member functions

The C++ Standard Library

dyne-book 614

put() produce a sequence of characters corresponding to the format specified by a
moneypunct facet. The value to be formatted is either passed as type long double or as type
basic_string<charT>. You can use the facet as follows:

Table 14.15. Examples of Using the Monetary Pattern
Pattern Sign Result

symbol none sign value $1234.56
symbol none sign value - $-1234.56
symbol space sign value - $ -1234.56
symbol space sign value () $ (1234.56)
sign symbol space value () ($ 1234.56)
sign value space symbol 0 (1234.56 $)
symbol space value sign - $ 1234.56-
sign value space symbol - -1234.56 $
sign value space symbol - -1234.56 $
sign value space symbol - -1234.56$

 //get monetary output facet of the loc locale
 const std::money_put<charT,OutIt>& mp
 = std::use_facet<std::money_put<charT,OutIt> >(loc);

 // write value with monetary output facet
 mp.put(out, intl, frat, fill, value);

The argument out is an output iterator of type OutIt to which the formatted string is written.
put() returns an object of this type pointing immediately after the last character produced. The
argument intl indicates whether a local or an international currency symbol is to be used. fmt
is used to determine formatting flags, such as the width to be used and the moneypunct facet
defining the format of the value to be printed. Where a space character has to appear, the
character fill is inserted.
The argument value has type long double or type basic_string<charT>. This is the
value that is formatted. If the argument is a string, this string may consist only of decimal digits
with an optional leading minus sign. If the first character of the string is a minus sign, the value is
formatted as a negative value. After it is determined that the value is negative, the minus sign is
discarded. The number of fractional digits in the string is determined from the member function
frac_digits() of the moneypunct facet.
The standard requires that the two instantiations money_put<char> and
money_put<wchar_t> are stored in each locale. In addition, the C++ standard library supports
all instantiations that take char or wchar_t as the first template argument and a corresponding
output iterator as the second. All of these instantiations are not required to be stored in each
locale object.

Monetary Parsing

The facet money_get is used for parsing of monetary values. It is a template class that takes a
character type charT as the first template argument and an input iterator type InIt as the
second. The second template argument defaults to istreambuf _iterator<charT>. This
class defines two member functions called get() that try to parse a character and, if the parse is
successful, store the result in a value of type long double or of type
basic_string<charT>. You can use the facet as follows:

The C++ Standard Library

dyne-book 615

 //get monetary input facet of the loc locale
 const std::money_get<charT,InIt>& mg
 = std::use_facet<std::money_get<charT,InIt> >(loc);

 //read value with monetary input facet
 mg.get(ibeg, iend, intl, fmt, err, val);

The character sequence to be parsed is defined by the sequence between ibeg and iend. The
parsing stops as soon as either all elements of the used pattern are read or an error is
encountered. If an error is encountered, the ios_base::failbit is set in err and nothing is
stored in val. If parsing is successful, the result is stored in the value of types long double or
basic_string that is passed by reference as argument val.
The argument intl is a Boolean value that selects a local or an international currency string.
The moneypunct facet defining the format of the value to be parsed is retrieved using the locale
object imbued by the argument fmt. For parsing a monetary value, the pattern returned from the
member neg_format() of the moneypunct facet is always used.
At the position of none or space, the function that is parsing a monetary value consumes all
available space, unless none is the last part in a pattern. Trailing spaces are not skipped. The
get() functions return an iterator that points after the last character that was consumed.
The standard requires that the two instantiations money_get<char> and
money_get<wchar_t> be stored in each locale. In addition, the C++ standard library supports
all instantiations that take char or wchar_t as the first template argument and a corresponding
input iterator as the second. All of these instantiations are not required to be stored in each locale
object.

14.4.4 Character Classification and Conversion

The C++ standard library defines two facets to deal with characters: ctype and codecvt. Both
belong to the category locale:: ctype. The facet ctype is used mainly for character
classification. such as testing whether a character is a letter. It also provides methods for
conversion between lowercase and uppercase letters and for conversion between char and the
character type for which the facet is instantiated. The facet codecvt is used to convert
characters between different encodings and is used mainly by basic_filebuf to convert
between external and internal representations.

Character Classification

The facet ctype is a template class parameterized with a character type. Three kinds of
functions are provided by the class ctype<charT>:

1. Functions to convert between char and charT
2. Functions for character classification
3. Functions for conversion between uppercase and lowercase letters

Table 14.16 lists the members defined for the facet ctype.
Table 14.16. Services Defined by the ctype<charT> Facet

Expression Effect
ct.is(m,c) Tests whether the character c matches the mask m

The C++ Standard Library

dyne-book 616

ct.is(beg ,end, vec) For each character in the range between beg and end, places a
mask matched by the character in the corresponding location of
vec

ct.scan_is(m,beg,end) Returns a pointer to the first character in the range between beg
and end that matches the mask m or end if there is no such
character

ct.scan_not (m , beg ,
end)

Returns a pointer to the first character in the range between beg
and end that does not match the mask m or end if all characters
match the mask

ct.toupper(c) Returns an uppercase letter corresponding to c if there is such a
letter; otherwise c is returned

ct.toupper(beg,end*) Converts each letter in the range between beg and end by
replacing the letter with the result of toupper()

ct.tolower(c) Returns a lowercase letter corresponding to c if there is such a
letter; otherwise c is returned

ct.tolower(beg,end*) Converts each letter in the range between beg and end by
replacing the letter with the result of tolower()

ct.widen(c) Returns the char converted to charT
ct.widen(beg, end, dest) For each character in the range between beg and end, places the

result of widen() at the corresponding location in dest
ct.narrow (c , default) Returns the charT c converted to char, or the char default if

there is no suitable character
ct.narrow (beg, end,
default, dest)

For each character in the range between beg and end,places the
result of narrow() at the corresponding location in dest

The function is(beg,end, vec) is used to store a set of masks in an array. For each of the
characters in the range between beg and end, a mask with the attributes corresponding to the
character is stored in the array pointed to by vec. This is useful to avoid virtual function calls for
the classification of characters if there are lots of characters to be classified.
The function widen() can be used to convert a character of type char from the native character
set to the corresponding character in the character set used by a locale. Thus, it makes sense to
widen a character even if the result is also of type char. For the opposite direction, the function
narrow() can be used to convert a character from the character set used by the locale to a
corresponding char in the native character set, provided there is such a char. For example, the
following code converts the decimal digits from char to wchar_t:

 std::locale loc;
 char narrow[] = "0123456789";
 wchar_t wide [10];

 std::use_facet<std::ctype<wchar_t> >(loc).widen(narrow, narrow+10,
 wide);

Class ctype derives from the class ctype_base. This class is used only to define an
enumeration called mask. This enumeration defines values that can be combined to form a
bitmask used for testing character properties. The values defined in ctype_base are shown in
Table 14.17. The functions for character classification all take a bitmask as an argument, which
is formed by combinations of the values defined in ctype_base. To create bitmasks as needed,
you can use the operators for bit manipulation (|, &,^, and ~). A character matches this
mask if it is any of the characters identified by the mask.

The C++ Standard Library

dyne-book 617

Table 14.17. Character Mask Values Used by ctype
Value Meaning

ctype_base::alnum Tests for letters and digits (equivalent to alpha I digit)
ctype_base:: alpha Tests for letters
ctype_base::cntrl Tests for control characters
ctype_base:: digit Tests for decimal digits
ctype_base:: graph Tests for punctuation characters, letters, and digits (equivalent to

alnum | punct)
ctype_base ::
lower

Tests for lowercase letters

ctype_base:: print Tests for printable characters
ctype_base::punct Tests for punctuation characters
ctype_base ::
space

Tests for space characters

ctype_base:: upper Tests for uppercase letters
ctype_base::xdigit Tests for hexadecimal digits

Specialization of ctype<> for Type char

For better performance of the character classification functions, the facet ctype is specialized for
the character type char. This specialization does not delegate the functions dealing with
character classification (is(), scan_is(), and scan_not()) to corresponding virtual
functions. Instead, these functions are implemented inline using a table lookup. For this case
additional members are provided (Table 14.18).

Table 14.18. Additional Members of ctype<char>
Expression Effect

ctype<char>::table_size Returns the size of the table (>=256)
ctype<char>:: classic_table() Returns the table for the "classic" C locale
ctype<char> (table,del=false) Creates the facet with table table
ct. table() Returns the actual table of facet ct
Manipulating the behavior of these functions for specific locales is done with a corresponding
table of masks that is passed as a constructor argument:

 // create and initialize the table
 std::ctype_base::mask mytable[std::ctype<char>::table_size] = {
 ...
 };

 // use the table for the ctype<char>facet ct
 std::ctype<char> ct(mytable, false);

This code constructs a ctype<char> facet that uses the table mytable to determine the
character class of a character. More precisely, the character class of the character c is
determined by

 mytable[static_cast<unsigned char>(c)]

The C++ Standard Library

dyne-book 618

The static member table_size is a constant defined by the library implementation and gives
the size of the lookup table. This size is at least 256 characters. The second optional argument to
the constructor of ctype<char> indicates whether the table should be deleted if the facet is
destroyed. If it is true, the table passed to the constructor is released by using delete []
when the facet is no longer needed.
The member function table() is a protected member function that returns the table that is
passed as the first argument to the constructor. The static protected member function
classic_table() returns the table that is used for character classification in the classic C
locale.

Global Convenience Functions for Character Classification

Convenient use of the ctype facets is provided by predefined global functions. Table 14.19 lists
all of the global functions.

Table 14.19. Global Convenience Functions for Character Classification
Function Effect

isalnum(c, loc) Returns whether c is a letter or a digit (equivalent to isalpha()&&isdigit())
isalpha(c, loc) Returns whether c is a letter
iscntrl(c, loc) Returns whether c is a control character
isdigit(c, loc) Returns whether c is a digit
isgraph(c, loc) Returns whether c is a printable, nonspace character (equivalent to

isalnum()&&ispunct())
islower(c, loc) Returns whether c is a lowercase letter
isprint (c,
loc)

Returns whether c is a printable character (including whitespaces)

ispunct(c, loc) Returns whether c is a punctuation character (that is, it is printable, but it is not a
space, digit, or letter)

isspace(c, loc) Returns whether c is a space character
isupper(c, loc) Returns whether c is an uppercase letter
isxdigit(c,
loc)

Returns whether c is a hexadecimal digit

tolower(c, loc) Converts c from an uppercase letter to a lowercase letter
toupper(c, loc) Converts c from a lowercase letter to an uppercase letter
For example, the following expression determines whether the character c is a lowercase letter in
the locale loc:

 std::islower(c,loc)

It returns a corresponding value of type bool.
The following expression returns the character c converted to an uppercase letter, if c is a
lowercase letter in the locale loc:

 std::toupper(c,loc)

If c is not a lowercase letter, the first argument is returned unmodified.
The expression

The C++ Standard Library

dyne-book 619

 std::islower(c,loc)

is equivalent to the following expression:

 std::use_facet<std::ctype<char> >(loc).is(std::ctype_base::lower,c)

This expression calls the member function is() of the facet ctype<char>. is() determines
whether the character c fulfills any of the character properties that are passed as the bitmask in
the first argument. The values for the bitmask are defined in the class ctype_base. See page
502 and page 669 for examples of the use of these convenience functions.
The global convenience functions for character classification correspond to C functions that have
the same name but only the first argument. They are defined in <cctype> and <ctype.h>, and
always use the current global C locale.[4] Their use is even more convenient:

[4] This locale is only identical to the global C++ locale if the last call to locale:: global() was with a named
locale and if there was no call to setlocale() since then. Otherwise, the locale used by the C functions is
different from the global C++ locale.

 if (std::isdigit(c))
 ...
 {

However, by using them you can't use different locales in the same program. Also, you can't use
a user-defined ctype facet using the C function. See page 497 for an example that demonstrates
how to use these C functions to convert all characters of a string to uppercase letters.
It is important to note that the C++ convenience functions should not be used in code sections
where performance is crucial. It is much faster to obtain the corresponding facet from the locale
and use the functions on this object directly. If a lot of characters are to be classified according to
the same locale, this can be improved even more, at least for non-char characters. The function
is(beg,end,vec) can be used to determine the masks for typical characters: This function
determines for each character in the range [beg,end)amask that describes the properties of the
character. The resulting mask is stored in vec at the position corresponding to the character's
position. This vector can then be used for fast lookup of the characters.

Character Encoding Conversion

The facet codecvt is used to convert between internal and external character encoding. For
example, it can be used to convert between Unicode and EUC (Extended UNIX Code), provided
the implementation of the C++ standard library supports a corresponding facet.
This facet is used by the class basic_filebuf to convert between the internal representation
and the representation stored in a file. The class basic_filebuf <charT,traits> (see page
627) uses the instantiation codecvt<charT,char.typename traits::state_type> to do
so. The facet used is taken from the locale stored with basic_filebuf. This is the major
application of the codecvt facet. Only rarely is it necessary to use this facet directly.
In Section 14.1, some basics of character encodings are introduced. To understanding
codecvt, you need to know that there are two approaches for the encoding of characters: One
is character encodings that use a fixed number of bytes for each character (wide-character
representation), and the other is character encodings that use a varying number of bytes per
character (multibyte representation).
It is also necessary to know that multibyte representations use so-called shift states for space
efficient representation of characters. The correct interpretation of a byte is possible only with the

The C++ Standard Library

dyne-book 620

correct shift state at this position. This in turn can be determined only by walking through the
whole sequence of multibyte characters (see Section 14.1, for more details).
The codecvt<> facet takes three template arguments:

1. The character type internT used for an internal representation
2. The type externT used to represent an external representation
3. The type stateT used to represent an intermediate state during the conversion

The intermediate state may consist of incomplete wide characters or the current shift state. The
C++ standard makes no restriction about what is stored in the objects representing the state.
The internal representation always uses a representation with a fixed number of bytes per
character. Mainly the two types char and wchar_t are intended to be used within a program.
The external representation may be a representation that uses a fixed size or a multibyte
representation. When a multibyte representation is used, the second template argument is the
type used to represent the basic units of the multibyte encoding. Each multibyte character is
stored in one or more objects of this type. Normally, the type char is used for this.
The third argument is the type used to represent the current state of the conversion. It is
necessary, for example, if one of the character encodings is a multibyte encoding. In this case,
the processing of a multibyte character might be terminated because the source buffer is drained
or the destination buffer is full while one character is being processed. If this happens, the current
state of the conversion is stored in an object of this type.
Similar to the other facets, the standard requires support for only a very few conversions. Only
the following two instantiations are supported by the C++ standard library:

1. codecvt<char,char,mbstate_t>, which converts the native character set to itself
(this is actually a degenerated version of the codecvt facet)

2. codecvt<wchar_t,char,mbstate_t>, which converts between the native tiny
character set(that is, char) and the native wide-character set (that is, wchar_t)

The C++ standard does not specify the exact semantics of the second conversion. The only
natural thing to do, however, is to split each wchar_t into sizeof(wchar_t) objects of type
char for the conversion from wchar_t to char, and to assemble a wchar_t from the same
amount of chars when converting in the opposite direction. Note that this conversion is very
different from the conversion between char and wchar_t done by the widen() and narrow()
member functions of the ctype facet: While the codecvt functions use the bits of multiple
chars to form one wchar_t (or vice versa), the ctype functions convert a character in one
encoding to the corresponding character in another encoding (if there is such a character).
Like the ctype facet, codecvt derives from a base class used to define an enumeration type.
This class is named codecvt.base, and it defines an enumeration called result. The values
of this enumeration are used to indicate the results of codecvt's members. The exact meanings
of the values depend on the member function used. Table 14.20 lists the member functions of
the codecvt facet.
The function in() converts an external representation to an internal representation. The
argument s is a reference to a stateT. At the beginning, this argument represents the shift state
used when the conversion is started. At the end, the final shift state is stored there. The shift state
passed in can differ from the initial state if the input buffer to be converted is not the first buffer
being converted. The arguments fb (from begin) and fe (from end) are of type const
internT*, and represent the beginning and the end of the input buffer. The arguments tb (to
begin) and te (to end) are of type externT*, and represent the beginning and the end of the
output buffer. The arguments

Table 14.20. Members of the codecvt Facet
Expression Meaning

The C++ Standard Library

dyne-book 621

cvt.in(s,fb,fe,fn,tb,te,tn) Converts external representation to internal
representation

cvt. out (s , fb , fe , fn , tb ,
te , tn)

Converts internal representation to external
representation

cvt.unshift(s,tb,te,tn) Writes escape sequence to switch to initial shift
state

cvt.encoding() Returns information about the external encoding
cvt. always_noconv() Returns true if no conversion will ever be done
cvt.length(s,fb,fe,max) Returns the number of externTs from the

sequence between fb and fe to produce max
internal characters

cvt.max_length() Returns the maximum number of externTs
necessary to produce one internT

fn (from next, of type const externT*&) and tn (to next, of type internT*&) are references
used to return the end of the sequence converted in the input buffer and the output buffer
respectively. Either buffer may reach the end before the other buffer reaches the end. The
function returns a value of type codecvt_base:: result, as indicated in Table 14.21.

Table 14.21. Return Values of the Conversion Functions
Value Meaning

ok All source characters were converted successfully
partial Not all source characters were converted, or more characters are needed to produce a

destination character
error A source character was encountered that cannot be converted
noconv No conversion was necessary
If ok is returned the function made some progress. If fn == fe holds, this means that the whole
input buffer was processed and the sequence between tb and tn contains the result of the
conversion. The characters in this sequence represent the characters from the input sequence,
potentially with a finished character from a previous conversion. If the argument s passed to
in() was not the initial state, a partial character from a previous conversion that was not
completed could have been stored there.
If partial is returned, either the output buffer was full before the input buffer could be drained or
the input buffer was drained when a character was not yet complete (for example, because the
last byte in the input sequence was part of an escape sequence switching between shift states). If
fe == fn, the input buffer was drained. In this case, the sequence between tb and tn contains
all characters that were converted completely but the input sequence terminated with a partially
converted character. The necessary information to complete this character's conversion during a
subsequent conversion is stored in the shift state s. If fe ! = fn, the input buffer was not
completely drained. In this case, te == tn holds; thus, the output buffer is full. The next time the
conversion is continued, it should start with fn.
The return value noconv indicates a special situation. That is, no conversion was necessary to
convert the external representation to the internal representation. In this case, fn is set to fb and
tn is set to tb. Nothing is stored in the destination sequence because everything is already
stored in the input sequence.
If error is returned, that means a source character that could not be converted was
encountered. There are several reasons why this can happen. For example, the destination
character set has no representation for a corresponding character, or the input sequence ends up
with an illegal shift state. The C++ standard does not define any method that can be used to
determine the cause of the error more precisely.
The function out() is equivalent to the function in(), except that it converts in the opposite
direction. That is, it converts an internal representation to an external representation. The
meanings of the arguments and the values returned are the same; only the types of the

The C++ Standard Library

dyne-book 622

arguments are swapped. That is, tb and te now have the type const internT*, and fb and
fe now have the type const externT*. The same applies to fn and tn.
The function unshift() inserts characters necessary to complete a sequence when the current
state of the conversion is passed as the argument s. This normally means that a shift state is
switched to the initial switch state. Only the external representation is terminated. Thus, the
arguments tb and tf are of type externT*, and tn is of type externT&*. The sequence
between tb and te defines the output buffer in which the characters are stored. The end of the
result sequence is stored in tn. unshift() returns a value as shown in Table 14.22.

Table 14.22. Return Values of the Function unshift()
Value Meaning

ok The sequence was completed successfully
partial More characters need to be stored to complete the sequence
error The state is invalid
noconv No character was needed to complete the sequence
The function encoding() returns some information about the encoding of the external
representation. If encoding() returns -1, the conversion is state dependent. If encoding()
returns 0, the number of externTs needed to produce an internal character is not constant.
Otherwise, the number of externTs need to produce an internT is returned. This information
can be used to provide appropriate buffer sizes.
The function always_noconv() returns true if the functions in() and out() never perform a
conversion. For example, the standard implementation of codecvt<char, char,
mbstate_t> does no conversion, and thus, always_noconv() returns true for this facet.
However, this only holds for the codecvt facet from the "C" locale. Other instances of this facet
may actually do a conversion.
The function length() returns the number of externTs from the sequence between fb and fe
necessary to produce max characters of type internT. If there are fewer than max complete
internT characters in the sequence between fb and fe, the number of externTs used to
produce a maximum number of internTs from the sequence is returned.

14.4.5 String Collation

The facet collate handles differences between conventions for the sorting of strings. For
example, in German the letter "ü" is treated as being equivalent to the letter "u" or to the letters
"ue" for the purpose of sorting strings. For other languages, this letter is not even a letter, and it is
treated as a special character, when it is treated at all. Other languages use slightly different
sorting rules for certain character sequences. The collate facet can be used to provide a
sorting of strings that is familiar to the user. Table 14.23 lists the member functions of this facet.
In this table, col is an instantiation of collate, and the arguments passed to the functions are
iterators that are used to define strings.

Table 14.23. Members of the collate<> Facet
Expression Meaning

col.compare (beg1 ,end1
,beg2,end2)

Returns 1 if the first string is greater than the second 0 if both
strings are equal -1 if the first string is smaller than the second

col.transform (beg ,end) Returns a string to be compared with other transformed strings
col.hash (beg , end) Returns a hash value (of type long) for the string
The collate facet is a class template that takes a character type charT as its template
argument. The strings passed to collate's members are specified using iterators of type
const charT*. This is somewhat unfortunate because there is no guarantee that the iterators

The C++ Standard Library

dyne-book 623

used by the type basic_string<charT> are also pointers. Thus, strings have to be compared
using something like this:

 locale loc;
 string s1, s2;
 ...
 //get collate facet of the loc locale
 const std::collate<charT>& col
 = std::use_facet<std::collate<charT> >(loc);

 //compare strings by using the collate facet
 int result = col.compare(s1.data(), si.data()+s1.size(),
 s2.data(), s2.data()+s2.size());
 if (result == 0) {
 //s1 and s2 are equal
 ...
 }

The reason for this limitation is that you cannot predict which iterator types are necessary. It
would be necessary to have collation facets for the pointer type and for an infinite amount of
iterator types.
Of course, here the special convenience function of locale can be used to compare strings (see
page 703):

 int result = loc(s1,s2);

But this works only for the compare() member function. There are no convenient functions
defined by the C++ standard library for the other two members of collate.
The transform() function returns an object of type basic_string<charT>. The
lexicographical order of strings returned from transform() is the same as the order of the
original strings using collate(). This ordering can be used for better performance if one string
has to be compared with many other strings. Determining the lexicographical order of strings can
be much faster than using collate(). This is because the national sorting rules can be
relatively complex.
The C++ standard library mandates support only for the two instantiations collate<char> and
collate<wchar_t>. For other character types, users must write their own specializations,
potentially using the standard instantiations.

14.4.6 Internationalized Messages

The messages facet is used to retrieve internationalized messages from a catalog of messages.
This facet is intended primarily to provide a service similar to that of the function perror(). This
function is used in POSIX systems to print a system error message for an error number stored in
the global variable errno. Of course, the service provided by messages is more flexible.
Unfortunately, it is not defined very precisely.
The messages facet is a template class that takes a character type charT as its template
argument. The strings returned from this facet are of type basic_string<charT>. The basic
use of this facet consists of opening a catalog, retrieving messages, and then closing the catalog.
The class messages derives from a class messages_base, which defines a type catalog
(actually, it is a type definition for int). An object of this type is used to identify the catalog on

The C++ Standard Library

dyne-book 624

which the members of messages operate. Table 14.24 lists the member functions of the
messages facet.
The name passed as the argument to the open() function identifies the catalog in which the
message strings are stored. This can be, for example, the name of a file. The loc argument
identifies a locale object that is used to access a ctype facet. This facet is used to convert the
message to the desired character type.
The exact semantics of the get() member are not defined. An implementation for POSIX
systems could, for example, return the string corresponding to the error message for error
msgid, but this behavior is not required by the standard. The set argument is intended to create
a substructure

Table 14.24. Members of the messages<> Facet
Expression Meaning

msg.open(name , loc) Opens a catalog and returns a corresponding ID
msg.get(cat,set,msgid,def) Returns the message with ID msgid from catalog cat; if

there is no such message, def is returned instead
msg. close (cat) Closes the catalog
within the messages. For example, it might be used to distinguish between system errors and
errors of the C++ standard library.
When a message catalog is no longer needed, it can be released using the close() function.
Although the interface using open() and close() suggests that the messages are retrieved
from a file as needed, this is by no means required. Actually, it is more likely that open() reads a
file and stores the messages in memory. A later call to close() would then release this memory.
The standard requires that the two instantiations messages<char> and messages<wchar_t>
be stored in each locale. The C++ standard library does not support any other instantiations.

The C++ Standard Library

dyne-book 625

Chapter 15. Allocators
Allocators were introduced in Section 3.4. They represent a special memory model and are an
abstraction used to translate the need to use memory into a raw call for memory. This chapter
describes allocators in detail.

15.1 Using Allocators as an Application Programmer

For the application programmer, using different allocators should be no problem. You simply have
to pass the allocator as a template argument. For example, the following statements create
different containers and strings using the special allocator SpecialAlloc:

 // a vector with special allocator
 vector<int,SpecialAlloc> v;

 // an int/float map with special allocator
 map<int,float,less<int>,SpecialAlloc> m;

 // a string with special allocator
 basic_string<char,char_traits<char>,SpecialAlloc> s;

If you use your own allocator, it probably is a good idea to make some type definitions. For
example:

 // special string type that uses special allocator
 typedef basic_string<char,char_traits<char>,SpecialAlloc> xstring;

 // special string/string map type that uses special allocator
 typedef map<xstring,xstring,less<xstring>,SpecialAlloc> xmap;

 // create object of this type
 xmap mymap;

When you use objects with other than the default allocator, you'll see no difference. However,
beware that you don't mix elements with different allocators; otherwise, the behavior is undefined.
You can check whether two allocators use the same memory model by using operator ==. If it
returns true, you can deallocate storage allocated from one allocator via the other. To access
the allocator, all types that are parameterized by an allocator provide the member function
get_allocator(). For example:

 if (mymap.get_allocator() == s.get_allocator()) {
 //OK, mymap and s use the same or interchangeable allocators
 ...
 }

15.2 Using Allocators as a Library Programmer

The C++ Standard Library

dyne-book 626

This section describes the use of allocators from the viewpoint of people who use allocators to
implement containers and other components that are able to handle different allocators. This
section is based, with permission, partly on Section 19.4 of Bjarne Stroustrup's The C++
Programming Language, 3rd edition.
Allocators provide an interface to allocate, create, destroy, and deallocate objects (Table 15.1).
With allocators, containers and algorithms can be parameterized by the way the elements are
stored. For example, you could implement allocators that use shared memory or that map the
elements to a persistent database.

Table 15.1. Fundamental Allocator Operations
Expression Effect

a.allocate(num) Allocates memory for num elements
a.construct(p) Initializes the element to which p refers
a.destroy(p) Destroys the element to which p refers
a.deallocate(p,num) Deallocates memory for num elements to which p refers
As an example, let's look at a naive implementation of a vector. A vector gets its allocator as a
template or a constructor argument and stores it somewhere internally:

 namespace std {
 template <class T,
 class Allocator = allocator<T> >
 class vector {
 ...
 private:
 Allocator alloc; //allocator
 T* elems; //array of elements
 size_type numElems; //number of elements
 size_type sizeElems; //size of memory for the elements
 ...

 public:
 //constructors
 explicit vector(const Allocator& = Allocator());
 explicit vector(size_type num, const T& val = T(),
 const Allocator& = Allocator());
 template <class InputIterator>
 vector(InputIterator beg, InputIterator end,
 const Allocator& = Allocator());
 vector(const vector<T,Allocator>& v);
 ...
 };
 }
The second constructor that initializes the vector by num elements of value val could be
implemented as follows:

 namespace std {
 template <class T, class Allocator>
 vector<T,Allocator>::vector(size_type num, const T& val,
 const Allocator& a)
 : alloc(a) //initialize allocator
 {
 //allocate memory
 sizeElems = numElems = num;
 elems = alloc.allocate(num);

The C++ Standard Library

dyne-book 627

 //initialize elements
 for (size_type i=0; i<num; ++i) {
 //initialize ith element
 alloc.construct(&elems[i],val);
 }
 }
 }

Table 15.2. Convenience Functions for Uninitialized Memory
Expression Effect

uninitialized_fill(beg,end,val) Initializes [beg, end) with val
uninitialized_fill_n(beg,num,val) Initializes num elements starting from beg with val
uninitialized_copy(beg,end,mem) Initialize elements starting from mem with the

elements of [beg,end)
However, for the initialization of uninitialized memory the C++ standard library provides some
convenience functions (Table 15.2). Using these functions, the implementation of the
constructor becomes even simpler:

 namespace std {
 template <class T, class Allocator>
 vector<T,Allocator>::vector(size_type num, const T& val,
 const Allocator& a)
 : alloc(a) //initialize allocator
 {
 //allocate memory
 sizeElems = numElems = num;
 elems = alloc.allocate(num);

 //initialize elements
 uninitialized_fill_n(elems, num, val);
 }
 }
The member function reserve(), which reserves more memory without changing the number
of elements (see page 149), could be implemented as follows:

 namespace std {
 template <class T, class Allocator>
 void vector<T,Allocator>::reserve(size_type size)
 {
 //reserve() never shrinks the memory
 if (size <= sizeElems) {
 return;
 }

 //allocate new memory for size elements
 T* newmem = alloc.allocate (size);

 //copy old elements into new memory
 uninitialized_copy(elems,elems+numElems,newmem);

The C++ Standard Library

dyne-book 628

 //destroy old elements
 for (size_type i=0; i<numElems; ++i) {
 alloc.destroy(&elems [i]);
 }

 //deallocate old memory
 alloc.deallocate(elems,sizeElems);

 //so, now we have our elements in the new memory
 sizeElems = size;
 elems = newmem;
 }
 }

Raw Storage Iterators

In addition, class raw_storage_iterator is provided to iterate over uninitialized memory to
initialize it. Therefore, you can use any algorithms with a raw_storage_iterator to initialize
memory with the values that are the result of that algorithm.
For example, the following statement initializes the storage to which elems refers by the values
in range [x.begin(),x.end()):

copy (x.begin(), x.end(), //source
 raw_storage_iterator<T*,T>(elems)); //destination
The first template argument (T*, here) has to be an output iterator for the type of the elements.
The second template argument (T, here) has to be the type of the elements.

Temporary Buffers

In code you might also find the get_temporary_buffer() and
return_temporary_buffer(). They are provided to handle uninitialized memory that is
provided for short, temporary use inside a function. Note that get_temporary_buffer() might
return less memory than expected. Therefore, get_temporary_buffer() returns a pair
containing the address of the memory and the size of the memory (in element units). Here is an
example of how to use it:

void f()
 {
 //allocate memory for num elements of type MyType
 pair<MyType*,ptrdiff_t> p = get_temporary_buffer<MyType>(num);
 if (p.second == 0) {
 //could not allocate any memory for elements
 ...
 }
 else if (p.second < num) {
 //could not allocate enough memory for num elements
 //however, don't forget to deallocate it
 ...
 }

The C++ Standard Library

dyne-book 629

 //do your processing
 ...

 //free temporarily allocated memory, if any
 if (p.first != 0) {
 return_temporary_buffer(p.first);
 }
 }
However, it is rather complicated to write exception-safe code with get_temporary_buffer()
and return_temporary_buffer(), so they are usually no longer used in library
implementations.

15.3 The Default Allocator

The default allocator is declared as follows:

 namespace std {
 template <class T>
 class allocator {
 public:
 //type definitions
 typedef size_t size_type;
 typedef ptrdiff_t difference_type;
 typedef T* pointer;
 typedef const T* const_pointer;
 typedef T& reference;
 typedef const T& const_reference;
 typedef T value_type;

 //rebind allocator to type U
 template <class U>
 struct rebind {
 typedef allocator<U> other;
 };

 //return address of values
 pointer address(reference value) const;
 const_pointer address(const_reference value) const;

 //constructors and destructor
 allocator() throw();
 allocator(const allocator&) throw();
 template <class U>
 allocator(const allocator<U>&) throw();
 ~allocator() throw();

 //return maximum number of elements that can be allocated
 size_type max_size() const throw();

The C++ Standard Library

dyne-book 630

 // allocate but don't initialize num elements of type T
 pointer allocate(size_type num,
 allocator<void>::const_pointer hint = 0);

 // initialize elements of allocated storage p with value value
 void construct(pointer p, const T& value);

 // delete elements of initialized storage p
 void destroy(pointer p);

 // deallocate storage p of deleted elements
 void deallocate(pointer p, size_type num);
 };
 }
The default allocator uses the global operators new and delete to allocate and deallocate
memory. Thus, allocate() may throw a bad_alloc exception. However, the default allocator
may be optimized by reusing deallocated memory or by allocating more memory than needed to
save time in additional allocations. So, the exact moments when operator new and operator
delete are called are unspecified. See page 735 for a possible implementation of the default
allocator.
There is a strange definition of a template structure inside the allocator, called rebind. This
template structure provides the ability that any allocator may allocate storage of another type
indirectly. For example, if Allocator is an allocator type, then

 Allocator::rebind<T2>::other
is the type of the same allocator specialized for elements of type T2.
rebind<> is useful if you implement a container and you have to allocate memory for a type that
differs from the element's type. For example, to implement a deque you typically need memory for
arrays that manage blocks of elements (see the typical implementation of a deque on page 160).
Thus, you need an allocator to allocate arrays of pointers to elements:

 namespace std {
 template <class T,
 class Allocator = allocator<T> >
 class deque {
 ...
 private:
 //rebind allocator for type T*
 typedef typename Allocator::rebind<T*>::other PtrAllocator;

 Allocator alloc; //allocator for values of type T
 PtrAllocator block_alloc; //allocator for values of type T*
 T** elems; //array of blocks of elements
 ...
 };
 }
To manage the elements of a deque you have to have one allocator to handle arrays/blocks of
elements and another allocator to handle the array of element blocks. The latter has type
PtrAllocator, which is the same allocator as for the elements. By using rebind<> the
Allocator for the elements (Allocator) is bound to the type of an array of elements (T*).
The default allocator has the following specialization for type void:

The C++ Standard Library

dyne-book 631

 namespace std {
 template <>
 class allocator<void> {
 public:
 typedef void* pointer;
 typedef const void* const_pointer;
 typedef void value_type;
 template <class U>
 struct rebind {
 typedef allocator<U> other;
 };
 };
 }

15.4 A User-Defined Allocator

Writing your own allocator is not very hard. The most important issue is how you allocate or
deallocate the storage. The rest is more or less obvious. As an example, let's look at a naive
implementation of the default allocator:

 //util/defalloc.hpp

 namespace std {
 template <class T>
 class allocator {
 public:
 //type definitions
 typedef size_t size_type;
 typedef ptrdiff_t difference_type;
 typedef T* pointer;
 typedef const T* const_pointer;
 typedef T& reference;
 typedef const T& const_reference;
 typedef T value_type;

 //rebind allocator to type U
 template <class U>
 struct rebind {
 typedef allocator<U> other;
 };

 //return address of values
 pointer address (reference value) const {
 return &value;
 }
 const_pointer address (const_reference value) const {
 return &value;
 }
 /*constructors and destructor
 *-nothing to do because the allocator has no state
 */
 allocator() throw() {
 }

The C++ Standard Library

dyne-book 632

 allocator(const allocator&) throw() {
 }
 template <class U>
 allocator (const allocator<U>&) throw() {
 }
 ~allocator() throw() {
 }

 //return maximum number of elements that can be allocated
 size_type max_size () const throw() {
 //for numeric_limits see Section 4.3, page 59
 return numeric_limits<size_t>::max() / sizeof(T);
 }

 //allocate but don't initialize num elements of type T
 pointer allocate (size_type num,
 allocator<void>::const_pointer hint = 0) {
 //allocate memory with global new
 return (pointer) (::operator new(num*sizeof(T)));
 }

 //initialize elements of allocated storage p with value value
 void construct (pointer p, const T& value) {
 //initialize memory with placement new
 new((void*)p)T(value);
 }

 //destroy elements of initialized storage p
 void destroy (pointer p) {
 // destroy objects by calling their destructor
 p->~T();
 }

 //deallocate storage p of deleted elements
 void deallocate (pointer p, size_type num) {
 //deallocate memory with global delete
 ::operator delete((void*)p));
 }
 };

 //return that all specializations of this allocator are
interchangeable
 template <class T1, class T2>
 bool operator== (const allocator<T1>&,
 const allocator<T2>&) throw() {
 return true;
 }
 template <class T1, class T2>
 bool operator!= (const allocator<T1>&,
 const allocator<T2>&) throw() {
 return false;

The C++ Standard Library

dyne-book 633

 }
 }
Using this base implementation you should find it no problem to implement your own allocator.
Typically, the only things that differ from this implementation are max_size(), allocate(),
and deallocate(). In these three functions, you program your own policy of memory
allocation, such as reusing memory instead of freeing it immediately, using shared memory, or
mapping the memory to a segment of an object-oriented database.

15.5 Allocators in Detail

According to the specified requirements, allocators have to provide the following types and
operations. There are special requirements for allocators that can be used by the standard
containers. Allocators that are not provided for the standard containers may have less
requirements.

15.5.1 Type Definitions

allocator::value_type

• The type of the elements.
• It is equivalent to T for allocator<T>.

allocator::size_type

• The type for unsigned integral values that can represent the size of the largest object in
the allocation model.

• To be usable by the standard containers, this type must be equivalent to size_t.

allocator::difference_type

• The type for signed integral values that can represent the difference between any two
pointers in the allocation model.

• To be usable by the standard containers, this type must be equivalent to ptrdiff_t.

allocator::pointer

• The type of a pointer to the element type.
• To be usable by the standard containers, this type must be equivalent to T* for

allocator<T>.

allocator::const_pointer

• The type of a constant pointer to the element type.
• To be usable by the standard containers, this type must be equivalent to const T* for

allocator<T>.

allocator::reference

• The type of a reference to the element type.
• It is equivalent to T& for allocator<T>.

The C++ Standard Library

dyne-book 634

allocator::const_reference

• The type of a constant reference to the element type.
• It is equivalent to const T& for allocator<T>.

allocator::rebind

• A template structure that provides the ability that any allocator may allocate storage of
another type indirectly.

• It has to be declared as follows:
•
• template <class T>
• class allocator {
• public:
• template <class U>
• struct rebind {
• typedef allocator<U> other;
• };
• ...
• }
•

• See page 734 for an explanation of the purpose of rebind.

15.5.2 Operations

allocator::allocator ()

• The default constructor.
• Creates an allocator object.

allocator::allocator (const allocator& a)

• The copy constructor.
• Copies an allocator object so that storage allocated from the original and from the copy

can be deallocated via the other.

allocator::~allocator ()

• The destructor.
• Destroys an allocator object.

pointer allocator::address (reference value)
const_pointer allocator::address (const_reference value)

• The first form returns a nonconstant pointer to the nonconstant value.
• The second form returns a constant pointer to the constant value.

size_type allocator::max_size ()

The C++ Standard Library

dyne-book 635

• Returns the largest value that can be passed meaningfully to allocate() to allocate
storage.

pointer allocator::allocate (size_type num)
pointer allocator::allocate (size_type num, allocator<void>::const_pointer hint)

• Both forms return storage for num elements of type T.
• The elements are not constructed/initialized (no constructors are called).
• The optional second argument has an implementation-specific meaning. For example, it

may be used by an implementation to help improve performance.

void allocator::deallocate (pointer p, size_type num)

• Frees the storage to which p refers.
• The storage of p has to be allocated by allocate() of the same or an equal allocator.
• p must not be NULL or 0.
• The elements have to have been destroyed already.

void allocator::construct (pointer p, const T& value)

• Initializes the storage of one element to which p refers with value.
• It is equivalent to new((void*)p)T(value).

void allocator::destroy (pointer p)

• Destroys the object to which p refers without deallocating the storage.
• Simply calls the destructor for the object.
• It is equivalent to ((T*)p)->T().

bool operator == (const allocator& a1, const allocator& a2)

• Returns true if allocators a1 and a2 are interchangeable.
• Two allocators are interchangeable if storage allocated from each can be deallocated via

the other.
• To be usable by the standard containers, allocators of the same type are required to be

interchangeable. So, this function should always return true.

bool operator != (const allocator& a1, const allocator& a2)

• Returns true if two allocators are not interchangeable.
• It is equivalent to ! (a1 == a2).
• To be usable by the standard containers, allocators of the same type are required to be

interchangeable. So, this function should always return false.

15.6 Utilities for Uninitialized Memory in Detail

This section describes the auxiliary functions for uninitialized memory in detail. The exemplary
exception safe implementation of these functions is based with permission on code by Greg
Colvin.

The C++ Standard Library

dyne-book 636

void uninitialized_fill (ForwardIterator beg, ForwardIterator end,
 const T& value)

• Initializes the elements in the range [beg,end) with value.
• This function either succeeds or has no effect.
• This function usually is implemented as follows:

 namespace std {
 template <class ForwIter, class T>
 void uninitialized_fill(ForwIter beg, ForwIter end,
 const T& value)
 {
 typedef typename iterator_traits<ForwIter>::value_type VT;
 ForwIter save(beg);
 try {
 for (; beg!=end; ++beg) {
 new (static_cast<void*>(&*beg))VT(value);
 }
 }
 catch (...) {
 for (; save!=beg; ++save) {
 save->~VT();
 }
 throw;
 }
 }
 }

void uninitialized_fill_n (ForwardIterator beg, Size num, const T& value)

• initializes num elements starting from beg with value.
• This function either succeeds or has no effect.
• This function usually is implemented as follows:
•
• namespace std {
• template <class ForwIter, class Size, class T>
• void uninitialized_fill_n (ForwIter beg, Size num,
• const T& value)
• {
• typedef typename iterator_traits<ForwIter>::value_type

VT;
• ForwIter save(beg);
• try {
• for (; num--; ++beg) {
• new (static_cast<void*>(&*beg))VT(value);
• }
• }
• catch (...) {
• for (; save!=beg; ++save) {

The C++ Standard Library

dyne-book 637

• save->~VT();
• }
• throw;
• }
• }
• }
•

• See page 730 for an example of the use of uninitialized_fill_n().

ForwardIterator uninitialized_copy (InputIterator sourceBeg,
 InputIterator sourceEnd,
 ForwardIterator destBeg)

• Initializes the memory starting at destBeg with the elements in the range
[sourceBeg,sourceEnd).

• The function either succeeds or has no effect.
• The function usually is implemented as follows:
•
• namespace std {
• template <class InputIter, class ForwIter>
• ForwIter uninitialized_copy(lnputIter beg, InputIter end,
• ForwIter dest)
• {
• typedef typename iterator_traits<ForwIter>::value_type

VT;
• ForwIter save(dest);
• try {
• for (; beg!=end; ++beg,++dest) {
• new (static_cast<void*>(&*dest))VT(*beg);
• }
• return dest;
• }
• catch (...) {
• for (; save!=dest; ++save) {
• save->~VT();
• }
• throw;
• }
• }
• }
• See page 730 for an example of the use of uninitialized_copy().

The C++ Standard Library

dyne-book 638

Internet Resources
The Internet is a huge source of information regarding the topic of this book. Here is a list of my
recommendations of sites where you could find additional, relevant information.

Where You Can Get the Standard

The American National Standards Institute (ANSI) sells the C++ standard in the United States. At
the time this book was written, you could get the C++ standard at the Electronics Standard Store
of ANSI for $18 (US) at the following site:
http://www.ansi.org/

Newsgroups

The following newsgroups discuss C++, the standard, and the C++ standard library:

• General aspects of C++ (unmoderated)
•
• comp.lang.c++
• General aspects of C++ (moderated)
•
• comp.lang.c++.moderated
• Aspects of the C++ standard (moderated)
•
• comp.std.c++
•

For more information about this newsgroup see

http://reality.sgi.com/austern/std-c++/faq.html

Internet Addresses/URLs

This section lists links that provide additional related informations regarding the C++ standard
library and the STL. However, books might have a longer life than Internet sites, and the links
listed here may be not valid in the future. Therefore, I will provide the actual list of links for this
book at the following site (and I expect my site to be stable):
http://www.josuttis.com/1ibbook/
The following links refer to issues of the whole C++ standard library:

• FAQs (frequently asked questions) about the standardization of C++:

http://reality.sgi.com/austern/std-c++/faq.html

• The official home page of ISO working group for the standardization of C++

http://www.dkuug.dk/jtc1/sc22/wg21/

The C++ Standard Library

dyne-book 639

• The Dinkum C++ Library Reference

http://www.dinkumware.com/refxcpp.html

• The C++ standard library implementation for the EGCS C++ compiler

http://sourceware.cygnus.com/1ibstdc++/

• The EGCS C++ compiler

http://egcs.cygnus.com/

• The Boost repository for free, peer-reviewed C++ libraries

http://www.boost.org/

• Blitz++, a C++ class library for scientific computing

http://www.oonumerics.org/blitz/

The following links refer to issues of the STL:

• The freely available STL implementation by SGI

http://www.sgi.com/Technology/STL/

• STLport for several platforms

http://www.stlport.org/

• Mumit's STL Newbie Guide

http://www.xraylith.wisc.edu/~khan/software/stl/STL.newbie.html

• David Musser's STL site

http://www.cs.rpi.edu/~musser/stl.html

• STL FAQs

ftp://butler.hpl.hp.com/stl/stl.faq

• Safe STL by Cay Horstmann

http://www.horstmann.com/safestl.html

• Warren Young's STL Resource List

http://www.cyberport.com/~tangent/programming/stl/resources.html

The C++ Standard Library

dyne-book 640

Bibliography
The following bibliography lists the books and sources that were mentioned, adopted, or cited in
this book and lists books that give additional details. Note that this is not a comprehensive list of
books. It is my personal list of books regarding this topic.
Matthew H. Austern
Generic Programming and the STL
Using and Extending the C++ Standard Template Library
Addison-Wesley, Reading, MA, 1998
Ulrich Breymann
Komponenten entwerfen mit der STL
Addison-Wesley, Bonn, Germany, 1999
Bernd Eggink
Die C++ iostreams-Library
Hanser Verlag, München, Germany, 1995
Margaret A. Ellis, Bjarne Stroustrup
The Annotated C++ Reference Manual (ARM)
Addison-Wesley, Reading, MA, 1990
Graham Glass, Brett Schuchert
The STL <Primer>
Prentice-Hall, Englewood Cliffs, NJ, 1996
ISO
Information Technology — Programming Languages — C++
Document Number ISO/IEC 14882-1998
ISO/IEC, 1998
Scott Meyers
More Effective C++
35 New Ways to Improve Your Programs and Designs
Addison-Wesley, Reading, MA, 1996
David R. Musser, Atul Saini
STL Tutorial and Reference Guide
C++ Programming with the Standard Template Library
Addison-Wesley, Reading, MA, 1996
Mark Nelson
C++ Programmer's Guide to the Standard Template Library
IDG Books Worldwide, Foster City, CA, 1995
ObjectSpace
Systems <Toolkit> UNIX Reference Manual
ObjectSpace, 1995
P. J. Plauger
The Draft Standard C++ Library
Prentice Hall, Englewood Cliffs, NJ, 1995
Bjarne Stroustrup
The C++ Programming Language,
3rd edition Addison-Wesley, Reading, MA, 1997
Bjarne Stroustrup
The Design and Evolution of C++
Addison-Wesley, Reading, MA, 1994
Steve Teale
C++ IOStreams Handbook
Addison-Wesley, Reading, MA, 1993

	Cover
	Introduction
	Table of Contents
	Preface
	Acknowledgements
	Chapter 1.About this book
	1.1 Why this Book
	1.2 What You Should Know Before Reading this Book
	1.3 Style and Structure of the Book
	1.4 How to Read this Book
	1.5 State of the Art
	1.6 Example Code and Additional Information
	1.7 Feedback

	Chapter 2.Introduction to C++ and the Standard Library
	2.1 History
	2.2 New Language Features
	2.3 Complexity and the Big-O Notation

	Chapter 3.General Concepts
	3.1 Namespace std

	Chapter 4.Utilities
	Chapter 5.The Standard Template Library
	Chapter 6.STL Containers
	Chapter 7.STL Iterators
	Chapter 8.STL Function Objects
	Chapter 9.STL Algorithms
	Chapter 10.Special Containers
	Chapter 11.Strings
	Chapter 12.Numerics
	Chapter 13.Input/Output Using Stream Classes
	Chapter 14.Internationalization
	Chapter 15.Allocators
	Internet Resources
	Bibliography

